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Summary. — Protein interactions are fundamental blocks of almost all cellular
processes, so the study of the set of protein interactions in a single organism (also
referred to as Protein Interaction Networks - PIN) is an important step in the com-
prehension of mechanism at molecular level. Recently, the possibility to annotate
such data using Gene Ontology and the consequent use of ontology-based analysis
has been exploited, e.g. the use of semantic similarity (SS) measures. Whereas, SS
measures present many challenges and different issues that have to be faced. In
particular SS measures are affected from three main biases: i) annotation length,
ii) evidence codes, and iii) shallow annotation. The common cause of such biases
are the structure of GO and the corpora of annotations (GOA). Consequently, the
impact of this variability has to be considered when developing novel algorithms for
protein interactions analysis. Although the criticality of these aspects, there is a
lack in the systematic analysis of the bias. Few works dealt with the three sources
of bias most affecting SS measures. This paper demonstrates the existence of the
bias that affect main SS on a set of well-known yeast complexes. It also provides
some evidences about the variability of the bias effects over the proteome.

PACS 02.70.-c – Computational techniques; simulations.

1. – Introduction

The interactions among proteins, also referred to as protein-protein interactions (PPI),
have a main role in almost all the processes carried out by cells [1]. Nowadays, thanks
to the introduction of different technologies, many interactions are known, so the pos-
sibility to manage and analyse these data with computer-based tools arises. Recently,
there has been a trend towards the integration of diverse information sources, i.e. dif-
ferent experimental data as well as prior and functional knowledge. Such knowledge is
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often encoded into ontologies, that offer a formal framework to organize in a formal way
biological knowledge that is often spread into multiple sources [2].

Gene Ontology (GO) [3] for instance provides a set of descriptions (namely GO Terms)
of biological aspects, structured into three main taxonomies: Molecular function (MF),
biological process (BP), and cellular component (CC). Each GO Term can be associated
to a gene or protein in a process known as annotation, and the gene is said to be anno-
tated with a GO Term. Such process determines a many to many relation among genes
(or proteins) and GO Terms enabling enables the use of ontology-based analysis [4]. The
comparison of different terms belonging to the same ontology had been defined and a
number of different algorithms, referred to as semantic similarity (SS) measures, is avail-
able. SS measures usually takes in input GO terms of the same taxonomy and produces
as output a value representing their similarity in the basis of different parameters such as
the common ancestor of terms, or the information content of terms themselves [5]. The
comparison of terms can be extended to sets of terms simply by adopting some mixing
functions applied to all the pairwise term similarities. From this scenario, the possibility
to compare two gene products using SS arises.

Consequently, many works have focused on: i) the definition of ad hoc semantic mea-
sures tailored to the characteristics of Gene Ontology; ii) the definition of measures of
comparison among genes and proteins; and iii) the introduction of methodologies for the
systematic analysis of metabolic networks [5]. Although these considerations semantic
similarity measures present many challenges and different issues that have to be faced. It
has been reported that SS measures are particularly affected by three factors: i) annota-
tion length, ii) evidence codes, and iii) shallows annotations. These problems should be
carefully considered when developing novel algorithms that use semantic similarities. Re-
cent papers show the use of SSs to guide the alignment of pairwise interaction networks,
or to identify hubs in PIN [6], as well as to predict protein interactions [7]. Unfortunately,
to the best of our knowledge, the impact of the bias has not been carefully addressed.

The main contribution of this paper is to determine which factors effectively represent
a bias that occurs in the analysis of PPI data and PINS using SS. In particular, we provide
strong evidences that shallow annotation is still a problem heavily affecting SS measures,
while we show that the impact of using different EC codes varies across the proteome.

This paper is structured as follows: sect. 2 introduces main concepts about SS, sect. 3
discusses main issues related to SS, sect. 4 presents some case studies, finally sect. 5
presents the conclusions.

2. – Semantic Similarity measures

In the biological field, a semantic similarity (SS) measure is a formal instrument
enabling the representation of the relatedness of two or more terms belonging to the
same ontology, or between proteins and gene products that are annotated with terms
belonging to an ontology. Many semantic similarity measures are nowadays available.
For lack of space we do not include any detailed infomation, limiting to the description
of used SS measures, the interested reader can find a detailed comparison of SS measures
in [5].

Here we just recall that SS measures based on Information Content or Term Depth
evaluate the similarity on the basis of the specificity of the terms, that is, they try to
score pairs of specific terms higher than pairs of generic terms. The Information Content
of a term t of an ontology O is defined as − log(p(t)), where p(t) is the number of proteins
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annotated with t and its descendants in the ontology O, divided by the number of all
gene products that are annotated with a term of the same ontology O.

In this work we considered only two SS measures: Resnik BMA and SimGIC. Our
choice is led by the results of several assessment works proposing Resnik and SimGIC as
two of the most suited measures in the biological field.

Resnik’s similarity measure simres of two terms T1 and T2 of GO is based on the
determination of the Information Content (IC) of the their most informative common
ancestor (MICA) [8]:

(1) simres = IC(MICA(T1, T2)).

Since Resnik measares similarity between terms, we need a mixing strategy that combines
the similarity scores between all the terms annotating two proteins. We used the Best
Match Average (BMA) mixing strategy, (see [9]).

Even SimGIC is a measure based on IC, but instead of focusing on only the most
informative common ancestor of a pair of terms, it considers the contributions of all the
shared ancestors of the two sets of terms annotating two proteins

(2) SimGIC =

∑
t∈{GO(A)

T

GO(B)} IC(t)
∑

t∈{GO(A)
S

GO(B)} IC(t)
,

GO(x) is the set of terms annotating protein x and all their ancestors in the GO hierarchy.
Since SimGIC considers all the terms annotating two protiens at once, no mixing strategy
is needed.

3. – Issues related to Semantic Similarity issues

Some properties of GOs and GOAs actually represent issues for the definition of a
fair similarity measure.

Annotation length. The number of term annotations is highly variable among proteins.
This characteristics is an aspect of the more general feature of biological ontologies that
is the non uniform distribution of annotations within the same GO and over different
GOs and species.

It has been show that SS scores correlates with the number of annotations two proteins
are annotated with [10]. Therefore, two protein pairs functionally related might score
low if they have few annotations

Evidence codes. Annotations taken from GO can be derived in different ways, also
referred to as evidence codes (EC). Without entering into details, they range between ex-
perimentally verified and electronically inferred annotations (IEA). Experimentally veri-
fied annotations are likely to be correct, but only cover a small fraction of proteins/terms.
Electronically inferred annotations drastically extend the coverage, but at the expense
of introducing a lot of noise. SS measures usually do not weight annotations on the
basis of their ECs, and one has to choose between including unrealiable annotations to
improve the quality of the annotation corpus, or ingoring them but drastically reducing
the number of annotations considered.

Shallow annotations. Many proteins are annotated with very generic terms inside
the GO. These annotations do not identify the specific role or function of the protein,
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but only suggest the area in which the proteins operate. This effect particularly af-
fects IEA annotations, that usually tend to be more generic than experimentally verified
annotations.

4. – Case study on Semantic Similarity of CYC2008 Complexes

This section will present a case study on CYC2008 Complexes [11]. The CYC2008
is a comprehensive catalogue of 408 protein complexes in S. cerevisiae that are man-
ually curated. These complexes are usually determined in small-scale experiment and
published in the literature.

Protein complexes represent small subsets of interacting proteins that share a common
biological goal, so they represent small subset of functionally related proteins. Protein
complexes have been largely investigated in literature yielding to the introduction of
many protein complexes prediction algorithms from PPI data. These algorithms are
based on the search of small dense subgraphs [1] and usually search is refined by looking
at biological properties of complexes (e.g. structural properties of proteins [12]). Con-
sequently, the possibility to use SS as search parameter arises. In this scenario protein
complexes can be seen as small dense regions that presents a high value of similarity.
Unfortunately our analysis will show that choosing SS presents many challenges.

In the rest of the section we will elucidate how the inclusion of IEA annotations and
the shallow annotation affect the semantic similarity of CYC2008 complexes. For each of
the three biasing factors we verified whether or not they effectively affects the semantic
similarity measures on the considered dataset. We verified that this bias is not a rare
and isolated effect occurring only in some pathologic cases, but it is recurrent and still
not handled properly. Finally, based on these evidences we draw some conclusions and
suggestions regarding how to use semantic similarity measures when looking for patterns
within PIN.

4.1. EC codes. – As explained before, the strategy of assignment of GO terms de-
termines a high variability on the reliability of annotations. Despite this, there are not
common accepted mathematical models to score this reliability. A main distinction can
be made by considering separately experimentally determined annotations and unsuper-
vised electronically inferred annotations (IEA) [13].

Here we focus on the impact of the use of IEA annotations for scoring biological
complexes to determine whether including IEA annotations changes semantic similarity
scores. As a preliminary step, we verified to which extent the number of annotations
significantly changes when considering IEA annotations. We found that while some
complexes do not have almost any IEA annotation, others pass from few to many when
including IEA annotations. Then we randomly selected some protein complexes that
have a high number of IEA annotations. For all these complexes, we evaluated both
Resnik BMA and SimGIC semantic similarity scores between proteins within the same
complex, first ignoring IEA annotations, and then considering them. Finally, we verified
whether similarity scores significantly changed.

Table I lists some of the complexes we considered. It shows that both for Resnik BMA
and SimGIC the difference between the average of semantic similarity scores within single
complexes is negligible (Delta columns).

We performed a more detailed comparison, considering similarity scores of single
protein pairs instead of evaluating the average for each complex. Figures 1 and 2 present a
comparison between similarity scores over different complexes evaluated with and without



IN
V

E
S
T

IG
A
T

IN
G

B
IA

S
IN

S
E
M

A
N

T
IC

S
IM

IL
A

R
IT

Y
M

E
A

S
U

R
E
S

E
T

C
.

7
5

Table I. – Variation of average SS scores for some complexes with highest amount of IEA annotations.

Complex data
GO

Average annotations SimGIC (mean) Resnik BMA (mean)

Complex Size IEA Non IEA Delta IEA noIEA Delta IEA noIEA diff

6-Phosphofructokinase Complex 2 MF 9.00 3.50 5.50 0.96 1.00 0.04 0.90 1.00 0.10

Camp-dependent Protein Kinase 4 MF 7.75 2.50 5.25 0.53 0.52 0.01 0.49 0.42 0.07

Dash Complex 10 CC 11.60 3.90 7.70 0.90 0.88 0.02 0.76 0.78 0.02

Fatty Acid Sinthase Complex 2 MF 15.00 6.00 9.00 0.16 0.14 0.02 0.50 0.61 0.11

Gamma-Tubulin Complex 3 CC 9.67 3.00 6.67 1.00 1.00 0.00 1.00 1.00 0.00

Isocitrate Dehydrogenase 2 MF 9.00 2.00 7.00 1.00 1.00 0.00 1.00 1.00 0.00

Karyopherin Docking Subcomplex of NPC 3 BP 18.00 12.00 6.00 0.84 0.91 0.07 0.90 0.92 0.03

M-AAA Complex 2 MF 11.00 4.00 7.00 1.00 1.00 0.00 1.00 1.00 0.00

MCM2-7 Complex 6 MF 11.83 6.33 5.50 0.50 0.40 0.10 0.72 0.71 0.01

NSP1P Complex 4 BP 17.25 13.00 4.25 0.81 0.80 0.01 0.95 0.96 0.01

Nucleotide - Excision Repair Factor 3 Complex 7 BP 7.86 3.57 4.29 0.59 0.62 0.02 0.69 0.69 0.00
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(a) (b)

Fig. 1. – Comparison of Semantic Similarities on NSP1P and MCM2-7 complexes.

considering IEA annotations. It is clear that including IEA annotations almost does not
influence the scores.

Since we considered complexes with the biggest number of IEA annotations, these
evidences assume general validity. In fact complexes with few IEA annotations are likely
to be less affected by this factor. Moreover, we considered cases from all the three
ontologies (as reported in the GO column of table I).

Other assessment works reported a greater variability when using IEA annotations
respect to ignoring them [13-15]. The fact is that these works focused on different groups
of proteins. We verified that our analysis agrees with these results when dealing with
similar datasets but for lack of space we do not report here these results. Consequently
we can conclude that for manually annotated protein complexes of CYC2008 catalogue
IEA annotations do not modify SS values. Therefore it is not possible to extend this
consideration to arbitrary pairs of proteins, so we conclude that the influence of IEA
annotations is not uniform within the proteome.

Fig. 2. – Comparison of Semanti Similarities on Excision-Repair complex.
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Fig. 3. – Distribution of IC among CYC complexes.

4.2. Shallow-annotation problem. – Shallow annotation is one of the problems that has
been explicitly taken into account during the design of several semantic similarity mea-
sures. Nevertheless, our analysis suggests that the variability of the specificity of terms
used to annotate the proteins still affect semantic similarity measures, introducing a bias
that allow complexes annotated with more general terms to get scores significantly higher
than complexes finely annotated with specific terms. IC is a common score considered
by semantic similarity measures to estimate the specificity of terms within an annotation
corpus. For each complex we evaluated the complex average IC as the average of all the
ICs of the terms annotated for the proteins of the complex.

As a preliminary step we analysed the distribution of complex average ICs in all
the three ontologies, reported in fig. 3. These distibutions can be easily modeled with
normal distributions. Many average ICs fall accumulate in the center of the distribution
just because many complexes have proteins annotated with both very specific and very
generic terms, producing averaged ICs in the middle of the distribution.

We focused on complexes with low variance, since those with high variance mix up
terms with low and high ICs, leading to results difficult to interpret. In order to un-
derstand how IC influences semantic similarity scores we evaluated the relation between
complex average ICs and average complex semantic similarity scores.

Table II reports the average semantic similarity (Resnik and SimGIC measures)
scores for some complexes having different levels of average IC. Surprisingly, as clearly

Table II. – Variation of average SS scores for some complexes according to their average IC in
BP ontology.

Complex Size mean IC max IC min IC Resnik BMA SimGIC

AP-2 Adaptor Complex 4 3.29 3.77 1.69 1.000 1.000

SMC5P-SMC6P Complex 8 3.97 4.48 3.49 0.893 0.934

EIF3 7 5.12 6.04 4.01 0.706 0.646

ARP2/3 Protein Complex 7 6.99 9.95 5.09 0.706 0.592

Signalosome Complex 6 7.49 8.16 5.64 0.749 0.631
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Fig. 4. – Correlation between average IC and SS scores.

represented in fig. 4 there is an inverse correlation between average IC and semantic
similarity scores, regardless the measure considered.

These results are surprisingly for two main reasons. First of all, the similarity mea-
sures do not reflect the effective similarity between two proteins, since proteins annotated
with the same generic terms are scored higher than proteins only partially annotated with
the same specific terms. To demonstrate and clarify this point we evaluated the term
enrichment of these complexes. Results show that complexes enriched for very specific
terms obtain lower similarity scores only because some terms are not annotated for all
the proteins within the complex, even though all the proteins within the complexes are
annotated with at least one common specific term. Table III describes the terms enriched
within the considered complexes. Complexes with highest average ICs are enriched with
many and more specific terms than complexes with low average ICs. Therefore, these
complexes should score higher than others. However, proteins within the complexes are
also annotated with other specific terms. It should be noted that in general these terms
are close within the GO.

5. – Conclusion

The application of semantic similarity measures for the analysis of PIN is becoming
more and more popular, but SS are affected from evident biases that should be carefully
investigated. Here we provided some evidences on these biases on some case studies
focusing on the impact of the choose of IEA annotations and on the relation among IC and
biological relevance of terms. We demonstrated that the use of IEA annotations is almost
uninfluent when evaluating the functional similarity of proteins within the same biological
complex. Furthermore, we show that this does not hold when considering other sets of
proteins, consistently with results already present in literature. Moreover our results
lead to the conclusion that actual semantic similarity measures tend to score higher
complexes (and protein pairs) with some common but generic annotations rather than
identifying common patterns between proteins annotated with specific but sometimes
non overlapping terms. Finally, it should be noted that the two measures considered,
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Table III. – Complex Term Enrichment.

Complex IC Enriched Term Genome Frequency P-value

AP-2 3.29

intracellular protein transport 331/7166, 4.6% 6.71E-005

vesicle-mediated transport 384/7166, 5.4% 1.20E-004

cellular protein localization 398/7166, 5.6% 1.40E-004

cellular macromolecule localization 415/7166, 5.8% 1.60E-004

protein transport 512/7166, 7.1% 3.80E-004

SMC5/6P 3.97

DNA recombination 212/7166, 3.0% 3.23E-010

DNA repair 263/7166, 3.7% 1.49E-009

response to DNA damage stimulus 311/7166, 4.3% 4.89E-009

ARP2/3 6.99

actin filament polymerization 16/7166, 0.2% 3.99E-018

actin polymerization or depolymeriza-
tion

21/7166, 0.3% 4.05E-017

protein polymerization 26/7166, 0.4% 2.29E-016

regulation/actin polymerization or de-
polymerization

15/7166, 0.2% 1.24E-014

regulation/actin filament length 15/7166, 0.2% 1.24E-014

regulation/actin filament polymeriza-
tion

15/7166, 0.2% 1.24E-014

regulation/protein polymerization 17/7166, 0.2% 3.08E-014

Signalosome 7.49

protein deneddylation 6/7166, 0.1% 8.69E-015

cullin deneddylation 6/7166, 0.1% 8.69E-015

adaptation/signaling pathway 21/7166, 0.3% 2.94E-011

protein modification by small protein
removal

31/7166, 0.4% 2.45E-010

Resnik and SimGIC, are based on IC and are between those most unaffected by the
shallow-annotation problem. However, it seems that they are still unable to completely
correct for this bias. Future semantic similarity measures should be designed keeping
those problems into account. Future work will regard the extension of our analysis to
other datasets (we plan to consider a cross-species comparison) and other measures.
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