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Summary. — This paper describes the importance of the study of fluctuations
of identified hadrons for the understanding of the properties of the Quark-Gluon
Plasma (QGP) that is supposed to be formed in ultrarelativistic heavy ion colli-
sions. The data were collected in 2010 with the ALICE detector at the LHC in
Pb-Pb collisions at

√
sNN = 2.76 TeV. The technique specifically used for identifing

hadrons is described in detail. The first results on K/π fluctuations are shown.

PACS 25.75.-q – Relativistic heavy-ion collisions.
PACS 25.75.Gz – Particle correlations and fluctuations.

1. – Introduction

Quantum Chromodynamics (QCD) is the theory of the Standard Model (SM) which
describes strong interactions. At extreme values of temperature and energy density, as in
ultrarelativistic heavy ion collisions, the transition from hadronic matter to a deconfined
state of quarks and gluons (Quark-Gluon Plasma, QGP) should occur. It is possible to
investigate a new energy domain to study the properties of the matter formed with the
experiments at the CERN Large Hadron Collider (LHC).

Fluctuations of identified particles are studied using the data collected by the ALICE
experiment, a multipurpose detector optimized for the study of heavy ion collisions at
LHC [1]. The data were collected in 2010 in minimum bias Pb-Pb collisions at

√
sNN =

2.76 TeV.
Section 2 describes fluctuations of identified hadrons, in sect. 3 the data sample is

discussed, sect. 4 addresses particle identification and sect. 5 reports the results obtained
on K/π ratio fluctuations. This study is based on my thesis work [2].
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2. – Identified hadron fluctuations

QGP formation influences the behaviour of different physical observables as the mul-
tiplicity or the momentum spectra of the emitted particles in nuclear collisions. The
study of the fluctuations of conserved quantities on a event-by-event basis is a way to
investigate the properties of the dense and hot matter that should form into heavy ion
collisions [3]. Some features of the plasma should survive the hadronization phase and
show up as fluctuations in the final state. The three quantities relative to this study are
the baryon number, the electric charge and the strangeness. Information can be obtained
on the structural change due to the formation of the plasma from the behaviour of these
quantities [3].

Net charge fluctuations could be used to evaluate if the elementary degrees of freedom
are quarks (fractionary charge) and gluons or hadrons (unit charge). Fluctuations depend
on the square of the electric charge and therefore vary depending on the phase they
originate from [3,4]. To evaluate this difference it is useful to define D as

(1) D = 〈Nch〉〈δR2〉,

where Nch is the average number of charged particles, R is the ratio of positive to negative
particles and 〈δR2〉 is defined as 〈R2〉 − 〈R〉2. The prediction in the limit cases of QGP
and hadron gas (HG) is

DHG = 〈Nch〉〈δR2〉|HG � 4,(2)

DQGP = 〈Nch〉〈δR2〉|QGP � 0.75,(3)

implying a significantly different behaviour in the two cases [4].
Fluctuations of the K/π and the p/π ratio could be used to study the QCD phase

transition and may lead to the observation of the QCD critical point [5]. The phase tran-
sition could be of the first order, of the second order or an analytic crossover, depending
on the masses of the quarks u, d and s and the position of the critical point in the phase
diagram is related to the order of the transition [6].

Fluctuations of the K/p ratio are sensitive to the correlation that could exist between
strangeness and baryon number. In the QGP phase a correlation between these two
quantities is predicted because strangeness is carried by the quark s (S = −1, B = 1

3 )
and therefore the strangeness S can only exist with non-vanishing baryon number B. In
a hadron gas no correlation is expected because kaons (S = −1, B = 0) allow strangeness
with vanishing baryon number [7].

It is convenient to use a variable that is robust and independent of the efficiency
and the acceptance of the detector for the fluctuations measurement. In that way the
comparison between the results obtained by different experiments is simplified. The
variable used in this study is νdyn, which is defined, in the case of K/π fluctuations, as

(4) νdyn,Kπ = νKπ − νstat,Kπ,
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where

νKπ =

〈(
NK

〈NK〉 −
Nπ

〈Nπ〉

)2
〉

,(5)

νstat,Kπ =
1

〈NK〉 +
1

〈Nπ〉
.(6)

The variable νdyn measures the difference from a Poissonian behaviour and is therefore
non-vanishing when the correlation term is the dominant one [8].

3. – Trigger and event selection

The detectors used for the minimum bias trigger are the Silicon Pixel Detector (SPD),
the innermost part of the Inner Tracking System (ITS), and the V0 counters. The SPD
consists of two cylindrical layers of hybrid silicon pixel assemblies covering |η| < 2.0
and |η| < 1.4 for the inner and outer layers, respectively. The V0 counters are two
arrays of 32 scintillator tiles covering the full azimuth within 2.8 < η < 5.1 (V0-A) and
−3.7 < η < −1.7 (V0-C). A detailed review of these detectors can be found in [1].

The trigger used to select minimum-bias events was configured for high efficiency for
hadronic events, requiring at least two of the following conditions:

i) two pixel chips hit in the outer layer of the SPD;

ii) a signal in V0-A;

iii) a signal in V0-C.

The rate for this trigger configuration was about 50 Hz, with 45 Hz coming from elec-
tromagnetic processes, 4 Hz from nuclear interactions and 1 Hz coming from beam back-
ground [9]. An offline event selection is obtained by using the information of two-neutron
Zero Degree Calorimeters (ZDCs) located at ±114 m from the interaction point [1].
Events coming from beam background are removed using V0 and ZDC timing infor-
mation, while electromagnetic events are reduced with the request of a minimum energy
deposition of 500 GeV in each of the ZDCs [9].

The study on fluctuations of identified particles is achieved by dividing the events in
9 centrality classes. The collision centrality is determined using V0 counters and details
on centrality determination can be found in [9].

The event sample used for the analysis consists in 1.3 million minimum-bias events
and a further selection is carried out to ensure the quality of tracking and to select
candidate primary tracks.

4. – Particle identification

Particle Identification (PID) is needed in order to study fluctuations in π, K and p
production. In this analysis PID is performed with the ALICE Time-Of-Flight (TOF)
and Time Projection Chamber (TPC) detectors. The TOF system is composed of Multi-
gap Resistive Plate Chamber (MRPC) strip detectors and it covers the full azimuthal
angle within |η| < 0.9, with an inner radius of 370 cm. The TPC covers |η| < 0.9 and
the full azimuthal angle, its inner radius is 85 cm while the external one is 250 cm.
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Table I. – Selection cuts used for identification.

PID cuts

TPC TOF

Nσ (−2.0, 2.0) (−2.0, 2.0)
π pT < 500 MeV/c pT < 1.5 GeV/c
K pT < 500 MeV/c pT < 1.5 GeV/c
p pT < 700 MeV/c pT < 2.0 GeV/c

The variables used for PID are

(7) NTOF
σ =

t − t
(i)
exp

σTOF
PID

, i = π,Kp,

where t is the time-of-flight measured by the detector, t
(i)
exp is the expected time-of-flight

for the i-type particle and σTOF
PID is the global resolution of ∼ 85 ps and

(8) NTPC
σ =

dE/dx − (dE/dx)(i)exp

σTPC
PID

, i = π,Kp,

where dE/dx and (dE/dx)(i)exp are, respectively, the energy loss measured by the detector
and the expected one for the i-type particle, σTPC

PID is the detector resolution, that is ∼ 7%
of the measured energy loss. Cuts in Nσ and transverse momentum are performed in
order to identify hadrons. These cuts are chosen to obtain high PID performance in terms
of purity and so to avoid contamination. The PID cuts are summarized in table I and
consist in a 2σ cut on the Nσ variable both for TPC and TOF plus transverse momentum
cuts. For TPC pT < 500 MeV/c for pions and kaons, pT < 700 MeV/c for protons are
requested. For TOF pT < 1.5 GeV/c for pions and kaons and pT < 2.0 GeV/c for protons
are requested.

Figure 1a shows the energy loss measured by TPC detector as a function of the
momentum of the particle, in the centrality bin 0–10%. The bands relative to different

Fig. 1. – Energy loss measured by TPC for all candidate primary tracks (left) and for identified
particles (right).
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Fig. 2. – Particle velocity β measured by TOF for all candidate primary tracks (left) and for
identified particles (right).

kind of hadrons are clearly visible. Figure 1b reports only the energy loss relative to the
hadrons that have passed the selection cuts for π/K/p.

In fig. 2a the particle velocity β = v/c measured by TOF is shown as a function of
the momentum of the particle, in the centrality bin 0–10%. Also in this case the bands
relative to different kinds of hadrons are clearly visible. Figure 2b reports the values of
β only for the tracks that have passed the PID selection cuts.

Figure 3 shows the effects of the selection cuts on the Nσ variable for the TPC
detector. Figure 3a reports NTPC

σ for pions for 0.45 < pT < 0.5 GeV/c (solid line)
and the selected particles are highlighted by the fill area. Figures 3b and 3c show the
same quantities for kaons and protons in a pT interval respectively of (0.45, 0.5) GeV/c
and (0.65, 0.7) GeV/c. These pT values are chosen because they are the higher values
accepted with the selection cuts. Figures 3a, 3b and 3c show that contamination is low
also at the maximum allowed transverse momenta.

Figure 4 shows the measured Nσ for the TOF signal for different identified hadrons.
NTOF

σ for pions in a momentum region 1.45 < pT < 1.5 GeV/c is reported in fig. 4a
(solid line) and the selected tracks are highlighted by the shaded area. Figures 4b and 4c
report NTOF

σ for kaons and protons in a momentum interval of (1.45, 1.5) GeV/c and
(1.95, 2.0) GeV/c, respectively, showing that also in this case the contamination is under
control near the applied cut.

Fig. 3. – Nσ measured for the TPC signal for π, K and p. Shaded areas show particles selected
with PID cuts.
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Fig. 4. – Nσ measured for the TOF signal for π, K and p. Shaded areas show particles selected
with PID cuts.

5. – Fluctuations in K/π ratio

In this section the first results on the fluctuation of K/π ratio are presented. Figure 5
shows νdyn,Kπ as a function of the track density per pseudorapidity unit. The results
of the STAR Collaboration in Au-Au collision at 200 and 64.2 GeV and the results of
the NA49 Collaboration in Pb-Pb central collision at 6.3, 7.6, 8.8, 12.3, and 17.3 GeV,
respectively, are reported [10]. The fluctuations measured in this analysis are positive
with a trend similar to STAR. νdyn,Kπ depends on multiplicity for peripheral collisions
(low dN/dη), while shows little centrality dependence for central collision (high dN/dη).
The results of this analysis are closer to the statistical limit than STAR, also for similar
track densities.
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Fig. 5. – Fluctuations of the K/π ratio as a function of the track density. The results of the
STAR and NA49 collaborations are reported [10].
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6. – Conclusions

A preliminary study on fluctuations of identified hadrons in Pb-Pb collisions at√
sNN = 2.76 TeV is presented. Using data from the ALICE detector, the particle

identification technique used is described in details, showing the PID capability of the
detector. High PID performance in terms of purity is obtained and any unwanted con-
tamination due to mis-identification is minimized. The aim of the study of identified
hadrons is presented and the variable νdyn is described. This variable is chosen thanks
to its robustness and due to its independence of the efficiency and the acceptance of the
detector used for the measurement.

The first results on K/π fluctuations are presented and they show a similar trend to
the one measured by previous experiments, but closer to the statistical limit. Further
studies on fluctuations of identified hadrons are needed and the expectations from various
Monte Carlo event generators have to be considered to give the correct interpretation of
the measurements.
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