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Summary. — The transverse single-spin asymmetry AN (t), for inclusive leading
neutron production in polarised pp collisions is calculated in the energy range of
RHIC. Absorptive corrections to the pion pole generating a relative phase between
the spin-flip and non-flip amplitudes, are found to be insufficient to explain the mag-
nitude of AN observed recently in the PHENIX experiment. A larger contribution,
comes from the interference of pion and the effective a-Reggeon, which includes the
a1 pole and the (dominant) πρ Regge cut. Assuming that this state saturates the
spectral function of the axial current we determined its coupling to the nucleons ap-
plying the PCAC and the 2d Weinberg sum rule. The results of the parameter-free
calculation of AN are in excellent agreement with the PHENIX data.

PACS 13.85.Ni – Inclusive production with identified hadrons.
PACS 11.80.Cr – Helicity amplitudes.
PACS 11.80.Gw – Multichannel scattering.
PACS 13.88.+e – Polarization in particle interactions.

1. – Introduction

The mechanism of forward neutron production in pp and γ∗p interactions has been
always considered as a way to single out the pion exchange contribution [1]. The pion
Regge trajectory has a low intercept απ(0) ≈ 0, this is why it ceases to be important at
high energies in binary reactions. A different situation takes place in inclusive reactions,
which are known to have (approximate) Feynman scaling, and as a consequence the pion
contribution to neutron production remains nearly unchanged with energy. This can
be seen from the graphical representation of the cross section of the inclusive reaction
h + p → X + n in fig. 1.

The pion pole dominance is not obvious. Indeed, in order to decrease the 4-momentum
transfer squared t and get closer to the pion pole, one should select neutrons with higher
possible fractional momentum z → 1 of the neutron (see below). Simultaneously the
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Fig. 1. – Graphical representation of the cross section of inclusive neutron production in hadron-
proton collisions, in the fragmentation region of the proton.

pion exchange acquires a larger rapidity interval, and the competing Regge exchanges
with higher intercepts become important.

Polarization effects have always been known as a sensitive probe for interference be-
tween different contributions. The single-transverse-spin asymmetry in reaction pp → nX
with polarized protons was measured recently by the PHENIX experiment at RHIC [2]
in pp collisions at energies

√
s = 62, 200 and 500GeV. The measurements were per-

formed with a transversely polarized proton beam, and the neutron was detected at very
forward and backward rapidities relative to the polarized beam. An appreciable single-
transverse-spin asymmetry was found in events with large fractional neutron momenta
z. The data agree with a linear dependence on the neutron transverse momentum qT ,
and different energy match well, what indicates at an energy-independent AN (qT ).

Below we demonstrate that the large magnitude of the single-transverse-spin asymme-
try of forward neutrons discovered in [2], reveals a new important mechanism of neutron
production ignored in previous studies of this process.

2. – Single-spin asymmetry of forward neutrons

Contrary to the conventional wisdom, the pion-nucleon vertex is not pure spin-flip,
but a large non-flip term in the amplitude appears if the fractional light-cone momentum
of the neutron z < 1. In Born approximation the pion exchange in neutron production,
depicted in fig. 1, in the leading order in the small parameter mN/

√
s has the form [3],

(1) AB
p→n(�q, z) = ξ̄n

[
σ3 qL +

1√
z

�σ · �qT

]
ξp φB(qT , z) ,

where �σ are the Pauli matrices; ξp,n are the proton or neutron spinors; �qT and

(2) qL =
1 − z√

z
mN ,

are the transverse and longitudinal components of the momentum transfer respectively.
At large z the pseudoscalar amplitude φB(qT , z) has the Regge form [4],

(3) φB(qT , z) =
α′

π

8
Gπ+pn(t) ηπ(t) (1 − z)−απ(t)Aπ+p→X(M2

X) ,
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Fig. 2. – a: Born graph with single pion exchange; b: inelastic proton-pion interaction via
color exchange, with production of two color-octet dipoles; c: Fock state representation of the
previous mechanism, complemented with initial/final state interactions.

where M2
X = (1 − z)s; the 4-momentum transfer squared (t) has the form,

(4) −t = q2
L +

1
z

q2
T .

Both spin-flip and non-flip amplitudes in (1) have the same phase, given by the signature
factor,

(5) ηπ(t) = i − ctg
[
παπ(t)

2

]
,

where the second term in (5) contains the pion pole,

(6) Re ηπ(t) ≈ 2
πα′

π

1
m2

π − t
.

In what follows we assume that the pion Regge trajectory is a linear function of t,
απ(t) = α′

π(t − m2
π), where α′

π ≈ 0.9GeV−2.
The effective vertex function in (3) is parametrized as,

(7) Gπ+pn(t) = gπ+pn eR2
πt,

where the pion-nucleon coupling g2
π+pn/8π = 13.85. The t-slope parameter R2

π incorpo-
rates the t-dependences of the coupling and of the πN inelastic amplitude. Although it
is not well known, its value is not really important for us, since we concentrate on the
small t region. For further calculations we fix R2

π = 4GeV−2, which is naturally related
to the nucleon size.

The amplitude (1) is normalized as M2
Xσπ+p

tot =
∑

X |Aπ+p→X(M2
X)|2. Correspond-

ingly, the differential cross section of inclusive neutron production reads,

(8) z
dσB

p→n

dz dq2
T

=
(

α′
π

8

)2

|t|G2
π+pn(t) |ηπ(t)|2 (1 − z)1−2απ(t)σπ+p

tot (M2
X) .

This pure pion pole model has two obvious shortcomings: i) the cross section eq. (8)
substantially overshoots data [3]; ii) no single transverse-spin asymmetry is possible
because the spin-flip and non-flip terms in the amplitude (1) have no phase shift.

The first problem was settled in [3] by introducing the absorptive corrections corre-
sponding to initial/final state interactions of the projectile partons. This is illustrated
pictorially in fig. 2c. It was demonstrated that the suppression factor caused by absorp-
tion is very large, because it is related to the propagation of a strongly interacting 5-quark
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Fig. 3. – Single-transverse-spin asymmetry of leading neutrons related to the single-pion ex-
change corrected for absorptive corrections, as function of qT . The curves from bottom to top
correspond to z = 0.5, 0.7 and 0.9.

color octet-octet dipole. This brings the cross section, which considerably overestimates
data within the single pole approximation, down to the right magnitude. However, the
calculated phase shift between the spin-flip and non-flip amplitudes was found to be too
small to explain the PHENIX data on AN . The results of calculations [5,6] are depicted
in fig. 3. Apparently, the calculated asymmetry is far too small to explain the PHENIX
results depicted in fig. 4.

3. – Axial-vector Reggeons and Regge cuts

In addition to pion exchange, other Regge poles R = ρ, a2, ω, a1, etc. and Regge
cuts can contribute to the pp → nX reaction as is illustrated graphically in fig. 5.
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Fig. 4. – Single-transverse-spin asymmetry AN in the reaction pp → nX, measured at
√

s =
62, 200, 500 GeV [2] (preliminary data). The asterisks show the result of our calculation,
eq. (22).
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Fig. 5. – Graphical representation for the interference between the amplitudes with pion and
Reggeon exchanges.

Summing over different produced states X and using completeness one arrives at the
imaginary part of the amplitude of the process π + p → R + p at c.m. energy M2

X . The
production of natural parity states, like ρ, a2, etc. can proceed only via Reggeon exchange,
therefore these amplitudes are strongly suppressed at RHIC energies by a power of MX

(dependent on the Regge intercept) and can be safely neglected everywhere, except the
region of very small (1 − z) ∼ s0/s, unreachable experimentally.

Only the unnatural parity states, which can be diffractively produced by a pion,
like the a1 meson, or ρ-π in the axial vector or pseudo-scalar states, contribute to the
interference term in the neutron production cross section at high energies.

The a1NN vertex is pure non spin-flip [7,8], therefore, it should be added to the first
term in eq. (1),

(9) Aa1
p→n(qT , z) = eL

μ n̄ γ5γμ p =
2mNqL√

|t|
φa

0(qT , z) ξ̄nσ3ξp,

where the longitudinal polarization vector of a1 reads [9],

(10) eL
μ =

1√
|t|

(√
q2
0 − t, 0, 0, q0

)
,

and the transferred energy

(11) q0 = Ep − En = qL + O
(
mN/

√
s
)
.

In the Born approximation,

(12) φa
0(qT , z) =

α′
a1

8
Ga+pn(t) ηa1(t)(1 − z)−αa1 (t)Aa+

1 p→X(M2
X) ,

and

(13) ηa1(t) = −i − tg

[
παa1(t)

2

]
.

The amplitude (9) contains three unknowns, which we fix as follows.
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3.1. The amplitude Aa+
1 p→X(M2

X). – The amplitude Aa+
1 p→X(M2

X) is normalized as,

(14)
∑
X

A†
a+
1 p→X

(M2
X)Aπp→X(M2

X) = 4
√

π M2
X

√
dσ(πp → a1p)/dp2

T |pT =0 .

The a1 pole is very weak, it has been observed in π → 3π diffraction only by means
of a phase-shift analysis [10,11].

A much large contribution comes from the axial-vector state ρπ(1+S), which has the
invariant mass distribution forming a strong and narrow peak at Mπρ ≈ 1.1GeV, related
mainly to the Deck mechanism [12].

The magnitude and energy dependence of the diffractive cross section, π + p →
ρπ(1+S) + p has the form,

(15)
dσsd(M2

X)
dq2

T

=
dσsd(s1)

dq2
T

(
M2

X

s1

)0.16
Kπp(M2

X)
Kπp(s1)

,

where the first factor was fitted in [6] to data [11] at the energy s1 ∼ 119 − 177GeV2.
Equation (15) extrapolates it up to the substantially higher c.m. energies M2

X = (1−z)s
of RHIC.

The K(s) in (15) is the survival probability of a large rapidity gap, which in the
eikonal approximation has the form [13]

(16) Kπp(s) = 1 − 1
π

σπp
tot(s)

Bπp
sd (s) + 2Bπp

el (s)
+

1
(4π)2

[σπp
tot(s)]

2

Bπp
el (s) [Bπp

sd (s) + Bπp
el (s)]

,

where the elastic and single diffractive slopes are Bπp(s) = B0 + 2α′
IP ln(s/s0), with

B0 = 6GeV−2 for elastic and B0 = 9GeV−2 for single diffractive processes.
Since we found that the production cross section for the a1 meson is too small to

produce a sizable contribution to neutron production, it should be complemented with
the more significant production of a πρ 1+S state, which forms a narrow resonance-like
peak in the 3π invariant mass distribution. So, we introduce and employ in what follows
the effective “pole” a in the dispersion relation for the axial-vector current, and predict
its production cross section in πp collisions at high energies.

3.2. The a-nucleon vertex GaNN (t). – Like for the pion we parametrize the a1-nucleon
vertex in eq. (12) as Ga+pn(t) = ga+pn exp(R2

a t). The slope parameter R2
a is poorly

known, however in the small t region under consideration it is not of great importance.
Like for the pion vertex, it is natural to expect the slope to be related to the nucleon
size, so we fix R2

a = R2
π = 4GeV2 for further calculations.

The a-nucleon coupling ga+pn can be estimated based on PCAC. Although it is tempt-
ing to interpret the Goldberger-Treiman relation and Adler theorem as pion pole domi-
nance, the pion pole does not contribute in either β-decay or high-energy neutrino inter-
actions, because of conservation of the lepton current (neglecting the lepton mass) [9,14].
In order to have PCAC heavy axial states contributing to the dispersion relation for the
amplitude of the process must miraculously reproduce the pion pole. If we replace the
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combined contribution of the heavy state by an affective pole a [9,15,16], the Goldberger-
Treiman relation relates the a and pion poles,

(17)
√

2fa gaNN

m2
a

=
fπ gπNN√

2mN

.

In the second Weinberg sum rule the spectral function of the vector current can be
represented by the ρ-meson pole. Correspondingly, the axial spectral function is saturated
by the effective a meson, because the pion does not contribute to the second Weinberg
sum rule. Then one arrives at the relation,

(18) fa = fρ =

√
2m2

ρ

γρ
,

where γρ is the universal coupling (ρNN , ρππ, etc.), γ2
ρ/4π = 2.4.

Thus, for the a to pion couplings ratio we get,

(19)
gaNN

gπNN
=

m2
a fπ

2mN fρ
≈ 0.5.

3.3. Regge trajectory of the “a-pole”. – So far the narrow a-peak in the spectral
function of the axial current could be treated as an effective pole replacing the real one
a1, which was found to be too weak. However, the Regge singularity in the complex
angular momentum plane, related to the π-ρ exchange, is a Regge cut rather than a pole.
The trajectory of the cut can be expressed in terms of the π and ρ Reggeons,

(20) απρ(t) = απ(0) + αρ(0) − 1 +
α′

πα′
ρ

α′
π + α′

ρ

t.

For further numerical evaluations we fix α(0) = 1/2 and α′
π = α′

ρ = 0.9GeV−2, so
απρ(t) = −0.5 + 0.45t.

Correspondingly, the phase (signature) factor for the unnatural parity a-Reggeon
exchange reads,

(21) ηa(t) = −i − tg [παa(t)/2] ,

where αa(t) = απρ(t).
This factor provides a significant phase shift Δφ = π/4 relative to the pion, and this

phase shift rises with t up to the maximal value of π/2 at t = −1GeV2. This interference
looks like a promising source of a significant single transverse-spin asymmetry.

Notice that the intercept of the π-ρ cut turns out to be rather close to the intercept
of the a1 Regge pole, αa1(0) = −0.43, which corresponds to a straight Regge trajectory
with the universal slope crossing the position of the a1 pole on the Chew-Frautschi plot.

Eventually, we are in a position to perform a parameter free calculation of the a-π
interference contribution to the single transverse-spin asymmetry of neutron production,
(22)

AN (qT , z) = qT
4mN qL

|t|3/2
(1−z)Δα(t) Im η∗

π(t) ηa(t)
|ηπ(t)|2

ga+pn

gπ+pn

(
dσπp→ap(M2

X)/dp2
T |pT =0

dσπp→πp(M2
X)/dp2

T |pT =0

)1/2

,
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Fig. 6. – Graphical representation of the cross section of inclusive reaction p↑+p → X + n.

where Δα(t) = απ(t)−αa(t). The results of calculations for every value of z correspond-
ing to the experimental point, are plotted by asterisks in fig. 4. They agree well with the
PHENIX data. Notice that the estimated uncertainty of our calculations is about 30%.

4. – AN in the backward hemisphere

The PHENIX measurements [2] found that neutrons produced with large xF < 0
have a small azimuthal asymmetry, consistent with zero. This fact is explained by the so
called Abarbanel-Gross theorem [17] which predicts zero transverse-spin asymmetry for
particles produced in the fragmentation region of an unpolarized beam. This statement
was proven within the Regge pole model illustrated in fig. 6a,b.

The amplitude of the reaction p↑+p → X +n squared, fig. 6a, is related by the optical
theorem with the triple-Regge graph in fig. 6b. According to Regge factorization the
proton spin can correlates only with the vector product, [�k×�k′], of the proton momenta
in the two conjugated amplitudes, as is shown in fig. 6b. According to the optical theorem
these momenta are equal, �k = �k′, so no transverse-spin correlation is possible. Regge cuts
shown in fig. 6c breakdown this statement, but the magnitude of the gained single-spin
asymmetry calculated in [18], turns out to be very small, less than 1%.

5. – Summary

Although the cross section of leading neutron production in pp collisions at high
energies is well explained by the pion pole exchange supplemented with (significant)
absorptive corrections, this description fails to reproduce the magnitude of the transverse
single-spin asymmetry in polarized pp collisions, measured recently by the PHENIX
collaboration at RHIC.

Another possible source of spin effects is the interference between the amplitudes of
neutron production via pion and a1 Reggeon exchanges. Because a1 has unnatural parity,
it can be produced diffractively in π+p → a1+p, so is not suppressed at high c.m. energy
MX . It also provides a large, close to maximal, relative phase shift between the non-flip
a1 and spin-flip pion exchange amplitudes.

It turns out, however, that the a1 exchange contribution is strongly suppressed by
the smallness of the diffractive a1 resonance production. Nevertheless, we found that it
is possible to replace this resonance by πρ in the unnatural parity 1+S state, because
it forms a narrow peak in the 3π invariant mass distribution, so can be treated as an
effective pole, named a, in the dispersion relation for the axial current.

Presence of such an effective pole in the dispersion relation for the axial current
allows to determine the a-nucleon coupling using PCAC, which relates the contributions
of heavy states (saturated by the a pole and the pion pole). Additional information
about the leptonic decay constant of a is obtained from the second Weinberg sum rule.
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Although the πρ exchange corresponds to a Regge cut, rather than a pole, we found
its Regge intercept to be rather close to the one for a1 Reggeon, so the phase shift is
similar as well.

Finally, we calculated the single transverse-spin asymmetry at different values of the
kinematic variables, s, qT and z, and found very good agreement with data.
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