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Summary. — In this talk, we summarize how QCD evolution can be exploited to
improve the treatment of transverse momentum dependent (TMD) parton distribu-
tion and fragmentation functions. The methods allow existing non-perturbative fits
to be turned into fully evolved TMDs that are consistent with a complete TMD-
factorization formalism over the full range of kT . We argue that evolution is essen-
tial to the predictive power of calculations that utilize TMD parton distribution and
fragmentation functions, especially TMD observables that are sensitive to transverse
spin.

PACS 12.38.Bx – Perturbative calculations.
PACS 12.39.St – Factorization.
PACS 12.38.Cy – Summation of perturbation theory.

1. – Collinear versus TMD Factorization

The standard collinear QCD factorization theorems have set the standard for the use
of perturbative QCD calculations to probe certain properties of the microscopic structure
of matter. It will be instructive to recall the essential ingredients that lend the standard
factorization treatments their predictive power:

– Unambiguous prescription for calculating perturbatively well-behaved higher-order
corrections to the hard scattering.

– Correlation functions describing the non-perturbative factors are well defined and
have universality properties so that, once measured, they can be useful for future
phenomenological studies.

– Evolution equations, to allow the correlation functions to be compared at different
scales.

The collinear PDFs and fragmentation functions have by now been parametrized by a
wide range and variety of experimental data, and have become indispensable tools in gen-
eral high-energy physics. Ideally, TMD-factorization, in which the PDFs and fragmenta-
tion functions also carry information about the intrinsic transverse momenta of partons,
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should follow a very similar framework. However, it is only very recently [1-3] that
TMD-factorization has reached a level of logical completeness similar to the well-known
collinear cases. As long there was ambiguity in the formulation of TMD-factorization,
the procedure for correctly identifying TMDs in fits, as well as the correct procedure for
implementing evolution has remained unclear.

In the absence of a full TMD-factorization treatment, there have been several popular
but separate approaches for dealing with TMDs:

– Generalized Parton Model (GPM): A phenomenological approach is to extract
TMDs from fits to data while assuming a literal parton model interpretation of
the TMDs. One typically ignores evolution and therefore the fits correspond to
specific scales.

– Resummation: Begin with a collinear treatment valid for large transverse momen-
tum, and attempt to improve the treatment of lower transverse momentum by
resuming logarithms of qT /Q. A severe limitation of this approach is that it is
bound to fail below some qT , where many of the most interesting effects of TMD
physics are expected to become important.

– Models: Non-perturbative models of TMDs can be used to study specific non-
perturbative aspects of hadron structure (see A. Bacchetta’s talk for a review of
model calculations.). But there are ambiguities in how these TMDs are related
to the ones used in actual perturbative QCD calculations of cross sections. In
particular, it is unclear what hard scale they should correspond to.

– Lattice Calculations: Lattice calculations of TMDs (see, e.g., [4]) describe the non-
perturbative distribution of partons from first principles, but also require a clear
definition for the TMDs, and a clear prescription for use in complete cross section
calculations.

A useful TMD-factorization treatment should allow the advantages of each of these ap-
proaches to be unified within a single, clear formalism for relating TMD studies to ob-
servable cross sections. Fortunately, this is now possible following the recent work of
ref. [1] (see, especially, chapts. 10 and 13). (A similar general approach was developed
earlier by Ji, Ma, and Yuan [2,3], which built upon the Collins-Soper-Sterman (CSS) [5,6]
formalism.) We will show how fits to TMDs can be constructed from existing work that
follows the above tabulated approaches, but which include evolution and are consistent
with a full TMD-factorization.

We apply the TMD-factorization method developed recently by Collins in ref. [1].
The factorization theorem for the Drell-Yan (DY) process, for example, is

Wμν
DY =

∑
f

|Hf (Q2, μ)|μν

∫
d2k1T d2k2T Ff/P1(x1,k1T , μ, ζ1F )Ff/P2(x2,k2T , μ, ζ2F )(1)

×δ(2)(k1T + k2T − qT ) + Y + O(m/Q).

Note the similarity of the first term above to a GPM description; there is a hard
part Hf (Q2, μ)|μν and a convolution of two TMD PDFs, Ff/P1(x1,k1T , μ, ζ1F ) and
Ff/P2(x2,k2T , μ, ζ2F ). However, in the full TMD-factorization treatment, they have
acquired scale dependence through the renormalization group parameter μ and ζ1F and
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ζ2F (which obey
√

ζ1F ζ2F = Q2). Moreover, there is no explicit appearance of a soft fac-
tor. The first term in eq. (1) is appropriate for describing the small qT region (qT � Q).
The Y term corrects the large qT behavior and can be calculated in terms of normal inte-
grated PDFs. Reference [1] derives very specific operator definitions for the TMD PDFs,
which include the role of soft gluons and account for all spurious divergences which have
hindered efforts to clearly define the TMD PDFs in the past.

2. – Evolution of TMDs

The evolution of the individual TMDs in transverse coordinate space is governed by
the Collins-Soper (CS) equation [5],

∂ ln F̃ (x, bT , μ, ζ)
∂ ln

√
ζ

= K̃(bT , μ),(2)

and the renormalization group equations,

dK̃(bT , μ)
d lnμ

= −γK(g(μ)),
d ln F̃ (x, bT , μ, ζ)

d ln μ
= −γF (g(μ), ζ/μ2).(3)

In eq. (2), K̃(bT , μ) is the kernel for evolution with respect the energy variable ζ, while
γF (g(μ), ζ/μ2) and γK(g(μ)) are the anomalous dimensions. These can all be calculated
in perturbation theory, though K̃(bT , μ) becomes non-perturbative at large bT and needs
to be fit. It is a universal function, however, both with respect to different processes and
with regard to PDFs versus fragmentation functions.

3. – Specific fits

Working within a GPM approach, Gaussian parametrizations have been fit to var-
ious TMDs in, for example, ref. [7] from low energy SIDIS measurements. The non-
perturbative information corresponding to K̃(bT , μ) at large bT in eq. (2) has been ex-
tracted from more traditional applications of the CSS method, such as in ref. [8]. With
the non-perturbative parts constrained, specific tables for the TMDs in eq. (1) can be gen-
erated for any arbitrary scale Q once the perturbative contributions have been calculated.

We have carried this out explicitly for the unpolarized TMD PDFs and fragmenta-
tion functions in ref. [9], and have made the results available at the website: https://
projects.hepforge.org/tmd/.

An example showing the unpolarized up quark PDF for a selection of Q values is the
graph in fig. 1.

Note that, once the Y term is included in eq. (1), the factorization formula exactly
valid over the whole range of kT from kT = 0 to Q.

4. – Conclusions and future directions

A crucial element of the TMD-factorization approach is that the TMDs are well-
defined and, therefore, can be taken to be genuinely universal. One consequence of this
is that different theories of the non-perturbative properties of hadron structure can be
compared with one another, and with experimental results over a range of hard scales.

Ultimately, in order to take full advantage of the predictive power of TMD-factori-
zation, requires a concerted effort to improve upon non-perturbative fits, to calculate
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Fig. 1. – Unpolarized TMD PDF for an up-quark, for scales Q =
√

2.4, 5 and 91.19 GeV.

higher orders to the anomalous dimensions, K, the coefficient functions, and the hard
parts, and to provide numerical implementations of evolution in transverse momentum
space similar to what has been done in ref. [9], but applied to other TMD PDFs and
fragmentation functions, including interesting spin dependent ones. We have recently
been involved in efforts to extend evolution to the Sivers function [10], and plan to
continue this work to generate evolved fits for most of the various spin-dependent TMDs.
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