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Summary. — Soliton models based on the linear σ-model fail to describe nuclear
matter already at ρ ∼ ρ0 due to the restrictions on the scalar field dynamics im-
posed by the Mexican hat potential. To overcome this problem we used a chiral
Lagrangian, including a logarithmic potential associated with the breaking of scale
invariance, based on quarks interacting with chiral fields, σ and π, and with vector
mesons. Using the Wigner-Seitz approximation to mimic a dense system, we show
that the model admits stable solitonic solutions at higher densities with respect
to the linear-σ model and that the introduction of vector mesons allows to obtain
saturation. This result has never been obtained before in similar approaches.

PACS 12.39.Fe – Chiral Lagrangians.
PACS 21.65.Mn – Nuclear matter-equations of state.
PACS 21.30.Fe – Hadrons-nuclear forces.

1. – The model

We consider the following Lagrangian [1, 2]:
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Here ψ is the quark field, σ and π are the chiral fields, ωμ is a vector-isoscalar coupled
to baryon current, ρμ and Aμ are respectively a vector-isovector and an axial-vector-
isovector fields coupled to isospin and axial-vector current. Here φ is the dilaton field
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Fig. 1. – (a) Total energy of the soliton as a function of the cell radius R in the model without
(upper panel) and with vector mesons (lower panel). (b) Minimum of the total energy as a
function of the density.

which, in the present calculation, is kept frozen at its vacuum value φ0 [1, 2]. The loga-
rithmic potential reads
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The masses of bare fields are: mπ = 139 MeV, mρ = mA = 776 MeV and mω =
782 MeV. For the sigma field, since there are no experimental constraints, we use mσ =
550 MeV and mσ = 1200 MeV. We fixed gρ = 4 and we vary gω between 10 and 13. The
pion-quark coupling constant g will vary from 3.9 to 5. The calculation is performed at
Mean-Field level by adopting the hedgehog ansatz for the fields.

2. – The Wigner-Seitz approximation to nuclear matter

The Wigner-Seitz approximation consists of building a spherical symmetric lattice
where each soliton sits on a spherical cell of radius R with specific boundary conditions
imposed on fields at the surface of the sphere. In particular here we adopt the choice
of ref. [3] which relates the boundary conditions at R to the parity operation, r → −r.
The presence of a periodical lattice implies the formation of a band structure. Here we
evaluate the band width in two different approaches following ref. [4].

3. – Results

3.1. The effect of the dilaton potential: going beyond ρ0. – In fig. 1(a) we show how
the total energy of the soliton varies as R decreases:

– for each value of mσ, the logarithmic model (solid line) admits solitonic solutions
for smaller values of the cell radius R (e.g. higher densities) in comparison to the
linear-σ model (dashed line);

– the introduction of vector mesons stabilises the solutions at high densities.
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3.2. Getting saturation at finite density . – The saturation at finite density is obtained
by including also the band effect in the evaluation of the total energy and the scenario
we obtain is the following:

– the repulsive effect of vector meson prevails up to ρ ≈ ρ0 while at higher densities
the band effect, connected to the sharing of quarks between solitons, provides the
dominant contribution to repulsion (for more details see ref. [5]);

– this mechanism, as shown in fig. 1(b) is stable with respect to a wide range of
parameters, g and gω, and moreover this range partially overlaps the one that
provides a reasonable description of the single soliton [6].
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