Vol. 36 C, N. 1

Colloquia: IFAE 2012

Search for $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ decays in CMS

L. MARTINI for the CMS COLLABORATION Università di Siena and INFN, Sezione di Pisa - Pisa, Italy

ricevuto il 31 Agosto 2012

Summary. — A search for the rare decays $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ performed in pp collisions at $\sqrt{s} = 7$ TeV is presented. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of about 5 fb⁻¹, corresponding to all 2011 data taking.

PACS 13.20.He - Bottom mesons leptonic decays.

In the standard model (SM) of particle physics, flavor-changing neutral-current decays are highly suppressed. The SM predictions [1], $(3.2 \pm 0.2) \times 10^{-9}$ for $B_s^0 \to \mu^+\mu^-$ and $(1.0 \pm 0.1) \times 10^{-10}$ for $B^0 \to \mu^+\mu^-$, are significantly enhanced in several extensions of the SM [2], although in some cases the decay rates are lowered [3]. A blind search, in which the signal region is not observed until all selection criteria are established, is presented here for the rare decays $B_s^0 \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$, using 5 fb⁻¹ of integrated luminosity collected by the CMS experiment [4].

1. – Analysis

An event-counting experiment is performed in the dimuon mass region [4.9, 5.9] GeV. Monte Carlo (MC) simulations are used to estimate backgrounds due to rare B decays while combinatorial backgrounds are evaluated from the side-band data. The mass resolution and the background level depend on the pseudorapidity η of the reconstructed tracks. Thus, data are analyzed separately in two channels, "barrel" (if both muons have $|\eta| < 1.4$) and "endcap" (elsewhere), and then combined for the final result. Events from $B^+ \to J/\psi K^+$ decays (where $J/\psi \to \mu^+\mu^-$) are used as a "normalization" channel, to remove uncertainties related to the $b\bar{b}$ production cross section and the integrated luminosity. To validate the B_s^0 distributions, a "control" sample of reconstructed $B_s^0 \to J/\psi\phi$ decays (where $J/\psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$) is used. The reconstruction of $B_s^0 \to \mu^+\mu^-$ candidates starts by looking at two oppositely-charged muons that originate from a common vertex. The most discriminating variables are i) the 3D impact parameter significance of the B candidate; ii) the pointing angle; iii) the isolation, for which

© CERN on behalf of the CMS Collaboration under CC BY-NC 3.0

SEARCH FOR $B_s^0 \to \mu^+ \mu^-$ AND $B^0 \to \mu^+ \mu^-$ DECAYS IN CMS

Fig. 1. – Dimuon invariant mass distributions in the barrel (left) and endcap (right) channels.

three variables are used, one based on the primary vertex $(I = p_T(B)/(p_T(B) + \sum_{trk} p_T))$ and two based on the secondary vertex: the number of tracks close to the *B*-candidate vertex and the minimum distance of closest approach of the closest track.

2. – Results

The variables described above are optimized with a random-grid search to obtain the best expected upper limit, using MC events for the signal and data side-band events for the background.

The branching fractions are measured using the following equation:

(1)
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_s}{N_{obs}^{B^+}} \frac{f_u}{f_s} \frac{\epsilon_{tot}^{B^+}}{\epsilon_{tot}} \mathcal{B}(B^+),$$

where $\epsilon_{\rm tot}$ is the total signal efficiency, $N_{\rm obs}^{B^+}$ is the number of reconstructed $B^+ \to J/\psi K^+$ decays, $\epsilon_{\rm tot}^{B^+}$ is the total efficiency of B^+ reconstruction, $\mathcal{B}(B^+)$ is the branching fraction for $B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$, $f_{\rm u}/f_{\rm s}$ is the fragmentation function ratio and $N_{\rm s}$ is the background-subtracted number of observed signal candidates in the $B_s^0 \to \mu^+ \mu^-$ window [5.30, 5.45] GeV. An analogous equation is used for $B^0 \to \mu^+ \mu^-$, with signal window [5.20, 5.30] GeV. Figure 1 shows the measured dimuon invariant mass distribution. Upper limits on the $B^0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^-$ branching fractions are determined using the CLs method, taking into account statistical and systematical uncertainties. The combined upper limits for the barrel and endcap channels are

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &< 7.7 \times 10^{-9} \ (95\% \ \mathrm{CL}), \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 1.8 \times 10^{-9} \ (95\% \ \mathrm{CL}). \end{split}$$

The SM median expected upper limits at 95% CL are 8.4×10^{-9} for $B_s^0 \to \mu^+ \mu^-$ and 1.6×10^{-9} for $B^0 \to \mu^+ \mu^-$. The observed number of events is consistent with the SM predictions.

REFERENCES

- [1] BURAS A. J., Acta Phys. Pol., 41 (2010) 2487.
- [2] CHOUDHURY S. R., CORNELL A. S., GAUR N. et al., Int. J. Mod. Phys. A, 21 (2006) 2617.
- [3] ELLIS J. R., LEE J. S. and PILAFTSIS A., Phys. Rev. D, 76 (2007) 115011.
- [4] CMS COLLABORATION, JHEP, **04** (2012) 033.