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Summary. — We have developed a novel approach to entanglement, suitable to
be used in general quantum systems and specially in systems of identical particles.
The approach is based on the GNS construction of representation of C∗-algebra
of observables. In particular, the notion of partial trace is replaced by the more
general notion of restriction of a state to a subalgebra. We here recollect some
simple examples of the application of this novel approach after reviewing the GNS
construction.

PACS 03.65.Ud – Entanglement and quantum nonlocality.
PACS 03.65.Fd – Algebraic methods.
PACS 89.70.Cf – Entropy and other measures of information.

1. – Introduction

In spite of the numerous efforts to achieve a satisfactory understanding of entangle-
ment for systems of identical particles, there is no general agreement on the appropriate
generalization of concepts valid for non-identical constituents [1-9]. That is because
many concepts are usually only discussed in the context of quantum systems for which
the Hilbert space H is a simple tensor product with no additional structure. An example

(∗) E-mail: bal@phy.syr.edu
(∗∗) E-mail: trg@imsc.res.in
(∗∗∗) E-mail: amilcarq@unb.br
( ∗∗∗) E-mail: anreyes@uniandes.edu.co

c© Società Italiana di Fisica 27



28 A. P. BALACHANDRAN, T. R. GOVINDARAJAN, AMILCAR R. DE QUEIROZ ETC.

is the Hilbert space H = HA⊗HB of two non-identical particles. In this case, the partial
trace ρA = TrB |ψ〉〈ψ| for |ψ〉 ∈ H to obtain the reduced density matrix has a good
physical meaning: it corresponds to observations only on the subsystem A.

Now, the Hilbert space of a system of N identical bosons (fermions) is given by the
symmetric (antisymmetric) N -fold tensor product of the single-particle spaces. Therefore
any multi-particle state is endowed with intrinsic correlations between subsystems due
to quantum indistinguishability. Hence the use of singular value decomposition (SVD),
Schmidt rank or entanglement entropy to study subsystem correlations seems no longer
available or in need of a complete reassessment.

We recollect here an approach proposed by us in [10-12] to the study of entanglement,
based on the foundational results of Gel’fand, Naimark and Segal on the representation
theory of C∗-algebras, dubbed the GNS construction [13]. A crucial novel point of our
approach is that the notion of partial trace is replaced by the more general notion of
restriction of a state to a subalgebra [14, 15]. This allows us to treat entanglement of
identical and non-identical particles on an equal footing.

We provide here simple examples(1) of the advertised approach. In particular we
obtain by our approach a zero von Neumann entropy for fermionic or bosonic states
containing the least possible amount of correlations.

This seems to settle some confusion raised by the straightforward use of partial trace
in computing the von Neumann entropy as a measure of entanglement for systems with
identical particles [16, 17]. For a comprehensive review of previous works on this topic,
see [8].

2. – The GNS construction

A vector state of a quantum system is usually described by a vector |ψ〉 in a Hilbert
space H (pure case). More generally, a state is a density matrix ρ : H → H, a linear map
satisfying Tr ρ = 1 (normalization), ρ† = ρ (self-adjointness) and ρ ≥ 0 (positivity). For
pure states the additional condition ρ2 = ρ is required, so that ρ is of the form |ψ〉〈ψ|
for some normalized vector |ψ〉 ∈ H.

Recall that the expectation value of an observable O is defined by 〈O〉 = Tr(ρO).
Now, we can equivalently regard a state as a linear functional ωρ : A → C on a (C∗-)al-
gebra A of observables with unity �A. The normalization and positivity conditions take
the form ‖ωρ‖ := ωρ(�A) = 1 and ωρ(O†O) ≥ 0 (for any O ∈ A). Such a positive linear
functional with unit norm is referred to as a state on the algebra A.

In the bipartite case H = HA ⊗ HB , the definition of ρA above involves a partial
trace operation. Instead, we can consider the subalgebra A0 of operators of the form
K ⊗ �B , for K an observable on HA. We can then define a state ωρ,0 : A0 → C

which is the restriction ωρ|A0 of ωρ to A0 defined by ωρ,0(α) = ωρ(α) if α ∈ A0. Since
ωρ,0(K ⊗ �B) ≡ TrA(ρA K), partial trace and restriction give the same answer in this
case.

When H is not of the form of a “simple tensor product”, partial trace is not a suitable
operation. For these cases, the description of the quantum system in terms of a state ωρ

on an algebra A and its restriction ωρ,0 to a subalgebra are still valid. The GNS theory
is effective in the determination of ωρ,0.

(1) For a more complete treatment [10,11].
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The idea of the GNS construction [18] is that given an algebra A of observables and
a state ω on this algebra, we can construct a Hilbert space on which A acts. The key
steps are: a) the state ω endows A with an inner product; it then becomes an “inner
product” vector space Â; b) this inner product may be degenerate, that is, the norm of
some non-null elements of Â may be zero; c) the quotient Â/N̂ of Â by the null space
N̂ removes the null vectors and gives a well-defined Hilbert space (after completion);
d) The algebra A acts on this Hilbert space in a simple manner.

We now make this set of ideas more precise [18].
Given a state ω on a C∗-algebra A, we obtain a representation πω of A on a Hilbert

space Hω as follows. Since A is an algebra, it is in particular a vector space denoted as
Â. Elements α ∈ A regarded as elements of the vector space Â are written as |α〉. We
then set 〈β|α〉 = ω(β∗α). This is an inner product, 〈α|α〉 ≥ 0, but there could be a null
space N̂ω of zero norm vectors: N̂ω = {|α〉 ∈ A | ω(α∗α) = 0}. By Schwarz inequality,
one shows that 〈a|α〉 = 0, for any a ∈ A and α ∈ Nω. One also shows that aNω ⊆ Nω,
for any a ∈ A, that is, Nω is a left ideal.

The space Â/N̂ω with elements |[α]〉, where [α] = α + N̂ω, for any α ∈ A, has a
well-defined scalar product

〈[α]|[β]〉 = ω(α∗β)(1)

independent of the choice of α from [α] and with no non-zero vectors of zero norm. Its
closure is the GNS Hilbert space Hω.

The representation πω of A on Hω : πω(α)|[β]〉 = |[αβ]〉 is in general reducible. So Hω

can be decomposed into a direct sum of irreducible spaces: Hω =
⊕

i Hi. Let Pi : Hω →
Hi be the corresponding orthogonal projectors. We have μi = ‖Pi |[�A]〉‖. Since ω(α) =
〈[�A]|πω(α)|[�A]〉 and |[�A]〉 =

∑
i Pi|[�A]〉, one obtains ω(α) = TrHω

(ρω πω(α)), where
ρω =

∑
i Pi |[�A]〉〈[�A]|Pi. The von Neumann entropy of ρω is S(ρω) = −

∑
i μ2

i log2 μ2
i .

The crucial fact is that ω is pure if and only if the representation πω is irreducible.
In particular, the von Neumann entropy of ω, S(ω) ≡ S(ρω), is zero if and only if Hω is
irreducible. This property depends on both the algebra A and the state ω.

Consider now a subalgebra A0 ⊂ A of A. Let ω0 denote the restriction to A0 of a
pure state ω on A [14]. We can apply the GNS construction to the pair (A0, ω0) and use
the von Neumann entropy of ω0 to study the entanglement emergent from restriction.

2.1. Bell state. – In [18], G. Landi shows a simple instructive example of the GNS
construction. We now recollect his example in order to illustrate how to apply the GNS
construction to entanglement.

Consider the Hilbert space H = HA ⊗ HB ≡ C
2 ⊗ C

2 acted on by the algebra
A = M4(C) of 4 × 4 complex matrices generated by elements of the form σμ ⊗ σν

(μ, ν = 0, 1, 2, 3), with σ0 = �2 and {σ1, σ2, σ3} the Pauli matrices. Let us consider the
normalized vector |ψ〉 = (1/

√
2)(|+1〉⊗|−1〉−|−1〉⊗|+1〉) (±1 denoting the eigenvalues

of σ3) with corresponding state ω = |ψ〉〈ψ| on the algebra A.
Entanglement of |ψ〉 is to be understood in terms of correlations between “local”

measurements performed separately on subsystems A and B. Measurements performed
on A correspond to the restriction ωA = ω |AA

of ω to the subalgebra AA ⊂ A generated
by elements of the form σμ ⊗ �2.

In this case there are no non-trivial null states [ω((σμ⊗�)∗(σν⊗�)) = 〈ψ|σ∗
μσν⊗�|ψ〉 =

δμν ], so NωA
= {0}. Therefore the GNS-space is simply HωA

= ÂA/N̂ωA
∼= C

4 with
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basis vectors |[σν ]〉 ≡ |[σν ⊗�2]〉 and inner product 〈[σμ]|[σν ]〉 = δμν . An element α ∈ AA

acts on HωA
as πωA

(α)|[β]〉 = |[αβ]〉, where the RHS can be explicitly computed using
σiσj = δij�2 + iεijkσk.

This representation is reducible. The GNS-space splits as HωA
= C

2 ⊕ C
2. One

invariant subspace is spanned by |[σ+ ⊗ �2]〉, |[(1/2)(1 − σ3) ⊗ �2]〉 and the other by
|[(1/2)(1 + σ3) ⊗ �2]〉, |[σ− ⊗ �2]〉, where σ± = σ1 ± iσ2. The corresponding projections
are

Pi =
1
2
πωA

(�A + (−1)iσ3 ⊗ �2), with i = 1, 2,(2)

so that μ2
i = ‖Pi|[�A]〉‖2 = 1/2. We may then compute the corresponding von Neumann

entropy as S(ωA) = log2 2. Therefore ωA is not pure. It is maximally entangled. This is
a standard result.

3. – Systems of identical particles

Let H(1) = C
d be the Hilbert space of a one-particle system. The group U(d) = {g}

acts on C
d by the representation g �→ U (1)(g). The algebra of observables is given by a

∗-representation of the group algebra CU(d) on H(1). Its elements are of the form

α̂(1) =
∫

U(d)

dμ(g)α(g)U (1)(g),(3)

where α is a complex function on U(d) and μ the Haar measure [19]. The elements α̂
span the matrix algebra Md(C).

The k-particle Hilbert space H(k) for bosons (fermions) is the symmetrized (anti-
symmetrized) k-fold tensor product of H(1). We can associate the operator A(k) :=
(A(1) ⊗ �d . . . ⊗ �d) + (�d ⊗ A(1) ⊗ �d ⊗ . . . ⊗ �d) + . . . + (�d ⊗ . . . ⊗ �d ⊗ A(1)) on H(k)

with a one-particle observable A(1) on H(1). The operator A(k) preserves the symmetries
of H(k). The map A(1) −→ A(k) is a Lie algebra homomorphism. By considering eiA(1)

,
we can also get a group homomorphism and accordingly associate

α̂(k) =
∫

U(d)

dμ(g)α(g)U (1)(g) ⊗ . . . ⊗ U (1)(g),(4)

with the one-particle operator α̂(1).
These constructions are most conveniently expressed in terms of a coproduct Δ [19].

In fact, an approach based on Hopf algebras [19] has the advantage that para- and braid-
statistics can be automatically included. In what follows we use the simple coproduct
Δ(g) = g⊗ g, g ∈ U(d), linearly extended to all of CU(d). This choice fixes the form (4).
Physically, the existence of such a coproduct is very important. It allows us to homo-
morphically represent one-particle observables in the k-particle sector.

We may now consider two main choices:

1) In a many particle system, observations may be restricted to the homomorphic
image of the one-particle observable algebra obtained with the coproduct.

2) We may perform only partial one-particle observations such as only its spin degrees
of freedom or only its position. The one-particle algebra at the k-particle level has
to be further restricted accordingly.
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3.1. Two fermions, H(1) = C
3. – We now consider the two-fermion space H(2) =∧2

C
3 ⊂ H(1) ⊗H(1) (

∧
denotes antisymmetrization), with basis {|fk〉 = εijk|ei ∧ ej〉},

with i, j = 1, 2, 3, where {|e1〉, |e2〉, |e3〉} is an orthonormal basis for H(1). The algebra
A(2) of observables for the two-fermion system is the matrix algebra generated by |f i〉〈f j |
(i, j = 1, 2, 3). Therefore A(2) ∼= M3(C).

Now, U(3) acts on H(1) through the defining representation U (1)(g) = g, so that
one-particle observables are given at the two-fermion level by the action of CU(3) on
H(2). This action is given by the restriction of the operators α̂(2) ∈ A(2) to the space of
antisymmetric vectors. Let 3 be the defining (or fundamental) SU(3) representation on
H(1). Then the restriction can be obtained from the decomposition 3 ⊗ 3 = 6 ⊕ 3̄ of the
SU(3) representation. The |f i〉 span this 3̄ representation.

We first consider the first choice above so that A0 is the full algebra of one-particle
observables acting on H(2). The GNS representation corresponding to (A0, ωψ = |ψ〉〈ψ| :
ψ ∈ H(2)) is irreducible. The state remains unchanged upon restriction. This is just the
fact that the 3̄ representation of SU(3) is irreducible. This also corresponds to the fact
that for d = 3, all two-fermion vector states have Slater rank 1. The von Neumann
entropy is thus zero.

Notice, however, that the von Neumann entropy computed by partial trace is equal to
log2 2 for all choices of |ψ〉 (cf. [5]), in disagreement with the GNS-approach.

We next consider the second choice. Let A0 be the image under Δ of those one-
particle observables pertaining only to the particles 1 and 2. This algebra contains the
projector |e1〉〈e1| + |e2〉〈e2|. But observables of 1 and 2 may give null answer as the
particle occupies |e3〉. This corresponds to observing |e3〉〈e3|. Thus the one-particle
algebra contains also

∑
i |ei〉〈ei| = �3×3. So in this case, A0 is the five-dimensional

algebra generated by M ij := |f i〉〈f j | (i, j = 1, 2) and �A(2) = �3×3.
For the particular choice |ψθ〉 = cos θ|f1〉+ sin θ|f3〉, the corresponding state is ωθ =

|ψθ〉〈ψθ| with ωθ(α) = 〈ψθ|α|ψθ〉 for any α ∈ A(2). For the restriction ωθ,0 = ωθ |A0 we
find that the null vectors contain the span of M12 and M22.

For 0 < θ < π/2, there are no more linearly independent null vectors. Therefore,
the GNS-space Hθ = Â0/N̂θ,0 is three-dimensional with basis {|[M11]〉, |[M21]〉, |[E3]〉},
where E3 := �A − M11 − M22.

Since α0 E3 = 0 for any α0 ∈ A0, we immediately recognize that, in terms of irre-
ducibles, Hθ = C

2 ⊕ C
1. Noting that [M11 + M22] = [�2], we obtain P1|[�A]〉 = |[M11]〉

and P2|[�A]〉 = |[E3]〉 for the projectors. The corresponding “weights” are |μ1|2 = cos2 θ
and |μ2|2 = sin2 θ. Hence, the entropy as a function of θ is S(θ) = − cos2 θ log2 cos2 θ −
sin2 θ log2 sin2 θ.

For θ = 0 there are additional null vectors. The null space is spanned by |M12〉,
|M22〉 and |E3〉. The GNS-space H0 = Â0/N̂0,0 is two-dimensional and irreducible. It is
spanned by |[M11]〉 and |[M21]〉. Since πω(A0) acts non-trivially on this space, and the
smallest non-trivial representation of A0 is its two-dimensional IRR, this representation
is irreducible. Hence ω0,0 is pure with zero entropy.

For θ = π
2 instead, all of |M ij〉 are null vectors. So Hπ

2
is one-dimensional and

spanned by |[E3]〉. Clearly ωπ
2 ,0 is pure with zero entropy.

3.2. Two bosons, H(1) = C
3. – We start with a one-particle space H(1) = C

3 with
an orthonormal basis {|e1〉, |e2〉, |e3〉}. A two-boson space H(2) is the space of symmetric
vectors in H(1) ⊗ H(1). It is equivalent to the six-dimensional space coming from the
decomposition 3⊗ 3 = 6⊕ 3̄ of SU(3). An orthonormal basis for H(2) is given by vectors
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Fig. 1. – The two-boson entropy as a function of x and y which represent the (θ, φ)-sphere via
stereographic projection. The expression of the entropy is S(θ, φ) = − sin2 θ[cos2 φ log2(sin θ
cos φ)2 +sin2 φ log2(sin θ sin φ)2]− cos2 θ log2(cos θ)2. Darker regions correspond to lower values
of the entropy. Five of the six vanishing points of the entropy can be seen on the picture (black
spots). The sixth one, corresponding to the north-pole of the sphere, lies “at infinity”. The
entropy vanishes whenever |ψθ,φ〉 lies in a single irreducible component.

{|ei ∨ ej〉}i,j∈{1,2,3} where ∨ denotes symmetrization (and the vectors are normalized).
The two-boson algebra of observables A(2) is isomorphic to M6(C).

We now choose the vector |ψθ,φ〉 = sin θ cos φ|e1∨e2〉+sin θ sin φ|e1∨e3〉+cos θ|e3∨e3〉.
The corresponding state is ωθ,φ defined by ωθ,φ(α) = 〈ψθ,φ|α|ψθ,φ〉 for any α ∈ A. We
fix the subalgebra A0 consisting of those one-particle observables pertaining only to the
one-particle states |e1〉 and |e2〉.

The restriction of the state to the subalgebra is provided by ωθ,φ |A0 . The 6-
representation under the SU(2) action on |e1〉 and |e2〉 splits as 6 = 3 ⊕ 2 ⊕ 1. The
subalgebra A0 consists of block-diagonal matrices. Each block is one of the irreducible
components in the decomposition 6 = 3 ⊕ 2 ⊕ 1. The dimension of A0 is therefore
32 + 22 + 12 = 14.

The construction of the GNS-representation corresponding to each particular value
of the parameters θ and φ follows the same procedure as in the previous example. The
von Neumann entropy as a function of the parameters is depicted in fig. 1.

4. – Conclusions

We have presented a new approach to the study of quantum entanglement based on
restriction of states to subalgebras. The GNS construction allows us to obtain a repre-
sentation space for the subalgebra such that its decomposition into irreducible subspaces
can be used to study quantum correlations. We showed that, when applied to bipartite
systems for which the Hilbert space is a “simple” tensor product, our method reproduces
the standard results on entanglement. We furthermore showed, with explicit examples,
how the formalism can be applied to systems of identical particles. The main result is that
the von Neumann entropy remains the suitable entanglement measure, when understood
in terms of states on algebras of observables.
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Our formalism can be easily generalized to more sophisticated situations involving
para- and braid-statistics. It can even be extended to study for instance a k-particle
subsystem in an N -particle Hilbert space.

∗ ∗ ∗
Based on talk presented by A. P. Balachandran at the conference “Mathematical

Structures in Quantum Systems and applications” held in Benasque in July 2012. For a
complete version of this work, please refer to [11,12].
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