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Summary. — The inference of networks of dependencies by Gaussian Graphi-
cal Models on high-throughput data is an open issue in modern molecular biol-
ogy. In this paper we provide a comparative study of three methods to obtain
small sample and high dimension estimates of partial correlation coefficients: the
Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and covariance-
regularized method (�2C). We first compare them on simulated datasets and we find
that PINV is less stable in terms of AUC performance when the number of variables
changes. The two regularized methods have comparable performances but �2C is
much faster than RCM. Finally, we present the results of an application of �2C for
the inference of a gene network for isoprenoid biosynthesis pathways in Arabidopsis
thaliana.

PACS 87.10.Mn – Stochastic modeling.
PACS 87.16.Yc – Regulatory genetic and chemical networks.
PACS 87.18.Vf – Systems biology.

1. – Introduction

One of the aims of systems biology is to provide quantitative models for the study
of complex interaction patterns among genes and their products that are the result of
many biological processes in the cell, such as biochemical interactions and regulatory ac-
tivities. In this framework, graphical models [1] have been exploited as useful stochastic
tools to investigate and describe the conditional independence structure between ran-
dom variables. In particular, the Gaussian Graphical Models (GGM) use the partial
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correlation estimates as a measure of conditional independence between any two vari-
ables [2]. Unfortunately, the application of GGMs classical theory is still a hard task.
The genomic data are tipically characterized by a huge number of genes p with respect
to the small number of available samples n. This makes unreliable the application of
the classical GGMs theory to the small sample setting case. In recent years, several
methods have been proposed to overcome this problem by reducing the numbers of genes
or gene lists in order to reach the n > p regime [3]. Other solutions have been also
proposed [4-6] to circumvent the problem of computing full partial correlation coeffi-
cients by using only zero and first-order coefficients. However, these approaches do not
take into account all multigene effects on each pair of variables. A more sophisticated
way to adapt GGMs to the n < p case is to find regularized estimates for the inverse
of the covariance matrix [7-9]. Once regularized estimates of partial correlation are
available, heuristic searches can be used to find an optimal graphical model. A funda-
mental assumption to perform these quantitative methods is the sparsity of biological
networks: only a few edges are supposed to be present in the gene regulatory networks,
so that reliable estimates of the graphical model can be inferred also in small sample
case [5]. A regularized GGM method based on a Stein-type shrinkage has been applied
to genomic data [10] and the network selection has been based on false discovery rate
multiple testing. In ref. [11] the same procedure to select the network has been adopted,
with a Moore-Penrose pseudoinverse method to obtain the concentration matrix. Fi-
nally, the authors in ref. [12] have suggested an attractive and simple approach based on
lasso-type regression to select among the partial correlations the nonzero values, paving
the way to a number of analysis and novel algorithms based on lasso �1 regulariza-
tions [7-9, 13]. In this work, we focus on regularized methods for the estimation of the
concentration matrix in an undirected GGM. In particular, we present a comparative
study of three methods in terms of AUC (area under the Receiving Operative Charac-
teristic curve) and timing performances. One is based on Moore-Penrose pseudoinverse
(PINV), the other two provide an estimate of the partial correlation coefficients, based on
Regularized Least Square regression (RCM) and a covariance-regularized method with
a �2 penalty in the log-likelihood function (�2C). Finally, we apply the �2C method
to infer a gene network for the isoprenoid biosynthesis pathways in A. thaliana. This
network structural analysis allows to enlight some expected pathway properties. In par-
ticular, we find a negative partial correlation coefficient between the two hubs in the
two isoprenoid pathways. This suggests a different response of the pathways to the sev-
eral tested experimental conditions and, together with the high connectivity of the two
hubs, provides an evidence of cross-talk between genes in the plastidial and the cytosolic
pathways.

2. – Gaussian networks from microarray data

Let X = (X1, . . . , Xp) ∈ R
p be a random vector distributed according to a multivari-

ate normal distribution N (μ,Σ). The interaction structure between these variables can
be described by means of a graph G = (V,E), where V is the vertex set and E is the edge
set. If vertices of V are identified with the random variables X1, . . . , Xp, then the edges
of E can represent the conditional dependence between the vertices. In other words, the
absence of an edge between the i-th and j-th vertices means a conditional independence
between the associated variables Xi and Xj . In this study, we shall consider only undi-
rected Gaussian graphs G with pairwise Markov property, such that for all (i, j) /∈ E one
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has

(1) Xi ⊥⊥ Xj |XV \{i,j}, i, j = 1, . . . , p ,

i.e. Xi and Xj are conditionally independent being fixed all other variables XV \{i,j}.
Since X follows a p-variate normal distribution, the condition (1) turns out to be
ρij·V \{i,j} = 0, where ρij·V \{i,j} is the partial correlation coefficient between the i-th
and j-th variable, being fixed all other variables. It has been shown [1] that partial
correlation matrix elements are related to the precision matrix (or inverse covariance
matrix) Θ = Σ−1, as

(2) ρij·V \{i,j} = − θij√
θiiθjj

, i �= j,

where θij are elements of Θ. In general, when the number of observations n is greater
than the number of variables p, it is straightforward to evaluate θij in eq. (2) by inverting
the sample covariance matrix. Unfortunately, a typical genomic dataset is characterized
by n < p, so that the sample covariance matrix becomes not invertible [14]. For this
reason, in order to estimate the partial correlation matrix one needs alternative methods
to overcome the problem, like regularization methods, ridge regression or pseudoinverse.

2.1. Partial correlation matrix estimation. – In order to describe the three methods
that we shall investigate, let us consider the n × p matrix X = (X1,X2, . . . ,Xp), where
each {Xi} ∈ R

n, with n < p. Let us indicate S as the estimate of the covariance matrix
Σ and Θ̂ as the estimate of inverse covariance matrix Σ−1.

Pseudoinverse method (PINV). The precision matrix Θ̂ can be obtained as pseudoin-
verse of S, by using the Singular Value Decomposition (SVD). Indeed, a singular value
decomposition of a m × q matrix M , is M = UΛV ∗, where U is a m × m unitary ma-
trix, Λ is m × q diagonal matrix with nonnegative real numbers on the diagonal and
V ∗ is a q × q unitary matrix (transpose conjugate of V ). Then, the pseudoinverse of
M is M+ = V Λ+U∗, where Λ+ is obtained by replacing each diagonal element with its
reciprocal and then transposing the matrix.

Covariance-regularized method (�2C). Let us consider a log likelihood function with a �2
penalization [9]:

(3) L(Θ) = log detΘ − Tr(SΘ) − λ‖Θ‖2
F ,

with λ > 0 and ‖Θ‖2
F = tr(Θ�Θ). The maximization of eq. (3) with respect to Θ is

equivalent to solve the following equation:

(4) Θ̂−1 − 2λΘ̂ = S .

Consequently, the problem turns out to be an eigenvalue problem, therefore the eigen-
values θi of Θ̂ can be evaluated as function of the eigenvalues si of S:

(5) θ±i = − si

4λ
±

√
s2

i + 8λ

4λ
.
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Since Θ must be positive definite, the correct value of θi is θ+
i then, for the spectral

theorem the precision matrix Θ̂ is given by

(6) Θ̂ =
�∑

i=1

θ+
i uiu�

i .

Finally, in order to estimate the parameter λ that maximizes the penalized log-likelihood
function in eq. (3), we carry out 20 random splits of the data set in training and validation
sets and then we evaluate the log-likelihood over the validation set.

Residual correlation method (RCM). We consider a regression model for the variables Xi

and Xj as

(7) Xi = 〈β(i),X\i\j〉 + bi, Xj = 〈β(j),X\i\j〉 + bj ,

where {β(i)} is the regression coefficient vector in p − 2 dimensions referred to the i-
th gene; Xi is the i-th column of the matrix X and X\i\j is X without the i-th and
j-th columns. The Regularized Least Square (RLS) [15] method evaluates the regression
models (7) by solving

(8) min
β∈Rp−2

1
n
‖Xi − β(i)X\i\j‖2

2 + λ‖β(i)‖2
2 .

Now, if X̃i and X̃j are the RLS estimates of Xi and Xj , one can evaluate the residual
vectors ri = X̃i − Xi and rj = X̃j − Xj . This allows to evaluate the partial correlation
coefficients ρij|p−2 between the i-th and j-th variables being fixed all other p−2 variables
as the Pearson correlation rrirj

between the residuals, i.e.

(9) ρij|p−2 = rrirj
=

cov(ri, rj)√
var(ri) · var(ri)

.

Finally, the λ > 0 parameter has been chosen by minimizing the Leave-One-Out cross
validation errors.

3. – Comparative study of accuracy

3.1. Data generation. – Datasets with different numbers of variables and observa-
tions have been used in order to investigate the performances of the methods, i.e.
p = {50, 200, 400} and n = {20, 200, 500}. Each dataset X has been generated from
a multivariate Gaussian distribution with zero mean and covariance Σth = Θ−1

th . The
structure of the precision matrix Θth presents the following patterns [13]: random, hubs
and cliques and it has approximately p non-vanishing entries out of the p(p − 1)/2 off-
diagonal elements, except for clique configuration where the entries are approximately 2p.

In the random pattern, the off-diagonal terms of Θth are set randomly to a fixed
value θ �= 0. In the hubs configuration, we partition the columns into disjoint groups Gk,
where index k indicates the k-th column chosen as “central” in each group. Then the
off-diagonal terms are set θik = θ if i ∈ Gk, otherwise θik = 0. In the cliques pattern, the
precision matrix is partitioned as done in hubs and the off-diagonal terms θij are set to
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Table I. – AUC, AUC standard error and timing performances for p = 400. Left part: �2C

method. Center part: PINV. Right part: RCM. Indices r, h and c stand for random, hubs and
clique pattern, respectively.

�2C PINV RCM

n AUC AUC std T (s) AUC AUC std T (s) AUC AUC std T (s)

r 500 0.998 0.0001 38.86 0.987 0.0006 0.161 0.999 0.0001 8343
h 500 1.000 0.0000 83.74 0.999 0.0000 0.164 1.000 0.0000 6468
c 500 0.995 0.0002 84.95 0.963 0.0014 0.164 0.996 0.0002 6449

r 200 0.976 0.0003 38.44 0.581 0.0161 0.111 0.984 0.0006 3566
h 200 1.000 0.0000 81.13 0.806 0.0150 0.115 0.999 0.0001 3555
c 200 0.936 0.0008 82.02 0.587 0.0049 0.121 0.923 0.0009 3747

r 20 0.808 0.0011 39.03 0.929 0.0018 0.093 0.924 0.0017 105
h 20 0.999 0.0001 82.03 1.000 0.0000 0.091 0.999 0.0000 106
c 20 0.668 0.0014 82.13 0.659 0.0014 0.091 0.659 0.0014 108

θ if i, j ∈ Gk, with i �= j. The positive definiteness for each configuration, is guaranteed
by the diagonal entries which are selected in order to keep Θth diagonally dominant.

3.2. Performances. – In order to compare the performances of the three methods, we
have used this procedure: I) For each data generation pattern, draw a random dataset
X from N (0,Σth); II) Evaluate S and Θexp in the case of PINV and �2C , hence find
ρexp from eq. (2); in the case of RCM use eq. (9) for the evaluation of ρexp; III) For each
method, evaluate the AUC performance, as follows. Since the edges in our simulated
dataset have the same strength and we know the label edge and non-edge for each element,
the elements of ρexp can be divided into two sets: ρexp for the edge elements and ρexp for
the non-edge ones. The AUC measures the performances of the three methods in terms
of accuracy of classification of edge and non-edges by using the relative ρexp values.

4. – Results

In tables I, II and III we present the AUC, AUC standard error and timing (in seconds)
performances for p = {400, 200, 50}, respectively. Each table is divided in three columns
related to the analyzed methods. Indices r, h, and c refer to the three data generation
methods: random, hubs, and clique. The results shown are averaged over 20 trials for
n = {500, 200, 20}.

As expected, when n > p all methods provide the same efficiency with an AUC
virtually equal to 1. In fact, in this case the use of regularization methods should be not
required. When p > n, we find that PINV presents some instability in AUC outcomes,
mainly in those region when p ≈ n/2. This can be due to a “resonance effect”, as
explained in refs. [11,16]. Instead, RCM and �2C show high value of AUC in all settings
and have similar performances, almost indipendently of the range of p and n. Note that,
only in the random configuration, when n = 20 and p = {200, 400}, RCM shows AUC
values 10% larger than �2C ones. On the other hand, the timing comparison highlights
that �2C is much faster than the RLS-based method.
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Table II. – AUC, AUC standard error and timing performances for p = 200. Left part: �2C

method. Center part: PINV. Right part: RCM. Indices r, h and c stand for random, hubs and
clique pattern, respectively.

�2C PINV RCM

n AUC AUC std T (s) AUC AUC std T (s) AUC AUC std T (s)

r 500 0.999 0.0001 5.807 0.999 0.0001 0.0377 0.999 0.0001 807
h 500 1.000 0.0000 10.655 1.000 0.0000 0.0376 1.000 0.0000 450
c 500 0.996 0.0002 10.821 0.999 0.0001 0.0439 0.999 0.0000 436

r 200 0.986 0.0003 5.592 0.703 0.0067 0.0310 0.990 0.0007 861
h 200 1.000 0.0000 10.425 0.748 0.0124 0.0309 0.999 0.0003 856
c 200 0.944 0.0010 10.529 0.612 0.0064 0.0336 0.950 0.0008 1028

r 20 0.784 0.0016 6.150 0.880 0.0048 0.0187 0.871 0.0046 24.5
h 20 0.999 0.0001 10.574 0.999 0.0002 0.0182 0.999 0.0001 27.9
c 20 0.669 0.0016 10.545 0.649 0.0017 0.0189 0.654 0.0017 25.3

5. – Application to biological pathways

Isoprenoids play various important roles in plants, functioning as membrane compo-
nents, photosynthetic pigments, hormones and plant defence compounds. They are syn-
thesized through condensation of the five-carbon intermediates isopentenyl diphosphate
(IPP) and dimethylallyl diphosphate (DMAPP). In higher plants, IPP and DMAPP are
synthesized through two different routes that take place in two distinct cellular com-
partments. The cytosolic pathway, also called MVA (mevalonate) pathway, provides the
precursors for sterols, ubiquinone and sesquiterpenes [17]. An alternative pathway, called

Table III. – AUC, AUC standard error and timing performances for p = 50. Left part: �2C

method. Center part: PINV. Right part: RCM. Indices r, h and c stand for random, hubs and
clique pattern, respectively.

�2C PINV RCM

n AUC AUC std T (s) AUC AUC std T (s) AUC AUC std T (s)

r 500 0.999 0.0000 0.4401 1.000 0.0000 0.0152 1.000 0.0000 2.76
h 500 1.000 0.0000 0.4506 1.000 0.0000 0.0061 1.000 0.0000 4.19
c 500 0.999 0.0000 0.4184 1.000 0.0000 0.0065 1.000 0.0000 3.45

r 200 0.996 0.0004 0.4206 0.997 0.0004 0.0038 0.998 0.0004 1.92
h 200 1.000 0.0000 0.4266 1.000 0.0000 0.0030 1.000 0.0000 2.26
c 200 0.976 0.0023 0.3971 0.985 0.0009 0.0036 0.978 0.0011 2.10

r 20 0.821 0.0047 0.4106 0.654 0.0097 0.0024 0.815 0.0066 1.56
h 20 1.000 0.0000 0.4174 0.542 0.0076 0.0019 0.866 0.0081 1.43
c 20 0.675 0.0052 0.3776 0.574 0.0076 0.0022 0.666 0.0057 1.48
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MEP/DOXP (2-C-methyl-D-erythritol 4-phosphate / 1-deoxy-D-xylulose 5-phosphate),
is located in the chloroplast and is used for the synthesis of isoprene, carotenoids, abscisic
acid, chlorophylls and plastoquinone [18]. Although this subcellular compartmentation
allows both pathways to operate independently, there are several evidences that they can
interact in some conditions [19]. Inhibition of the MVA pathway in A. thaliana leads to an
increase of carotenoids and chlorophylls levels, demonstrating that its decreased function-
ing can be partially compensated for by the MEP/DOXP pathway. Inversely, inhibition
of the MEP/DOXP pathway in seedlings causes the reduction of levels in carotenoids
and chlorophylls, indicating a unidirectional transport of isoprenoid intermediates from
the chloroplast to the cytosol. In order to investigate whether the transcriptional regu-
lation is at the basis of the crosstalk between the cytosolic and the plastidial pathways,
Laule et al. [19] have studied this interaction by identifying the genes with expression
levels changed as a response to the inhibition. They have shown that the inhibitor me-
diated changes in metabolite levels are not reflected in changes in gene expression levels,
suggesting that alterations in the flux through the two isoprenoid pathways are not tran-
scriptionally regulated. In order to clarify the interaction between the two pathways at
the transcriptional level, Wille et al. [4] have explored the structural relationship between
genes on the basis of their expression levels under different experimental conditions. This
study aims to infer the regulatory network of the genes in the isoprenoid pathways by
incorporating the expression levels of 795 genes from other 56 metabolic pathways. Mov-
ing beyond the one-gene approach, the authors have found various connections between
genes in the two different pathways, suggesting the existence of a crosstalk at the tran-
scriptional level.

5.1. Results from the covariance-regularized method for A. thaliana isoprenoid path-
ways. – We apply the �2C method to the publicly available data set from ref. [4]. The
selection of the graph is performed by computing the 95% bootstrap confidence interval
of the statistics and the absence of an edge occurs when the zero is included in this inter-
val. The data consist of expression measurements for 39 genes in the isoprenoid pathways
and 795 in other 56 pathways assayed on 118 Affymetrix GeneChip microarrays. We are
interested in the construction of a gene network in the two isoprenoid pathways in order
to detect the effects of genes in the other pathways. In fig. 1 we reproduce the inferred
network with 44 edges. For each pathway we find a module with strongly interconnected
and positively correlated genes. This suggests the reliability of our method since genes
within the same pathway are potentially jointly regulated [20]. Furthermore, we identify
two strong candidate genes for the cross-talk between the pathways: HMGS and HDS.
HMGS represents the hub of the cytosolic module, because it is positively correlated to
five genes of the same pathway: DPPS1, MDPC1, AACT2, HMGR2 and MK. It encodes
a protein with hydroxymethylglutaryl-CoA synthase activity that catalyzes the second
step of the MVA pathway. HDS represents the hub of the plastidial module, because it
is positively correlated to five genes of the same pathway: DXPS1, MECPS, GGPPS12,
IPPI1 and PPDS2. It encodes a chloroplast-localized hydroxy-2-methyl-2-(E)-butenyl
4-diphosphate synthase and catalyzes the penultimate step of the biosynthesis of IPP
and DMAPP via the MEP/DOXP pathway. The negative correlation between HMGS
and HDS means that they respond differently to the several tested experimental condi-
tions. This, together with the high connectivity of the two hubs, provides an evidence
of cross-talk between genes in the plastidial and the cytosolic pathways. Other negative
correlations between the two pathways are represented by the edges HMGR2–MECPS,
MPDC2–PPDS2 and MPDC2–DXPS2. Interestingly, the plastidial gene IPPI1 is found
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Fig. 1. – Biological network of the isoprenoid pathways inferred by using PLLM. Upper part:
Genes of MVA pathway. Lower part: Genes of MEP/DOXP pathway. Grey boxes refer to
mithochondrial genes; HMGS and HDS represent the hubs of the two modules.

to be positively correlated to the module of connected genes in the MVA pathway (IPPI1–
MK, IPP1–IPPI2). This evidence confirms the results of ref. [6] where they guess that the
enzyme IPPI1 controls the steady-state levels of IPP and DMAPP in the plastid, when
a high level of transfer of intermediates between plastid and cytosol takes place. More-
over, our study shows three candidate mitochondrial genes for the cross-talk (DPPS2,
GGPPS5 and UPPS1) which are in the plastidial module. Finally, it is interesting to
note that the method used in ref. [4] includes more cross-links between the two pathways
with respect to the �2C method. Although from the literature the existence of an inter-
action between the two pathways is known, we believe that this cross-link should not be
so strong, as genes of the two pathways belong to two different cell compartments. A
possible explanation of such a difference is that Wille et al. construct a network based
on the first-order conditional dependence that may not capture multi-gene effects on a
given pair of genes.

6. – Conclusions

In this paper, we present a comparative study of three different methods to infer net-
works of dependencies by estimates of partial correlation coefficients in the typical situ-
ation when n < p. In particular, we consider the Moore-Penrose pseudoinverse method
(PINV), the residual correlation method (RCM) and a covariance-regularized method
(�2C). Firstly, we evaluate AUCs and timing performances on simulated datasets and
we find that PINV presents some instability in AUC outcomes associated to the variable
number variations. On the other hand, the two regularized methods show comparable
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performances with a sensible gain of time elapsing of �2C with respect to RCM. Finally,
we present the results of an application of �2C for the inference of a gene network for
isoprenoid pathways in A. thaliana. We find a negative partial correlation coefficient
between HMGS and HDS, that are the two hubs in the two isoprenoid pathways. This
means that they respond differently to the several tested experimental conditions and,
together with the high connectivity of the two hubs, provides an evidence of cross-talk
between genes in the plastidial and the cytosolic pathways. This evidence did not re-
sult from studies at level of single gene. Moreover, studies that infer this network by
using only low-order partial correlation coefficients find more interactions between the
two pathways with respect to the �2C method. A reduced number of edges between the
two pathways is plausible considering the different cell compartmentalization of the two
isoprenoid biosynthesis pathways.
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