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Summary. — In this paper we propose a generalization of the Gilkey-de Witt
heat kernel expansion, designed to provide us with a precise estimation of the heat
trace of non-negative Schrödinger type differential operators with non-trivial kernel
over all the domain of its “inverse temperature” variable β. We apply this modified
approach to compute effectively the one-loop kink mass shift for some models whose
kink fluctuation operator spectrum is unknown and the only alternative to estimate
this magnitude is the use of the heat kernel expansion techniques.

PACS 11.15.Kc – Classical and semiclassical techniques.
PACS 11.27.+d – Extended classical solutions; cosmic strings, domain walls,
texture.
PACS 11.10.Gh – Renormalization.

1. – Introduction

In the mid sixties outstanding developments concerning the high-temperature expan-
sion of the kernel of the generalized heat equation associated with a differential operator
of the Laplace or Dirac type took place in different fields from Mathematics [1, 2] and
Physics [3]. In particular, Gilkey unveiled the meromorphic structure of the spectral zeta
function, showing that the residua at the poles of this function are determined from the
Seeley coefficients of the heat kernel expansion and describe certain topological invari-
ants/characteristic classes. On the other hand De Witt used the heat kernel expansion
to deal with quantum fields on curved backgrounds. Thereafter the heat kernel/zeta
function methods have become an important tool in Quantum Field Theory [4-7].

The computation of the one-loop kink mass correction is a topic enclosed in this frame-
work. Technically this magnitude quantifies the contribution to the mass of the quantum
fluctuations over the classical kink solution measured with respect to the background of
vacuum quantum fluctuations, the kink Casimir energy. A mass renormalization must
also be implemented in the previous scheme. All of this can be expressed in terms of
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the spectral zeta functions of the kink and vacuum fluctuation operators, which in turn
can be written as an integral of its heat traces over the interval β ∈ [0,∞) by applying
the Mellin transform. During the last decade we (and our colleagues) succeeded in ap-
plying the Gilkey-de Witt (GDW) heat kernel expansion in (1 + 1)-dimensional scalar
field theoretical models to express the kink mass shift as a truncated series in the Seeley
coefficients of the kink fluctuation operator heat trace, see [8, 9]. In some applications
—heat kernel proofs of the index theorem, computation of anomalies in QFT— the rel-
evant information is encoded in the behavior of the heat trace for small values of the
“inverse temperature” variable β. The kink mass shift, however, demands a precise esti-
mation of the heat trace over all the domain of the variable, β ∈ [0,∞). We recall that
the small β regime captures the higher eigenvalues therefore determining the ultraviolet
behavior while the large β range is contrarily dominated by the lower eigenvalues and it
is important in the infrared domain [10]. The previous assertion would of no consequence
if we dealt with strictly positive operators because in this case the GDW approach is
well established; however it is crucial for the kink fluctuation operator, which always
comprises a zero mode and consequently the GDW expansion does not reproduce the
asymptotic behavior of the heat trace adequately. The usual manoeuvre to solve par-
tially this problem is to truncate the Mellin transform in the range where there exists a
good fitting between the GDW expansion and the heat trace. This obviously leads to a
loss of precision in the final computations.

In this paper we introduce a different alternative; we modified the GDW route to
accommodate the role of the zero modes in the theory. This is described in sect. 2. In
sect. 3 we shall apply this modified GDW heat kernel expansion to obtain a precise com-
putation of the one-loop kink mass shift for a (1+1)-dimensional scalar field-theoretical
model, where other more direct methods (DHN formula, see [11]), are unapproachable
because the kink fluctuation operator spectral information is unknown.

2. – The modified heat kernel asymptotic expansion

2.1. Heat kernel asymptotic expansion and zero modes. – In this section we shall
address the generalization of the GDW heat kernel asymptotic expansion for non-negative
second-order differential operator of the form

K = − d2

dx2
+ v2 + V (x), x ∈ R,(1)

where V (x) is a real function whose asymptotic behavior complies with

lim
x→±∞

V (x) = 0.

In this case the K-spectrum

Spec(K) = {ω2
0 = 0} ∪ {ω2

n}n=1,...,� ∪ {k2 + v2}k∈R

embraces a zero mode f0(x), � bound states fn(x) with non-negative eigenvalues and
scattering states fk(x) emerging on the threshold value v2. The computation of the heat
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integral kernel by means of its definition

KK(x, y;β) = f∗
0 (y)f0(x) +

�∑
n=1

f∗
n(y)fn(x)e−βω2

n +
∫

dk f∗
k (y) fk(x) e−βω2(k)(2)

is not possible for the most of the cases because we generally lack the spectral information
of the K-operator. An alternative way to estimate KK(x, y;β) is to exploit the fact
that (2) is a solution of the parabolic (heat) equation

[
∂

∂β
− ∂2

∂x2
+ v2 + V (x)

]
KK(x, y;β) = 0,(3)

with the contour conditions

lim
β→+∞

KK(x, y;β) = f∗
0 (y)f0(x), lim

β→0
KK(x, y;β) = δ(x − y),(4)

dictated by the definition (2). Therefore the zero mode rules the asymptotic behavior
of KK(x, y;β). This constitutes a variation from the original GDW approach, where the
right-hand side of the first relation in (4) vanishes because of the positiveness assumption
upon the K-spectrum assumed in that framework.

The potential wells of the K-operator (1) and the Helmholtz operator

K0 = − d2

dx2
+ v2, x ∈ R,(5)

have the same asymptotic behavior. The spectrum of this latter operator Spec(K0) =
{k2 + v2}k∈R only comprises scattering states f0

k (x) = 1√
2π

eikx. From this the exact
K0-heat kernel is

KK0(x, y;β) =
1√
4πβ

e−βv2
e−

(x−y)2

4 β ,(6)

whose contour conditions verify

lim
β→+∞

KK0(x, y;β) = 0, lim
β→0

KK0(x, y;β) = δ(x − y).(7)

The original GDW method analyzes the K-heat kernel KK(x, y, β) by means of its de-
viation from the exact form (6) using the standard factorization

KK(x, y;β) = KK0(x, y;β)A(x, y;β) with A(x, y; 0) = 1.(8)

The relation (8) is, however, inconsistent in the present context because the two sides
of (8) have different β → ∞ asymptotic behaviors, see (4) and (7). The reason of this
underlies the presence of the zero mode in the K-spectrum. Notice, however, that (8) can
be used to study the heat kernel KK(x, y;β) in the small β range. This make possible,
for instance, the heat kernel proofs of the index theorem, the computation of anomalies
in QFT, etc. Nevertheless, other applications, such as the computation of the one-loop
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kink mass correction, demand the integration over the interval β ∈ [0,∞) of the heat
kernel trace. Consequently the standard factorization (8) must be modified to reproduce
the behavior of this function in the large-β range.

2.2. The modified Gilkey-de Witt heat kernel expansion. – For non-negative differential
operators of the type (1) the factorization (8) must be replaced by the form

KK(x, y;β) = KK0(x, y;β)C(x, y;β) + g(β)e−
(x−y)2

4β f∗
0 (y)f0(x),(9)

in order to adapt the GDW formalism to the existence of zero modes f0(x). The expres-
sion (9) complies with the contour conditions (4) provided that

lim
β→0

C(x, y; 0) = 1, lim
β→∞

g(β) = 1, lim
β→0

g(β) = 0.(10)

Plugging the ansatz (9) into (3) leads to the “transfer” equation for C(x, y;β):

0 =
(

∂

∂β
+

x − y

β

∂

∂x
− ∂2

∂x2
+ V (x)

)
C(x, y;β)(11a)

+
√

4πβ eβv2
f∗
0 (y)

[
dg(β)
dβ

f0(x) +
g(β)
2β

f0(x) +
g(β)
β

(x − y)
df0(x)

dx

]
.(11b)

The terms specified in the line (11b) concern the role of the zero mode in this new scheme
and complement the standard GDW “transfer” equation (written in the line (11a)). The
PDE (11) is traditionally solved by means of a power series expansion:

C(x, y;β) =
∞∑

n=0

cn(x, y)βn with c0(x, y) = 1,(12)

where the constraint c0(x, y) = 1 is derived from the first condition in (10). Plugging
the expression (12) into (11) the relation

∞∑
n=0

[
(n + 1)cn+1(x, y) − ∂2cn(x, y)

∂x2
+ (x − y)

cn+1(x, y)
∂x

+ V (x)cn(x, y)
]

βn(13)

+
√

4πβeβv2
f∗
0 (y)

[
dg(β)
dβ

f0(x) +
g(β)
2β

f0(x) + (x − y)
g(β)
β

df0(x)
dx

]
= 0

holds. A significant simplification of (13) is obtained by setting

√
πβeβv2 dg(β)

dβ
= v ⇒ g(β) = Erf(v

√
β),(14)

which complies with the asymptotic conditions (10) imposed on the function g(β). Now
the GDW procedure can be followed by implementing the asymptotic expansion of the
error function

Erf z =
2√
π

e−z2
∞∑

n=0

2n

(2n + 1)!!
z2n+1
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in the expression (13). This leads to the recurrence relations for the coefficients cn(x, y):

0 = (n + 1) cn+1(x, y) − ∂2cn(x, y)
∂x2

+ (x − y)
∂cn+1(x, y)

∂x
+ V (x)cn(x, y)(15a)

+2vf∗
0 (y)f(x)δ0n + f∗

0 (y)f(x)
2n+1v2n+1

(2n + 1)!!
+ (x−y)f∗

0 (y)
df0(x)

dx

2n+2v2n+1

(2n + 1)!!
,(15b)

where again the terms displayed in (15b) describe the new contributions to the standard
expression (15a). From the factorization (9), the power series expansion (12) and the
choice (14) of g(β), the heat kernel can be written as the series expansion:

KK(x, y;β) = KK0(x, y;β)
∞∑

n=0

cn(x, y)βn + Erf(β)e−
(x−y)2

4β f∗
0 (y)f0(x),(16)

where we recall that f0(x) is the zero mode of the K-operator and the coefficients cn(x, y)
are computed by using the recurrence relation (15) starting from c0(x, y) = 1.

2.3. The modified GDW heat trace expansion. – From the diagonal of the heat kernel

KK(x, x, β) = lim
y→x

KK(x, y, β) =
e−βv2

√
4πβ

∞∑
n=0

cn(x, x)βn + Erf(β)f∗
0 (x)f0(x),(17)

we can derive the spectral K-heat trace hK(β) = TrL2 e−βK as

hK(β) =
∫

Ω

dxKK(x, x;β).(18)

The Seeley densities cn(x, x) introduced in (17) are defined as

cn(x, x) = lim
y→x

cn(x, y).(19)

From (15) a recursive relation can be constructed for these new coefficients. To do this
it is necessary to deal with the following subtlety: the operations of taking the y → x
limit and the derivatives with respect to x in the formula (15) do not commute. To cope
with this problem we introduce the new auxiliary coefficients:

(k)Cn(x) = lim
y→x

∂kcn(x, y)
∂xk

,(20)

whose first coefficients (k)C0(x), k ∈ N are

(k)C0(x) = lim
y→x

∂kc0

∂xk
= δk0.(21)
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Taking the k-th derivative of (15) with respect to x and later passing to the y → x limit,
the rest of the coefficients (k)Cn(x) verifies

(k)Cn(x) =
1

n + k

[
(k+2)Cn−1(x) −

k∑
j=0

(
k

j

)
∂jV

∂xj
(k−j)Cn−1(x)(22)

−2vf0(x)
dfk

0 (x)
dxk

δ0,n−1 − f0(x)
dfk

0 (x)
dxk

2nv2n−1

(2n − 1)!!
(1 + 2k)

]
,

which must be used in a recursive way until the Seeley densities in (17)

cn(x, x) = (0)Cn(x)(23)

are determined. The first three Seeley densities cn(x, x) derived from (22) for the K-
operator are listed:

c0(x, x) = (0)C0(x) = 1,

c1(x, x) = (0)C1(x) = −V (x) − 4vf2
0 (x),(24)

c2(x, x) = (0)C2(x) = −1
6

∂2V

∂x2
+

1
2

(V (x))2︸ ︷︷ ︸
standard terms

+
4
3
v3f2

0 (x) + 4vf2
0 (x)V (x)︸ ︷︷ ︸

new terms

,

where we distinguish between the terms coming from the standard GDW approach and
the new contributions due to the presence of the zero mode. Finally the modified GDW
heat trace expansion is obtained by plugging (17) into (18),

hK(β) =
e−βv2

√
4πβ

∞∑
n=0

cn(K)βn + Erf(v
√

β), cn(K) =
∫

Ω

dx cn(x, x).

where the Seeley coefficients cn(K) are given by the spatial integral of the Seeley densities
cn(x, x). Therefore, the first three Seeley coefficients are

c0(K) = l,

c1(K) = −〈V (x)〉 − 4v,(25)

c2(K) = −1
6
〈V ′′(x)〉 +

1
2
〈(V (x))2〉︸ ︷︷ ︸

standard terms

+
4
3
v3 + 4v〈V (x)f2

0 (x)〉︸ ︷︷ ︸
new terms

,

where again we point out the new terms introduced in this context. Here l is the length
of the interval Ω, which eventually we make to tend to infinity. In any case, subtraction
of the K0-heat trace from the K-heat trace expansion amounts to dropping the c0(K)
coefficient, and we find

hK(β) − hK0(β) =
e−βv2

√
4π

∞∑
n=1

cn(K)βn− 1
2 + Erf

(
v
√

β
)

.(26)
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3. – A physical application: computation of the one-loop kink mass shift

3.1. Classical field theory models and kinks. – The notion of kink arises in the (1+1)-
dimensional relativistic scalar field theory context [12-14]. In this framework the dynam-
ics is governed by the action

S̃[ψ] =
∫∫

dy0 dy1

(
1
2

∂ψ

∂yμ
· ∂ψ

∂yμ
− Ũ [ψ(yμ)]

)
.

Here, ψ(yμ) : R
1,1 → R is a real scalar field; y0 = τ and y1 = y are local coordinates

in R
1,1, equipped with a metric tensor gμν = diag(1,−1), μ, ν = 0, 1. We shall work in

a system of units where the speed of light is set to one, c = 1, but we shall keep the
Planck constant � explicit because we shall search for one-loop corrections, proportional
to �, to the classical kink masses. In this system, the physical dimensions of fields and
parameters are: [�] = [S̃] = ML, [yμ] = L, [ψ] = M

1
2 L

1
2 , [Ũ ] = ML−1. In this type

of models we can always identify two special parameters, md and γd, to be determined
in each case, carrying the physical dimensions: [md] = L−1 and [γd] = M− 1

2 L− 1
2 , which

allow us to introduce the non-dimensional coordinates, fields and potential: xμ = mdyμ,
x0 = t, x1 = x, φ = γdψ, U(φ) = γ2

d

m2
d
Ũ(ψ). The action and the “static” part of the

energy are also proportional to dimensionless action and energy functionals, namely

S̃[ψ] =
1
γ2

d

S[φ] =
1
γ2

d

∫∫
dx0 dx1

[
1
2

∂φ

∂xμ
· ∂φ

∂xμ
− U [φ(xμ)]

]
,(27)

Ẽ[ψ] =
md

γ2
d

E[φ] =
md

γ2
d

∫
dx

[
1
2

(
dφ

dx

)2

+ U [φ(x)]

]
,(28)

where we shall assume that U(φ) is a non-negative twice-differentiable function of φ:
U(φ) ∈ C2(R) and U(φ) ≥ 0 for φ ∈ R. The configuration space C of the system is the
set of field configurations C = {φ(t0, x) ∈ Maps(R1, R)/E[φ] < +∞}. The static and
homogeneous solutions of the field equations(

∂2

∂t2
− ∂2

∂x2

)
φ(t, x) = −δU

δφ
(t, x)(29)

correspond to the vacua of the model, M = {φ(i)/U(φ(i)) = 0}. Topological solutions,
kinks in this context, are defined as localized non-singular solutions of the field equation
whose energy density, as well as being localized, has space-time dependence of the form
ε(t, x) = ε(x − vt), where v is some velocity vector. The static kink solution φK(x) is a
BPS solution connecting two vacua φ(i) and φ(i+1), which satisfies the first-order ODE

dφK

dx
= ±

√
2U(φK).(30)

Small perturbations around the kink and vacuum solutions are described by the spectral
problem associated with the vacuum and kink fluctuation operators

K0 = − d2

dx2
+

∂2U

∂φ2
[φ(i)], K = − d2

dx2
+

∂2U

∂φ2
[φK(x)],
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which adopt respectively the form (5) and (1) provided that we fix

v2 =
∂2U

∂φ2
[φ(i)], V (x) =

∂2U

∂φ2
[φK(x)] − v2.

3.2. One-loop kink mass shift and the zeta function regularization. – Dashen, Has-
slacher and Neveu (DHN) solved the problem of computing the shift in the kink mass
induced by kink fluctuations in the one-loop order of the sine-Gordon and λ(φ4)1+1 mod-
els in [15]. The authors wrote the one-loop kink mass shift as the sum of two contributions
�E(φK) = �E1(φK) +�E2(φK): the kink Casimir energy (mode-by-mode subtraction
of the zero point vacuum energy) and the mass renormalization counterterm. In order to
apply the DHN procedure effectively, it is necessary to know the eigenvalues of the bound
states and the scattering wave phase shifts of the K operator. For a generic scalar field
theory model we lack this spectral information. Alternatively a zeta function regulariza-
tion can be used in the previous scheme, see [8, 9, 16, 17]. The vacuum energy induced
by quantum fluctuations is first regularized by assigning it the value of the spectral zeta
function of the K0-operator (a meromorphic function) at a regular point in s ∈ C:

�E(φ(i)) =
�γ2

d

2
ζK0

(
−1

2

)
→ �E(φ(i))[s] =

�γ2
d

2
μ

md

(
μ2

m2
d

)s

ζK0(s),(31)

where μ is a parameter of dimensions L−1 introduced to keep the dimensions of the
regularized energy exact. We stress that s = − 1

2 is a pole of this function. The same rule
is applied to control the kink energy divergences by means of the spectral zeta function
of K and therefore the kink Casimir energy �E1(φK)[s] is regularized in the form

�E1(φK)[s] = �E0(φK)[s] −�E0(φ(i))[s] =
�γ2

d

2

(
μ2

m2
d

)s+ 1
2

(ζK(s) − ζK0(s)) .(32)

On the other hand the energy due to the one-loop mass counterterm �E2(φK)[s] can be
also regularized by the zeta function procedure:

�E2(φK)[s] =
�γ2

d

2
〈V (x)〉

(
μ2

m2
d

)s+ 1
2

lim
l→∞

1
l

Γ(s + 1)
Γ(s)

ζK0(s + 1).(33)

Finally, we write the zeta function regularized DHN formula:

�E(φK) = lim
s→− 1

2

�E1(φK)[s] + lim
s→− 1

2

�E2(φK)[s].(34)

The Mellin transform expresses the relation (32) in terms of the kink and vacuum fluc-
tuation operator heat kernels:

�E1(φK)[s] =
�γ2

d

2

(
μ2

m2
d

)s+ 1
2 1

Γ(s)

[∫ ∞

0

dβ βs−1 (hK(β) − hK0(β))
]

,(35)

which allows us to apply the modified GDW approach introduced in the previous section.
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This leads to

�E1(φK)[s] =
�γ2

d

2

(
μ2

m2
d

)s+ 1
2

[
− 1√

4π

〈V (x)〉
v1+2s

Γ[s + 1
2 ]

Γ[s]
− 2√

π v2s

Γ[s + 1
2 ]

Γ[s]

+
1√
4π

∞∑
n=2

cn(K)
v2n+2s−1

Γ[s + n − 1
2 ]

Γ[s]
− 1√

πv2s

Γ[s + 1
2 ]

sΓ[s]

]
,

where we have used the explicit expression (25) of c1(K) to write the contribution of
the first term of the series. Because the contribution of the regularized one-loop mass
counterterm �E2(φK)[s], see (33), can be written as

�E2(φK)[s] =
�γ2

d

2

(
μ2

m2
d

)s+ 1
2 〈V (x)〉√

4π

Γ[s + 1
2 ]

Γ[s]
1

v2s+1
,

we end by (34) with the renormalized one-loop mass shift formula derived from the
modified asymptotic series expansion of the K-heat function:

�E(φK)
�γ2

d

= − v

π
− 1

8π

∞∑
n=2

cn(K)(v2)1−nΓ[n − 1].(36)

Either because of computational restrictions in the estimation of the Seeley coefficients
or because of the asymptotic nature of the series, (36) is truncated to a finite number Nt

of terms, which provides us with

�E(φK ;Nt)
�γ2

d

= − v

π
− 1

8π

Nt∑
n=2

cn(K)(v2)1−nΓ[n − 1](37)

as a good estimation of the quantum kink mass correction. The most important ad-
vantage of this procedure is that there is no need for detailed information about the
spectrum of K to calculate the mass shift.

3.3. An example: the sinh4 φ model . – The potential term, which determines the
dynamics in this model, is given by

U(φ) =
1
4
(sinh2 φ − 1)2.

This function has two absolute minima located at φ(1) = − arcsinh 1 and φ(2) = arcsinh 1,
which play the role of vacua of the model. From the first order ODE (30) we can identify
the static kink solitary wave

φK(x) = arctanh
tanhx√

2
,(38)

which connects the two vacuum points of the model. The fluctuations over this solution
can be described by the spectral problems associated with the vacuum and kink Hessian
operators, which are, respectively:

K0 = − d2

dx2
+ 4, K = − d2

dx2
+ 2 +

16
(1 + sech2 x)2

− 14
1 + sech2 x

.
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Table I. – Seeley coefficients and partial kink mass shift estimations.

n cn(K) Nt ΔE(φK ; Nt)/�γ2
d

1 7.47870 1 –

2 7.82708 2 −0.714477

3 5.71901 3 −0.728699

4 3.15228 4 −0.732619

5 1.36104 5 −0.733888

6 0.482077 6 −0.734338

7 0.14436 7 −0.734506

8 0.0375685 8 −0.734572

Nt

∆E (φK,Nt

Modified Method

Standard Method

0 2 4 6 8

-0.73

-0.72

-0.71

-0.70

-0.69

-0.68

)

Fig. 1. – One-loop kink mass shifts estimated by means of the modified and standard asymptotic
series for several truncation orders.

hK β,Nt

1 2 3 4

0.5

0.5

1.0

1.5
hK ,Nt

1 2 3 4

0.5

0.5

1.0

1.5
β

ββ

Fig. 2. – Graphics of the partial sums of the heat trace expansion from the modified (left) and
standard (right) GDW approach.
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The previous operators follow the form (1) and (5) established in the first section, sim-

ply taking v2 = 4 and V (x) = − 2 sech2 x(9+sech2 x)
(1+sech2 x)2

. The one-loop mass shift for the
kink can be computed by the formula (37) where the zero mode f0(x), the normalized
spatial derivative of the kink (38), is f0(x) = 4

√
2√

3
√

2 arccosh 3−4(3+cosh(2x))
and the Seeley

coefficients cn(K) are determined by means of the recurrence relations (22). The Mathe-
matica program KinkMassQuantumCorrection Modified.nb, which can be downloaded at
the web page http://campus.usal.es/~mpg/General/Mathematicatools, automatizes
this calculation. The Seeley coefficients for the present case are listed in table I.

In this table we have also specified the values of the one-loop mass shift obtained
from the modified asymptotic series (37) for different values of the truncation order,
Nt. These data have been depicted in fig. 1. For the sake of comparison the same data
extracted from the standard asymptotic expansion are also included, see [9]. Notice that
the modified method exhibits better convergence properties than the standard procedure.

In conclusion, the one-loop mass shift for the kink (38) in the sinh4 φ model is given
by the value −0.734572, which has been obtained from the modified heat trace expansion
truncated at the order Nt = 8. The asymptotic behaviors of the partial sums associated
with the modified and standard GDW heat trace expansions are illustrated in fig. 2.
Notice that the modified approach reproduces the correct analytical asymptotic behavior
as opposed to the standard procedure.
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