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Summary. — Starting from a recent result on thermodynamic equilibrium of
quantum systems, a connection between thermal properties, originating from Gibbs
state probabilistic structure, and quantum correlations is discussed as a consequence
of entanglement monogamy. As an example, a simple two-qubit system is analyzed,
allowing for an expression of such a connection as an explicit function linking heat
capacity to a measure of bipartite entanglement.

PACS 03.65.Aa – Quantum systems with finite Hilbert space.
PACS 03.67.Mn – Entanglement measures, witnesses, and other characterizations.
PACS 65.40.Ba – Heat capacity.
PACS 64.60.F- – Equilibrium properties near critical points, critical exponents.

1. – Introduction

In these last years the possibility of experimental access to mesoscopic and micro-
scopic systems [1,2] has triggered a strong interest in the study of properties of physical
systems in connection to their quantum nature. Theoretical and experimental research
on the so-called quantum thermodynamics [3], in particular, has opened new horizons
while investigating the limits of applicability and the possible generalizations to quan-
tum systems of concepts characterizing classical thermodynamics. In particular, one of
the most exploited quantum features is the existence of quantum correlations [4] inside
a physical system or between the system itself and the environment it interacts with.
In view of the huge interest towards entanglement, an understanding of its features and
its connection to thermal properties of matter [5] is a growing challenge, both because
such a research might supply experimental protocols aimed at measuring entanglement
(which up to now has always been experimentally elusive) and because it may highlight
the fundamental, quantum origin of thermal features.

Indeed the possibility of using thermodynamic quantities, like, e.g., internal energy or
heat capacity, as entanglement witnesses has been shown in the case of spin systems [6],
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where a threshold on the value of these quantities exists for quantum correlations to be
present in the state of the system under scrutiny. Such a connection has strong conse-
quences in the Quantum Phase Transition (QPT) phenomenon [7]. In correspondence
to a QPT, indeed, quantum correlations show some critical behavior, somehow traceable
back to critical behavior of observables characterizing the system undergoing the transi-
tion. It has been shown [8] that there exist conditions under which a critical behavior of
some entanglement quantifier is a necessary and sufficient condition for the occurrence
of a QPT.

Finally, quite recently, non-classical correlations have been connected to the structure
of thermal equilibrium itself [9]. The origin of the equilibrium Gibbs state for a small
system interacting with a bath has indeed been studied in a quantum systems framework.
It has been found that such a mixed state for the small system can be obtained, with
a very small statistical error, from a pure state of the system + bath picked at random
inside the suitable energy shell. In view of this, there is no need to start from a mixed
(microcanonical) state of a composite system to obtain the thermal statistics for a part
of it. The lack of knowledge leading to a mixed state for the reduced density matrix
originates from the existence of quantum correlations inside the composite system.

For all these reasons, a study of the link between entanglement and thermodynamics
represents a challenge of great interest both for quantum information theory and for
many-body properties and condensed matter systems.

This paper is organized as follows: in sect. 2 a short introduction to a recent result [9]
is given, and as a consequence some hypotheses are discussed in terms of thermodynami-
cal properties of quantum systems. In sect. 3, to exemplify our hypothesis, a very simple
model consisting of two thermalized qubits interacting with each other via a Heisenberg-
like exchange potential is studied. Section 4 is devoted to the presentation of the main
result of the paper, namely an analytic function expressing the link between a measurable
thermodynamical quantity and some entanglement measure, followed by some comments
and conclusive remarks.

2. – Considerations on thermal equilibrium of quantum systems

As a starting point, let us briefly recall a fundamental result on quantum thermalized
systems [9]: let us consider a physical system living in an n-dimensional Hilbert space
Hn (n � 1) and let us formally divide it into a “thermal bath” B (with Hamiltonian
HB) and a “small system” S (Hamiltonian HS). Such a bipartition might be physically
motivated by additional conditions characterizing the total system or might be completely
formal. Let us anyway suppose the thermal bath (l-dimensional Hilbert space Hl

B) and
the system (d-dimensional Hilbert space Hd

S , with n = ld) to be weakly coupled which
each other, and moreover we choose B in such a way that l � d. If all these requirements
are fulfilled it is meaningful to speak about temperature of the small system S when the
total system S + B is in a microcanonical ensemble εR = 1

nR
IR at energy E. Such an

ensemble is described by a maximally mixed state in the subspace HnR

R of dimension nR,
obtained as the restriction of the total Hilbert space Hn to a fixed energy shell. In other
words, as usual, the microcanonical ensemble is the one describing an ergodic spanning
of the whole energy shell. It is well known that in this case the reduced state of S is
described by the canonical ensemble, characterized by the mixed state ΩS = 1

Z e−βHS .
In [9] it has been shown that, supposing the total system to be in a pure state

|Ψ〉 ∈ HnR

R , obtained as a coherent superposition of degenerate energy eigenstates, and
tracing out the bath degrees of freedom, the probability of obtaining a reduced state
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ρS of S sensibly different from ΩS exponentially goes to zero with the dimension of the
energy shell. In particular they have shown that

(1) Prob
{
‖ρS − ΩS‖1 > εd

}
< 2d2e−Cnrε2 ,

where C is a positive constant and ‖ · ‖1 is the trace norm. Therefore, with a very small
statistical error, we are entitled to consider the thermal state of S as originating from a
partial trace operation on a pure state of the total system. The lack of knowledge about
the state of S, due to which its density matrix is in general mixed, is then entirely caused
by quantum correlations between S and its thermal bath.

In view of this result, one might think about a possible connection between thermal
properties of a system in equilibrium (directly originated from the probabilistic structure
of the mixed state ΩS) and quantum correlations (which as shown may be considered
as the cause of such a probabilistic structure). Indeed quantum correlations are known
to be monogamic [10] (even if some violation to monogamy rules has been derived [11]),
originating a link between the external correlations the system S can create with its
thermal bath, which are the ones involved in the above-mentioned results, and internal
quantum correlations between two or many subparts of the system itself. Summarizing,
then, this link enables us to think about a possible relation between this latter kind of
quantum correlations and measurable properties of the system.

Suppose for example that

HS |i〉 = Ei|i〉,(2a)
Ei − Ej = ωij ,(2b)

where i, j = 1, . . . , d and ωij is either finite or zero. As discussed previously, it is mean-
ingful to consider the small system S to be in a thermal state given by

(3) ρS = ρ =
1
Z

e−βHS =
1
Z

d∑
i=1

e−βEi |i〉〈i|

while the total system S +B is in a state ρS+B = |Ψ〉〈Ψ|, where as said H|Ψ〉 = Etot|Ψ〉.
Of course, by definition,

(4) TrBρS+B = ρS .

Equation (4) together with ρ2
S+B = ρS+B implies that the purity of ρ can reliably be used

to define a measure of entanglement between the small system and the bath, since it is
closely related to quantum entropies of the reduces state [4]. In particular we can define
the entanglement S −B as PE = 1−Trρ2. Exploiting the assumption of discreetness on
the energy spectrum and the form of the state of S (3) it is straightforward to show that

(5) PE =
Z2 −

∑
i e−2βEi

Z2
=

∑
i�=j

P ij
E ,

where we have defined P ij
E = e−β(Ei+Ej)

Z2 and the
∑

i�=j ranges over all values i = 1, . . . , d
and j = 1, . . . , d with the constraint i �= j. It is then possible to see how the mixedness
of thermal states is given as a sum of individual and independent contributes from each
couple of (different) energy eigenvalues.
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We want now to connect such a parameter to some measurable quantity for S. Exploit-
ing the (formal) knowledge of the partition function it is possible to obtain an expression
for the heat capacity CV of the system, which reads

(6) CV = β2
(
〈H2〉 − 〈H〉2

)
= β2

∑
i�=j

P ij
E Δ2

ij

where Δ2
ij = (Ei−Ej)

2

2 .
There is thus a strict analogy between the expression of the parameter PE and the

form of CV . Indeed, they both are expressed as a sum over i �= j of terms depending on
each possible couple of energy levels of the small system. A closer look at (6) shows that
each of these contributions for CV has the form

(7) Cij
V = P ij

E

Δ2
ij

kBT 2
= P ij

E

(Ei − Ej)2

2kBT 2

highlighting how heat capacity resembles a mixedness of the state, viewed in terms of
its energy content. We can identify two different contributions in Cij

V : the first one, P ij
E ,

is related to the degree of mixedness the couple of levels {Ei, Ej} produce in the state
ρ. Second, the contribution each couple of levels gives to heat capacity depends on how
distinguishable the states are in energy with respect to the mean value of thermal energy:
a couple of degenerate energy levels gives no contribution to heat capacity.

In this sense, purity and heat capacity are closely related, both measuring how mixed
a state is, the former from a statistical point of view and the latter from an energetic
point of view.

The key point now is to turn our attention to the meaning the parameter PE assumes
in a quantum context. Indeed, as already pointed out, this parameter measures the
entanglement between the small thermalized system S and the thermal bath B. In
particular when PE = Pmax

E = d−1
d the bath and the system are maximally entangled,

while when PE = 0 the total state |Ψ〉 is factorized with respect to the bipartition
(S,B) [12]. Since by definition P ij

E ≥ 0 ∀i �= j, the only way to obtain a zero PE is to
have P ij

E ∼ 0 ∀i �= j, thus implying CV ∼ 0. We can conclude that

(8) PE = 0 ⇒ CV = 0.

From a physical point of view this means that each time the system is pure (being in
a thermal state) it must be in a Hamiltonian eigenstate, thus resulting in no energy
uncertainty and leading to a zero heat capacity.

The next step is now to link the mixedness of the state to the entanglement the
small system S exhibits with respect to a possible bipartition into subsystems S1 and
S2. Indeed we expect such a link to be fairly strong thanks to entanglement monogamy
which ensures that, as long as system and bath are entangled, there cannot exist maximal
entanglement inside the system itself [10]. Vice versa, when a bipartition of the system
is found to be in a maximally entangled state, the system and the bath have to be in a
separable state. Thus, calling e1,2 any bipartite entanglement measure on S, it follows
that

(9) e1,2 = max ⇒ PE = 0 ⇒ CV = 0.
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On the basis of these motivations, we then expect some relation exists between CV and
e1,2, of which eq. (9) is a general feature.

3. – The two-qubit system case

To exemplify our statement, and check whether an explicit link between a measure of
quantum correlations and an experimentally accessible quantity can be given in a simple
case, consider a two-qubit thermalized system with Hamiltonian

(10) H = −λ

2
(σx

1σx
2 + σy

1σy
2 ) − h

2
σz,

where the coupling λ describes an exchange interactions between the two spins, h is an
external magnetic field in the z-direction, 	σ1 (	σ2) is the vector whose components are
Pauli matrices for the first (second) atom and 	σ = 	σ1 + 	σ2.

Its diagonalization is straightforward, since (10) is diagonal in the coupled basis
{|S,M〉} = {|1, 1〉, |1, 0〉, |1,−1〉, |0, 0〉} of common eigenvectors of S2 and Sz, having
defined 	S = �σ

2 .
In this ordered basis H reads

(11) H =

⎛
⎜⎜⎝

−h 0 0 0
0 −λ 0 0
0 0 h 0
0 0 0 λ

⎞
⎟⎟⎠ .

3.1. Thermal state and its properties: entanglement and heat capacity . – The diago-
nalization of (10) allows us to evaluate the partition function Z of the system,

(12) Z = 2 cosh(βh) + 2 cosh(βλ),

where β = 1
T and kB = 1.

Thanks to eq. (12) we are able to derive an expression for the heat capacity, which
reads

(13)
CV

β2
=

h2 + λ2 + 1
2 (λ − h)2 cosh

(
β(λ + h)

)
+ 1

2 (λ + h)2 cosh
(
β(λ − h)

)
(cosh(βh) + cosh(βλ))2

.

The other quantity we are interested in is a parameter measuring quantum correla-
tions established between the two spins. The most common entanglement measure to
characterize correlations between qubits is the so-called concurrence [13], defined as
C = Max{0, ν}, where ν =

√
μ1 − √

μ2 − √
μ3 − √

μ4. Here the μi’s are eigenvalues
of the matrix ρ(σy ⊗ σy)ρ∗(σy ⊗ σy) and μ1 ≥ μ2 ≥ μ3 ≥ μ4, ρ being in our case the
thermal Gibbs state 1

Z e−βH . Recall that C is zero for separable states, while it goes to
1 for maximally entangled states.

After some trivial calculations we can give an explicit expression for the concurrence,
which reads

(14) C = Max
{

0, ν =
2
Z

(| sinh βλ| − 1)
}

.
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Some interesting features can be noticed closely analyzing eq. (14). Strictly speaking,
indeed, the system in its thermal state is entangled if and only if |λ| > 1

β ln (1 +
√

2) = λ̄,
which is, surprisingly, a value independent of h. However, notice that in (14) the partition
function explicitly depends upon h, in such a way that when h � λ, Z � | sinh βλ| − 1
so that C ∼ 0. Only when λ is at least of the same order of h entanglement can exist
in the system, since otherwise the magnetic interaction destroys any possible correlation
between spins.

Equation (14) depends on the three parameters β, λ and h, and the same parameters
enter the expression for CV . Consider now h as a parameter characterizing a class of
functions Ch(β, λ). In this way we can reduce the number of variables in C, being able
to handle it analytically, as shown in the next section.

4. – Explicit link: heat capacity from concurrence

Equation (14) allows us to obtain a class of inverse functions parameterized by h
where λ plays the role of dependent variable, in terms of β and ν. To this end we write

(15) Ch = Max

{
0, ν =

1

cosh βh +
√

1 + sinh2 βλ
(| sinh βλ| − 1)

}
.

Note now that (14) is an even function of λ, so that we can limit ourselves to λ ≥ 0. Set
now x = sinh βλ and a = cosh βh and write for ν:

(16) ν =
x − 1

a +
√

1 + x2
.

It is then straightforward to obtain

(17) λh(ν, β) =
1
β

ArcSinh

(
aν + 1 + ν

√
(aν + 1)2 + 1 − ν2

1 − ν2

)
.

This is a continuous function of ν in its domain D = [− 1
a+1 , 1]. However, recall that the

only physical values of ν are the ones in [0, 1], where (17) actually describes the exact
dependence of λ upon C. It is easy to see, however, that when λ ∈ [0, 1

β ln (1 +
√

2)] the
concurrence in not an invertible function of λ since in these cases C is identically zero. In
what follows, then, one must always keep in mind that for negative values of ν nothing
can be said about the relation between entanglement and thermodynamic quantities,
since the former is always zero.

Having at our disposal the function (17), we can explicitly introduce the parameter
ν into the expression for heat capacity by substituting (17) in (13), thus obtaining the
set of functions C

(h)
V (β, ν)

C
(h)
V (β, ν) =

β2

(a + cosh(βλh(ν, β)))2

(
1
2
(λh(ν, β) − h)2 cosh

(
β(λh(ν, β) + h)

)
+(18)

+
1
2
(λh(ν, β) + h)2 cosh

(
β(λh(ν, β) − h)

)
+ h2 + λ2

h(ν, β)
)

.
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Fig. 1. – Heat capacity CV of the system vs. ν (all energies are measured in units of magnetic
field h) for 3 different values of β: β = 0.5 (solid line), β = 3 (dotted line) and β = 12 (dashed
line).

Equation (18) is our main result, providing an explicit, analytic link between a thermal
parameter and an entanglement measure. It shows how, once entanglement in the system
is known at fixed temperature and magnetic field, heat capacity is uniquely determined.
Unfortunately, the converse is not true.

Let us closely analyze (18) in the case of strong correlations between spins. In the
previous section we have argued that CV should become negligible when entanglement
approaches its maximum. Indeed, in our case

(19) lim
ν→1

C
(h)
V (β, ν) = 0

as one can easily check using (17) and (18). To simplify calculations, in what follows we
will measure all energies in units of h, thus obtaining the function C

(1)
V (β, ν). In fig. 1

such a function is shown for 3 different values of temperature.
Figure 1 highlights how heat capacity is not a monotonic function of concurrence.

This means that a measure of CV is unable to supply information about entanglement.
On the other hand, the knowledge of the concurrence determines the value of CV as
long as ν is positive. The range of zero entanglement (ν ≤ 0) gets smaller and smaller
as temperature tends to zero. In this limit the weight of quantum correlations, with
respect to classical ones, grows so that any collective physical property results more and
more affected by entanglement itself. In our simple case, the bouncing behavior shown
in fig. 1 can be explained by a detailed analysis of the energy spectrum in parameter
space, reflecting the relative strength of spin-spin interaction compared to the magnetic
one, which in turn is connected to the entanglement between the two spins.

From fig. 1 we see that at low temperature (β = 12 line) heat capacity shows two
maxima and a minimum between them. At such low temperature the system can be
seen as an effective two-level one, since the only two occupied levels are the ground state
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and, close to level crossings, the first excited one. Indeed the presence of a maximum
and a minimum in heat capacity is typical of gapped two-level systems and is known
as Schottky anomaly [14](1). In our case, however, we are moving in parameter space
keeping temperature fixed. That is why we obtain a double Schottky-like anomaly with
a second maximum in a symmetric position with respect to the minimum point. Such a
behavior is independent of the specific system, and characterizes any gapped system in
correspondence to a level crossing in its spectrum in parameter space, when temperature
is low enough. In these conditions, when the number of components of the system is
statistically significative, one may speak of first-order quantum phase transitions [7].
Our analysis then suggests how, in correspondence to any first-order quantum critical
point, CV shows a typically oscillating behavior signaling the presence of a transition.

As already noticed, due to this oscillating behavior it is not possible from a single
measure of CV to infer the value of the concurrence. This is due to the fact that,
depending on the value obtained after a measurement is performed, there might be many
different values of ν associable to it, since as said CV (ν) is not monotonous. In other
words, keeping both h and β fixed, there might exist many different systems, physically
characterized by different values of λ, showing the same heat capacity.

In [15], however, it is shown how to exploit a finite number of measures of CV at
different temperatures to determine the value of bipartite entanglement in the system.

Briefly, such an entanglement measuring protocol is based on the fact that each mea-
sured value of heat capacity corresponds to a set Sa of values of λ compatible with it.
The experimentalist however does not know in advance which one among these values is
the one actually exhibited by the system. Measuring CV for different values of temper-
ature allows one to obtain many different sets Sa, Sb, . . . , Sn. Such a procedure can be
employed until the physical value of λ is uniquely identified as the only element of the
set Sa ∩ Sb ∩ Sc ∩ · · · ∩ Sn. Finally, in view of (14), the knowledge of λ corresponds to a
knowledge of the concurrence. This shows how a finite number of measurements of heat
capacity of the two-qubit (10) system allows for an indirect measurement of entanglement
and, actually, of any other microscopic property of the system itself.

4.1. Conclusive remarks. – The analysis performed for such a simple system confirms,
on the one hand, the features discussed in sect. 2 about the connection between entan-
glement measures and thermal properties at equilibrium, showing how this connection
might be exploited to get an insight into the role quantum correlations have in character-
izing physical measurable quantities. On the other hand, such a simple example suggests
that a link between entanglement and heat capacity might be stronger than previously
argued [16] even for many-body systems, and that some typically quantum phenomenon
such as first-order QPTs (in which entanglement plays a fundamental role) can be iden-
tified by a characteristic behavior of CV , independently of the particular system under
scrutiny.
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(1) A Schottky anomaly is a feature of any two-level system, for which heat capacity vs. tem-
perature shows a maximum followed by an asymptotic decreasing toward zero
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