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Summary. — We report on selected recent results from the CDF and D0 ex-
periments on searches for physics beyond the Standard Model using data from the
Tevatron collider running pp̄ collisions at

√
s = 1960 GeV.

PACS 14.80.Bn – Standard-model Higgs bosons.

1. – Introduction

Over the past decades the Standard Model (SM) of particle physics has been sur-
prisingly successful. Although the precision of experimental tests improved by orders of
magnitude no significant deviation from the SM predictions has been observed so far.
Still, there are many questions that the Standard Model does not answer and problems
it can not solve. Among the most important ones are the origin of the electro-weak
symmetry breaking, hierarchy of scales, unification of fundamental forces and the na-
ture of gravity. Recent cosmological observations indicates that the SM particles only
account for 4% of the matter of the Universe. Many extensions of the SM (Beyond the
Standard Model, BSM) have been proposed to make the theory more complete and solve
some of the above puzzles. Some of these extension includes SuperSymmetry (SUSY),
Grand Unification Theory (GUT) and Extra Dimensions. At CDF and D0 we search
for evidence of such processes in proton-antiproton collisions at

√
(s) = 1960 GeV. The

phenomenology of these models is very rich, although the cross sections for most of these
exotic processes is often very small compared to those of SM processes at hadron col-
liders. It is then necessary to devise analysis strategies that would allow to disentangle
the small interesting signals, often buried under heavy instrumental and/or physics back-
ground. Two main approaches to search for physics beyond the Standard Model are used
in a complementary fashion: model-based analyses and signature based studies. In the
more traditional model-driven approach, one picks a favorite theoretical model and/or
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Fig. 1. – Cross sections for typical SM processes at the TeVatron and exotic physics.

a process, and the best signature is chosen. The selection cuts are optimized based on
acceptance studies performed using simulated signal events. The expected background
is calculated from data and/or Monte Carlo and, based on the number of events ob-
served in the data, a discovery is made or the best limit on the new signal is set. In a
signature-based approach a specific signature is picked (i.e. dileptons+X) and the data
sample is defined in terms of known SM processes. A signal region (blind box) might
be defined with cuts which are kept as loose as possible and the background predic-
tions in the signal region are often extrapolated from control regions. Inconsistencies
with the SM predictions will provide indication of possible new physics. As the cuts
and acceptances are often calculated independently from a model, different models can
be tested against the data sample. It should be noticed that the comparison with a
specific model implies calculating optimized acceptances for a specific BSM signal. In
signature-based searches, there is no such an optimization. Both the experiments have
followed a somehow natural approach in pursuing analysis looking at final state signa-
tures characterized by relatively simple physics objects (for example lepton-only final
state, where the selection of the leptons is straightforward and can be easily checked
with the measurement of electroweak boson production cross sections) and proceeding
onto more complex final state, including jets and heavy flavor. Here more sophisticated
identification techniques need to be used and issues like jet energy scale calibration play
an important role in determining the final result. Given the limited space available for
these proceedings, we will focus here on few selected results. Further results are described
in http://ncdf70.fnal.gov:8001/presentations/LaThuile2011 Rolli.pdf.

2. – Search for New Physics in dileptons final states

This is a typical example of a signature-based search for new physics. Final states
consisting of dileptons are a straightforward signature where to look for new physics, as
several resonant states can appear as enhancement of the Drell-Yan cross section. The
analysis strategy is very simple: the invarian mass distribution of the dilepton system is
compared to the SM expectations, as shown in figs. 2 and 3. Only identification cuts to
select a pair of high PT leptons are placed.

Both CDF [1, 2] and D0 [3] have been studying the dilepton invariant mass distribu-
tion. The most recent result is a search for new dielectron mass resonances using 5.7 fb−1

of data recorded by the CDF II detector. No significant excess over the expected Stan-
dard Model prediction is observed, as seen in fig. 2. In this dataset, an event with the
highest dielectron mass ever observed (960 GeV/c2) has been recorded. The results are
intepreted in the framework of the Randall-Sundrum (RS) model [4]. Combined with a
similar search performed with 5.4 fb−1 of diphoton data [5] the RS-graviton mass limit
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Fig. 2. – Inclusive dielectron mass spectrum at CDF.

for the coupling k/MPl = 0.1 is 1058 GeV/c2 at 95% CL, making it the strongest limit to
date. A similar search is performed in the dimuon channel using 4.3 fb−1 of data and no
excess is observed (fig. 3). The result is interpreted in terms of Z′ production and limits
are set on several Z′ production scenario: such limits are extending to the kinematical
reach of the Tevatron (sequential SM Z′ limit is set for example to 1071 GeV/c2 at 95%
CL, making it one of the most stringent in this channel).

3. – Search for extra vector bosons and diboson resonances

A recent result by the D0 Collaboration [6] concerns the search for resonant WW
or WZ production. The dataset used corresponds to 5.4 fb−1 of integrated luminosity
collected by the D0 experiment. The search for these resonances in the diboson decay
channel covers the possibility that their coupling to leptons may be lower than the value
predicted by the SM. The data are consistent with the standard model background expec-
tation (figs. 4 and 5), and limits are set on a resonance mass using the sequential standard
model (SSM) W boson and the Randall-Sundrum model graviton G as benchmarks. D0
excludes a SSM W′ boson in the mass range 180–690 GeV and a Randall-Sundrum gravi-
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Fig. 3. – Inclusive dimuons mass spectrum at CDF.
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Fig. 4. – Reconstructed WZ mass in the lνjj, lljj, lllν channels, D0 Collaboration.

ton in the range 300–754 GeV at 95% CL There are two recent direct searches for WZ
or WW resonances by the CDF and D0 collaborations [7,8] that exclude WZ resonances
with mass below 516 and 520 GeV, respectively, and an RS graviton G→WW resonance
with mass less than 607 GeV. Indirect searches for new physics in the WW and WZ
diboson systems through measurements of the triple gauge couplings also show no de-
viation from the SM predictions [9-11] Finally the CDF collaboration has very recently
excluded M(W′) < 1.1 TeV, when assuming the W′ boson decays as in the SM [12].

4. – Search for New Physics in complex final states

4.1. gamma plus jets. – Many new physics models predict mechanisms that could
produce a γ+jets signature. CDF searches in the γ+jets channel, independently of any
model, for New Physics using 4.8 fb−1 of CDF Run II data [13]. A variety of techniques
are applied to estimate the Standard Model expectation and non-collision backgrounds.
Several kinematic distributions are examined, including photon ET, invariant masses,
and total transverse energy in the event for discrepancies with predictions from the
Standard Model (figs. 6 and 7). The data are found to be consistent with Standard
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Fig. 5. – Reconstructed WZ or WW transverse mass in the lνjj channel, D0 Collaboration.
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Fig. 6. – Missing energy distribution for γ ± 1 jet, CDF Collaboration.

Model expectations. This global search for new physics in γ+jets channel reveals no
significant indication of physics beyond Standard Model.

4.2. gamma plus b-jets plus MET + leptons. – A search for anomalous production of
the signature l + γ + b-quark+MET (lγ MET b) has been performed by using 6.0 fb−1

of data taken with the CDF detector [14]. In addition to the lγ MET b signature-based
search, CDF also presents for the first time a search for top pair production with an
additional radiated photon, tt̄ + γ. 85 events of lγ MET b versus an expectation of
99.1 ± 7.61 events. Additionally requiring the events to contain at least 3 jets and to
have a total transverse energy of 200 GeV, CDF observes 30 tt̄γ candidate events versus
an expectation from non-top standard model (SM) sources of 13.0 ± 2.1. Assuming the
difference between the observed number and the predicted non-tt̄γ SM total is due to
tt̄γ production, the collaboration measures the tt̄γ cross section to be 0.18 0.07(stat.) ±
0.04(sys.)±0.01(lum.) pb. We also measure a ratio of the tt̄γ cross section to the tt̄ cross
section to be 0.024 ± 0.009.
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Fig. 7. – Missing energy distribution for γ ± 2 jet, CDF Collaboration.
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Fig. 8. – Missing energy distribution in lγ MET b events, CDF Collaboration.

4.3. Multijets resonances. – A new analysis from CDF has been performed to search
for 3-jet hadronic resonances in 3.2 fb−1 of data [15]. Typical searches for New Physics
require either leptons and/or missing transverse energy, however, they might be blind to
new physics which have strong couplings and therefore decay into quarks and gluons. The
CDF collaboration used 3.2 fb−1 of data in a model-independent search that reconstructs
hadronic resonances in multijet final states. Although the analysis is not optimized for
a specific model of new physics, we use as a possible benchmark, R-parity violating
supersymmetric (RPV SUSY) gluino pairs production, with each gluino decaying into
three objects. Since no significant excess is observed in the data a 95% CL limit is set on
σ(pp̄ → XX)×Br(g̃g̃ → 3jets+3jets), where X = g̃, q̃, as a function of the gluino invariant
mass (fig. 13). To extract signal from the multijet QCD background, kinematic quantities
and correlations are used to create an ensemble of jet combinations. Incidentally, the
all-hadronic tt̄ decay has a signature similar to the signal searched for in this analysis.
The biggest challenge of the analysis is the large QCD background that accompanies
multijet resonances. A data driven approach is used to parameterize such background.
An ensemble consists of 20 (or more) possible jet triplets from the ≥ 6 hardest jets in
the event. For every event, we calculate each jet triplet invariant mass, Mjjj , and scalar
sum pT , Σjjj |pT |. Using the distribution of Mjjj vs. Σjjj|pT | ensures that the correct
combination of jets in pre-defined kinematic regimes is reconstructed, since the incorrect
(uncorrelated) triplets tend to have Mjjj = Σjjj|pT |. The correct (correlated) triplet
produces a horizontal branch in the signal at approximately the invariant mass of the
signal that is not present for the background as can be seen in figs. 9, 10, 11, 12.

4.4. Top + MET . – We conclude with a search for a new particle T′ decaying to top
quark via T′ → t + X, where X is an invisible particle [16]. In a data sample with 4.8 fb−1

of integrated luminosity collected by the CDF II detector, the search is conducted for
pair production of T′ in the lepton+jets channel, pp̄ → tt̄ + X + X → lνbqqb̄ + X + X.
Such process would produce extra missing energy and the key observable used in the
analysis is the transverse mass distribution of the lepton-missing energy system, which
in absence of new physics corresponds to the reconstructed W transverse mass. The
results are primarily interpreted in terms of a model where T′ are exotic fourth generation
quarks and X are dark matter particles [17]. Current direct and indirect bounds on such
exotic quarks restrict their masses to be between 300 and 600 GeV/c2, the dark matter
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Fig. 9. – Distributions of Mjjj versus Σjjj |pT |.
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Fig. 10. – Distributions of Mjjj versus Σjjj |pT |.
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Fig. 11. – Distributions of Mjjj versus Σjjj |pT |.
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Fig. 12. – Distributions of Mjjj versus Σjjj |pT | multiple entry(≥ 20).
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particle mass can be anywhere below mT ′ . The data are consistent with standard model
expectations, and CDF sets a 95% confidence level limits on the generic production of
TT′ → tt̄ + X + X, by performing a binned maximum-likelihood fit in the mW variable,
allowing for systematic and statistical fluctuations via template morphing. The observed
upper limits on the pair-production cross sections are converted to an exclusion curve in
the mass parameter space for the dark matter model involving fourth generation quarks.
The current cross section limits on the generic decay, T ′ → t +X, may be applied to the
many other models that predict the production of a heavy particle T′ decaying to top
quarks and invisible particles X, such as the supersymmetric process t̃ → t+χ0. Applying
these limits to the dark matter model CDF excludes fourth generation exotic quarks T′

at 95% confidence level up to mT ′ = 360 GeV/c2 for mX < 100 GeV/c2 (fig. 14).

5. – Conclusions

The CDF and D0 experiments are actively collecting and analyzing data at the
Tevatron collider. New physics is searched in a broad manner, using different ap-
proaches. In signature based analyses the data are scanned for anomalies point-
ing to indications of New Physics, while many dedicated searches for specific mod-
els are pursued, using the largest possible statistical samples. New results on search
for physics beyond the Standard Model are released almost daily. So far there
is no evidence for New Physics and numerous limits on new particle masses and
cross sections production are set. A broader set of updated results can be found
at: http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm and http://www-
cdf.fnal.gov/physics/exotic/exotic.html.
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