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Summary. — We review the role of two-boson exchange in elastic electron-proton
scattering, focusing in particular on γZ interference in parity-violating reactions.
We assess the impact of the two-boson corrections on the extraction of the strange
form factors of the nucleon and the proton’s weak charge.

PACS 12.15.Lk – Electroweak radiative corrections.
PACS 11.55.Fv – Dispersion relations.
PACS 13.60.Hb – Total and inclusive cross sections (including deep-inelastic pro-
cesses).

1. – Introduction

The elastic ep polarization transfer experiments at Jefferson Lab revealed a significant
discrepancy with the ratio of electric to magnetic form factors extracted from unpolarized
cross sections [1]. Because essentially all electron scattering measurements are analyzed in
the one-photon exchange approximation, this discrepancy led to a serious re-examination
of the possible role played by two-photon exchange corrections (for a review see ref. [2]).

In addition to the exchange of one or more virtual photons between the electron and
nucleon, the Standard Model allows the scattering to take place via the exchange of a
neutral Z boson. Since the Z mass is some two orders of magnitude larger than the proton
mass, the weak exchange process is strongly suppressed relative to the electromagnetic
reaction. Nevertheless, asymmetries sensitive to the γZ interference amplitude, which
are of order several parts per million, have been measured in modern accelerator facilities.
These can be used to extract the strange electric and magnetic form factors of the nucleon,
as well as the weak charge of the proton.

The γZ interference term is isolated by polarizing the incident electron and ob-
serving the difference between right- and left-handed electrons scattering from unpo-
larized protons. A parity-violating (PV) asymmetry can then be defined as APV =
(σR−σL)/(σR+σL), where σR,L are the cross sections for a right- and left-hand polarized
electrons, respectively. The numerator in the asymmetry is sensitive to the interference
of the vector and axial-vector currents, and hence violates parity. In view of the large
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TPE effects found for electromagnetic form factors [3-5], the question naturally arises of
what effect the exchange of two bosons may have on PV asymmetries. Because both the
strange form factors and the proton weak charge are numerically small quantities, the
two-boson exchange (TBE) contributions could affect their extraction significantly.

2. – Parity-violating electron scattering

For a nucleon target, the PV asymmetry can be written as
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where K = GF Q2/4πα
√

2, GF is the Fermi constant, and α is the fine structure constant.
The electromagnetic GγN

E,M and weak GZN
E,M,A form factors are functions of the exchanged

four-momentum transfer squared, Q2, with σγN
R the reduced γN cross section, and ge

V,A

the vector and axial-vector couplings of the electron to the Z boson. The variable ε is
related to the scattering angle θ by ε = (1+2(1+τ) tan2(θ/2))−1, with τ = Q2/4M2 and
M the nucleon mass, and ε′ =

√
τ(1 + τ)(1 − ε2). For a proton target, assuming isospin

symmetry, the weak vector form factors GZp
E,M can be related to the electromagnetic form

factors of the proton (neutron) G
γp(n)
E,M , so that

(2) GZp
E (0) ≡ Qp

W = 1 − 4 sin2 θW (Born approximation)

is the weak charge of the proton. Because Qp
W is numerically small, the overall contri-

bution to GZp
E,M from the proton electromagnetic form factors is suppressed.

3. – Two-boson exchange corrections and strange form factors

Beyond the Born approximation, the PV asymmetry receives corrections from higher-
order radiative effects, including TPE and corrections involving γZ loops. The full
PV asymmetry, including all TBE corrections, is given by APV = (1 + δ)A0

PV, where
A0

PV is the Born asymmetry in eq. (1), and δ ≈ δZ(γγ) + δγ(Zγ) − δγ(γγ). Here δZ(γγ)

and δγ(Zγ) denote the corrections from the interference between single Z boson and
γγ exchange amplitudes, and between the one-photon exchange and γZ interference
amplitudes, respectively, while δγ(γγ) is the purely electromagnetic TPE correction.

The total TBE contributions from nucleon and Δ intermediate states are shown in
fig. 1 as a function of ε for Q2 = 0.01 and 0.1 GeV2, relative to the Mo-Tsai infrared-
divergent result, δ ≡ δ − δIR. At low Q2 the γ(γγ) and Z(γγ) contributions are very
similar and largely cancel in the asymmetry, which is then determined mostly by the
γ(Zγ) component. The Δ correction is strongly suppressed at low ε, but grows with
increasing ε, becoming as important as the nucleon elastic part near the forward limit.

The full effects of the TBE corrections on APV at kinematics corresponding to exper-
iments designed to measure the strange quark form factors of the nucleon were consid-
ered in refs. [7-10]. For the forward angle HAPPEX [11] and G0 [12] measurements, the
nucleon correction was found to be in the vicinity of ∼ 0.1%–0.2%, increasing to ∼ 1.0%–
1.5% for the backward angle G0 [13] and the earlier SAMPLE [14] measurements. In
contrast, the Δ contribution is almost negligible at backward angles, but becomes more
important at forward angles.
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Fig. 1. – Total finite parts of the TBE corrections δ, relative to the Mo-Tsai contribution [6],
with nucleon (dashed) and Δ (dotted) intermediate states, as well as the sum (solid), at Q2 =
0.01 GeV2 (left) and 0.1 GeV2 (right) [7].

The impact of these corrections on the strange form factors is difficult to gauge without
performing a full reanalysis of the data, since in general different electroweak parameters
and form factors are used in the various experiments. Using PV scattering data below
Q2 = 0.3 GeV2, a preliminary analysis shows that the TBE corrections in the proton
modify the strange electric and magnetic form factors [15] by Gs

E = 0.0025(182) −→
0.0023(182) and Gs

M = −0.011(254) −→ −0.020(254) at a scale Q2 = 0.1 GeV2. The
effect on the strange magnetic form factor is thus an almost factor of two increase in the
magnitude, but is still well within the current experimental uncertainty. The shift in the
strange electric form factor is somewhat smaller. Overall, the conclusion appears to be
that TBE effects provide relatively mild corrections to strange quark form factors. On
the other hand, a significantly larger effect from TBE has been found in near-forward
PV electron scattering at very low Q2, which we discuss next.

4. – γZ corrections to the proton weak charge

At forward scattering angles, the PV asymmetry in the low-energy limit is related
to the weak charge of the proton, APV → K tQp

W , where t ≡ −Q2. The absolute
γZ box correction to Qp

W at zero energy is denoted by �γZ(0) ≡ Qp
W δγZ , and has

contributions from both the vector electron–axial vector hadron and axial vector electron–
vector hadron couplings of the Z boson. The vector hadron contribution �V

γZ vanishes
in the limit of zero energy E, but is finite at E > 0. The axial hadron correction �A

γZ ,
which is dominant at the very low E relevant to atomic parity-violation experiments,
was estimated some time ago by Marciano and Sirlin [16] in terms of a free quark model-
inspired loop calculation.

In the limit t → 0, the correction �γZ can be computed from its imaginary part using
forward dispersion relations [17]. The imaginary part of γZ exchange amplitude can
be written in terms of the cross section for all possible hadronic final states with mass
W , parametrized through the γZ structure functions F γZ

1,2,3. The contributions to the
structure functions can be split into elastic, resonance, and deep-inelastic scattering (DIS)
regions. For the latter, the contributions to �γZ can be written in terms of moments
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where Q2
1 is the virtuality of the exchanged boson and MZ is the Z boson mass. The

large-x contributions to M
(n)
i (Q2

1) become more important for large n; however, the
higher moments are suppressed by increasing powers of 1/Q2

1. In practice, the integrals
are dominated by the lowest moments, with the 1/Q2

1 corrections being relatively small
in DIS kinematics. For the axial-vector hadron part, the lowest moment M

(1)
3 (Q2

1) is
the γZ analog of the Gross-Llewellyn Smith sum rule for νN DIS. The corresponding
quantity for γZ is

∑
q 2eq gq

A = 5/3, so that at next-to-leading order in the MS scheme

M
(1)
3 (Q2

1) = 5/3(1 − αs(Q2
1)/π).

The total vector and axial hadron corrections �
V,A
γZ (E) are shown in fig. 2 as a function

of the incident electron energy E. For the vector hadron correction �V
γZ , fig. 2 (left),

most of the strength (∼ 80%) comes from relatively low energies, below 4 GeV, where
the Q2

1 range extends to ∼ 6 GeV2, and W to ∼ 3 GeV. The nonresonant contribution to
�V

γZ is small at low E, rising linearly with E in this region. The resonant part increases
steeply to a maximum at E ∼ 1 GeV, before falling off like 1/E [17, 18]. Sibirtsev et
al. find the resonant and nonresonant contributions to �V

γZ to be 0.0026 and 0.0021,
respectively, at the energy relevant for the Qweak experiment, E = 1.165 GeV.

Fig. 2. – γZ box corrections to Qp
W for the vector hadron �V

γZ (left) showing the resonant
(dashed) and nonresonant (dotted) components, and the sum (solid, and shaded) [18]; and axial
hadron �A

γZ (right), together with the V+A sum, and the E = 0 result from refs. [16,19] (“MS”,
extended to finite E) [20]. The vertical lines at E = 1.165 GeV indicate the energy of the Qweak

experiment [21].
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The axial hadron correction �A
γZ in fig. 2 (right) is dominated by the DIS contribution,

which has negligible E dependence. On the other hand, the resonance and low-Q2 DIS
contributions dominate the uncertainties [20]. The total axial hadron correction �A

γZ(E)
is 0.0044(4) at E = 0, and 0.0037(4) at E = 1.165 GeV. This should be compared to the
value 0.0052(5) used in ref. [19], which is assumed to be energy independent. Combined
with the correction to �V

γZ , this shifts the theoretical estimate for Qp
W from 0.0713(8) to

0.0705(8), with a total correction of 0.0040+0.0011
−0.0004 at E = 1.165 GeV.

The corrections �
V,A
γZ are important for the interpretation of the Qweak experiment,

given its projected uncertainty of ±0.003 [21], which is expected to constrain possi-
ble sources of parity violation from beyond the Standard Model at a mass scale of
> 2 TeV [22]. The uncertainties in the corrections can be reduced with future parity-
violating structure function measurements at low Q2, such as those planned at Jefferson
Lab. The high-precision determination of Qp

W would then allow more robust extraction
of signals for new physics beyond the Standard Model.
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