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Summary. — We describe the Casimir effect in the context of a spectral problem
resulting from partial differential equations. Different formulations, namely the lo-
cal vacuum energy density, Green’s functions and functional determinants are used
to give formal expressions for the Casimir energy. Regularizations then employed
are the zeta function, the frequency-cutoff and point splitting in combination with
Green’s functions. Examples for single-body Casimir energies are considered. Singu-
larities related to ambiguities are associated with heat kernel coefficients, invariants
that describe the small-t asymptotics of the heat kernel. Renormalization is dis-
cussed in terms of these, in particular the coefficients are used to elegantly discuss if
given configurations lead to unambiguous predictions for the Casimir energy and/or
force. An example for the singularity-free situation is the Casimir force between
separate bodies and a formalism for its computation is given.

PACS 03.70.+k – Theory of quantized fields.
PACS 02.70.Hm – Spectral methods.

1. – Introduction

The continuing miniaturization of all kinds of technical devices makes the influence
of the precise form of very small systems increasingly more important. This has led to
an enormous research activity about the Casimir effect, in which the question how the
presence of boundaries modifies the vacuum structure of a quantum field is analyzed [1-
3]. The name goes back to the study by Casimir [4], where he computed the vacuum
pressure between two perfectly conducting parallel plates due to the ground state of
the electromagnetic field. Imposing the relevant boundary condition for the tangential,
respectively normal, component of the electric, respectively magnetic, field on the surface
F , namely Etan(t, �r )|F = 0 and Bnor(t, �r )|F = 0, he found the Casimir interaction energy
(per unit area) of two plates a distance a apart to be

E0(a) = − π2

720
�c

a3
,(1)

c© Società Italiana di Fisica 139



140 K. KIRSTEN

which gives the Casimir force (per unit area)

F0(a) = − d
da

E(a) = − π2

240
�c

a4
.(2)

Since then, many aspects of the Casimir energy and force have been considered, in
particular the influence of the shape of the boundary, the boundary condition imposed,
non-trivial topology, and external parameters (background fields) have been analyzed in
detail; see, e.g., [5-7]. It is noted that calculations are often plagued by divergencies and
of course it is desirable to identify the corresponding situations and to formulate relevant
quantities in terms of finite expressions.

Corresponding to the above remarks, this article is organized as follows. In sect. 2
different formulations of the Casimir energy are given. Each formulation naturally leads
to a regularization of the Casimir energy, as described in sect. 3. Examples for Casimir
energy calculations are given in sect. 4. Cases treated are those with an explicit eigenvalue
spectrum or a spectrum that is determined by an implicit eigenvalue equation. These
examples will show that sometimes divergencies appear, but sometimes they do not.
Section 5 will shed light on the origin of divergencies and we will see that the small-t
heat equation asymptotics is at the heart of the issue. Particular terms in the heat
equation asymptotics will allow us to easily identify configurations with finite Casimir
energy or force and this is explained in sect. 6. Examples for this situation are pistons
and the electromagnetic field, furthermore separate bodies and the TGTG representation
for the Casimir energy associated with separate bodies is provided in sect. 7.

2. – Different formulations of the Casimir energy

In order to explain the different formulations of the Casimir energy we will consider
a free massive scalar field in four-dimensional spacetime described by the action

S[ϕ] =
∫

d4xL(x) =
∫

d4x

(
1
2
∂νϕ∂νϕ − m2

2
ϕ2 + Υϕ

)
,

where Υ is some external source. For vanishing external source the corresponding field
equations are

(� + m2)ϕ(x) = 0.(3)

In terms of the field ϕ(x), Noether’s theorem gives the canonical energy-momentum
tensor as

Tμν(x) = ∂μϕ(x)∂νϕ(x) − gμνL(x).(4)

More explicit representations are obtained by using the mode expansion of ϕ(x). Writing
x = (t, �r ), using separation of variables, solutions of (3) are written as

ϕ
(+)
J (t, �r ) =

1√
2ωJ

e−iωJ tΦJ (�r ), ϕ
(−)
J (t, �r ) =

[
ϕ

(+)
J (t, �r )

]∗
,
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where ΦJ(�r ) satisfies the eigenvalue problem

−ΔΦJ (�r ) = ΛJΦJ (�r ), ΦJ (�r )|F = 0, ΛJ ≡ ω2
J − m2.(5)

Here, F denotes a typically smooth boundary at which the field satisfies some boundary
condition. We have chosen Dirichlet boundary conditions for simplicity, other conditions
could be considered as well.

Introducing as usual annihilation operators aJ and creation operators a+
J , the field

operator is expanded in the form

ϕ(x) =
∑

J

[
ϕ

(+)
J (x)aJ + ϕ

(−)
J (x)a+

J

]
,(6)

which, after substitution into (4), gives for the vacuum expectation value of the local
vacuum energy density

〈0 |T00(x)| 0〉 =
1
2

〈
0

∣∣∣∣∣
[

3∑
μ=0

(
∂ϕ

∂xμ

)2

+ m2ϕ2

]∣∣∣∣∣ 0

〉
,

=
∑

J

1
4ωJ

[
(ω2

J + m2)ΦJ (�r )Φ∗
J (�r ) +

3∑
k=1

∂ΦJ (�r )
∂xk

∂Φ∗
J (�r )

∂xk

]
.(7)

Integrating over the volume V of the system, after an integration by parts, the total
vacuum energy is obtained as

E0 =
∫

V

d�r 〈0 |T00(x)| 0〉 =
1
2

∑
J

ωJ .(8)

Clearly this last expression (8), and also (7), are divergent and later on regularizations
will be provided. But first let us describe different representations of the energy that in
a natural way will lead to a variety of different regularizations.

Let us next consider the representation of the vacuum energy in terms of Green’s
functions. For the model considered the relevant partial differential equation is

(�x + m2)G(x, x′) = δ4(x − x′).

Clearly, the Green’s function is not uniquely defined as solutions of the homogeneous
equation can be added. In terms of the modes (5), the causal Green’s function reads

G(x, x′) =
∫ ∞

−∞

dω

2π

∑
J

ΦJ(�r )Φ∗
J (�r ′)

−ω2 + ω2
J − iε

e−iω(t−t′)

= i
∑

J

1
2ωJ

e−iωJ |t−t′|ΦJ(�r )Φ∗
J (�r ′),(9)

where the limit ε → 0 is understood. The second line follows by computing the ω-integral
using the residue theorem.
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We next would like to relate the energy density (7) with the Green’s function. As
indicated, (7) is singular as it contains the product of two field operators at coincident
points. To establish the connection between (7) and (9), we will take the field operators
in (7) at separate points and apply the time-ordered product

Tϕ(x)ϕ(x′) = θ(t − t′)ϕ(x)ϕ(x′) + θ(t′ − t)ϕ(x′)ϕ(x).

From (6) we easily show

〈0 |ϕ(x)ϕ(x′)| 0〉 =
∑

J

1
2ωJ

e−iωJ (t−t′)ΦJ (�r )Φ∗
J (�r ′)

and

i 〈0 |Tϕ(x)ϕ(x′)| 0〉 = G(x, x′)

can be established. With the interpretation of (7) as described, we therefore arrive at
the definition

〈0 |T00(x)| 0〉 ≡ − i

2

(
3∑

μ=0

∂

∂xμ

∂

∂x′μ + m2

)
G(x, x′)

∣∣∣∣∣
x′=x

from which after partial integration, using the equation of motion, the global vacuum
energy reads

E0 = i

∫
V

d�r
∂2G(x, x′)

∂x2
0

∣∣∣∣
x′=x

.

Let us lastly consider the path-integral formulation of the vacuum energy. In this for-
mulation the generating function is given by

Z[Υ] = C

∫
DϕeiS[ϕ]

and the vacuum energy, for time-independent boundaries, equals [8]

E0 =
i

T
ln Z[0].

The integration goes over fields in a suitably defined space and C is an infinite nor-
malization constant. It is independent of external parameters and is irrelevant for the
vacuum energy. The generating functional is computed using an analogy with finite-
dimensional matrices. For x, h ∈ R

n and K̃ a finite-dimensional matrix with inverse
K̃−1, one computes the integrals

∫
Rn

dnxe−
1
2 (x,K̃x)+(x,h) = (2π)n/2(det K̃)−1/2e

1
2 (h,K̃−1h).(10)
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If K̃ instead is a partial differential operator, replacing the scalar product in R
n with a

Hilbert space product,

(x, K̃x) → (ϕ, K̃ϕ) =
∫

d4xϕ(x)(K̃ϕ)(x),

from the action

iS[ϕ] = − i

2

∫
d4x ϕ(x)(� + m2)ϕ(x) + i

∫
d4x Υϕ(x)(11)

one identifies

h = iΥ, K̃ = iK ≡ i(� + m2), K(x, x′) = δ(x − x′)(�x′ + m2),(12)

where we introduced the kernel K(x, x′) of the operator K. From here, formally

Z[Υ] = C(det K̃)−1/2e
1
2 (h,K̃−1h)

= C(detK)−1/2 exp
[

i

2

∫
d4xd4x′Υ(x)K−1(x, x′)Υ(x′)

]
.(13)

Note, that from the definitions

K−1(x, x′) = G(x, x′).

The representation of the vacuum energy in this case reads

E0 =
i

T
ln(detK)−1/2 = − i

2T
Tr lnK.

In case boundaries, at which boundary conditions are imposed, are present, one needs to
ensure that the integration Dϕ only extends over fields satisfying the correct boundary
condition. The method described in the following was developed for quantum electrody-
namics with conductor boundary conditions in [9]. For Dirichlet boundary condition the
relevant starting point is

Z[Υ] = C

∫
Dϕ

∏
x∈F

δ(ϕ(x))eiS[ϕ],

which guarantees that only fields with ϕ(x)|F = 0 are contributing. The next step
involves the rewriting of the δ-functional in such a way that the resulting integration
once again is Gaussian and can therefore be done as before. Parameterizing points on
the surface using x0 = η0, �r = �u(η1, η2), the relevant analogy is

δ(x) =
1
2π

∫ ∞

−∞
dkeikx =⇒

∏
x∈F

δ(ϕ(x)) = C

∫
Db ei

R

dμ(η)b(η)ϕ(u(η)).

Here, C is another irrelevant normalization constant, dμ(η) is the volume element on
F , and b(η) is an auxiliary field defined on the surface F representing the variable of
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integration; note, that once again a scalar product has been replaced by a Hilbert space
product. The integrand then reads∏

x∈F
δ(ϕ(x))eiS[ϕ] −→

− i

2

∫
d4x ϕ(x)(� + m2)ϕ(x) + i

∫
d4xΥ(x)ϕ(x) + i

∫
dμ(η) b(η)ϕ(u(η)).(14)

In order to identify the relevant pieces in the Gaussian integration (10), we need to
rewrite the boundary integral in (14) as an integral over the full space. To this end, we
introduce an additional integration by inserting the δ-function H(η, x) = δ4(x − u(η)),
that is, we write∫

dμ(η)b(η)ϕ(u(η)) =
∫

d4x

∫
dμ(η) b(η)H(η, x)ϕ(x),

which turns the integrand (14) into a form that allows to identify the relevant h,

− i

2

∫
d4x ϕ(x)(� + m2)ϕ(x) + i

∫
d4x

[
Υ(x) +

∫
dμ(η)b(η)H(η, x)

]
ϕ(x)

=⇒ h = i

[
Υ(x) +

∫
dμ(η)b(η)H(η, x)

]
.

Performing the ϕ-integration, using eqs. (11)-(13), the relevant quadratic term for the
b-integration is∫

d4x

∫
d4x′

∫
dμ(η)b(η)H(η, x)K−1(x, x′)

∫
dμ(η′)b(η′)H(η′, x′)

=
∫

dμ(η)
∫

dμ(η′)b(η)G(u(η), u(η′))b(η′),

such that the operator defined by the kernel

K̃(η, η′) = G(u(η), u(η′))(15)

enters the answer. Note that this is the bulk Green’s function restricted to the surface
F . After performing ϕ- and b-integrations, the generating functional is seen to have the
form

Z[Υ] = C(detK)−1/2(det K̃)−1/2 exp
[

i

2

∫
d4xd4x′Υ(x)FG(x, x′)Υ(x′)

]
,(16)

where FG(x, x′) is the propagator accounting for the boundary conditions; for details
see [1]. However, for our purposes FG(x, x′) is irrelevant as we only use Z[0]. For the
vacuum energy, (16) implies

E0 = − i

2T
Tr ln K̃ =

i

T
ln(det K̃)−1/2,(17)

where we have dropped irrelevant contributions containing only information about the
free space configuration.



THE CASIMIR EFFECT AND ITS MATHEMATICAL IMPLICATIONS 145

3. – Regularizations of the Casimir energy

Now that we have different representations of the Casimir energy available, in this
section we introduce different regularizations for the formal definitions of the vacuum
energy. It must be mentioned that infinitely many regularizations are possible. Here we
consider the most frequently used ones.

Let us start with the zeta function regularization, which interprets the divergent mode
sum as follows,

E0 =
1
2

∑
J

ωJ → E0(s) =
μ2s

2

∑
J

ω1−2s
J =

μ2s

2
ζ

(
s − 1

2

)
,(18)

where we introduce the zeta function

ζ(s) =
∑

J

ω−2s
J(19)

associated with the spectrum ω2
J defined by the eigenvalue problem

(−Δ + m2)ΦJ (�r ) = ω2
JΦJ (�r ), ΦJ(�r )

∣∣
F = 0.(20)

In general, s is complex and the limit of removing the regularization in (18) requires
the continuation to s = 0. Furthermore, we introduced the length scale μ needed to
give E0(s) the dimension of an energy for all values of s. The factor of μ is arbitrary
and represents the ambiguity entering the problem along with the regularization. The
series (19) is convergent for 	s > d/2, where d is the dimension of space. As said, for
the vacuum energy the relevant value in (18) is s = 0 and it is ζ(−1/2) that needs to be
analyzed. This value will sometimes be singular and we will see how to identify (and to
avoid) these situations.

Alternatively one can regularize the mode sum by a frequency-cutoff according to

E0 =
1
2

∑
J

ωJ → E0(δ) =
1
2

∑
J

ωJe−δω2
J ,

where the limit δ → 0 has to be considered. The regularization factor e−δω2
J can be

interpreted as to take into account that at high frequencies media become transparent.
The ambiguity here results from the freedom to multiply δ by a number: δ → c · δ.

Finally, the Green’s function calculation presented in the previous section suggests
the use of the regularization

E0 = i

∫
V

d�r
∂2G(x, x′)

∂x2
0

∣∣∣∣
x′=x

→ E0(ε) = i

∫
V

d�r
∂2G(x, x′)

∂x2
0

∣∣∣∣
x′=x+ε

,

which can be interpreted as a splitting of the point x0 into two. Typically, the parameter
ε will indicate a shift in the (imaginary) time and ε → 0 has to be considered.

Later we will discuss the relations between the different regularization schemes, but
first let us consider a few example calculations. We will use the zeta function regulariza-
tion, although the other schemes could have, of course, been chosen as well.
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4. – Examples for Casimir energy calculations

In this section we present several examples for computations of Casimir energies.
We choose examples where enough knowledge of the eigenvalue spectrum is given such
that the Casimir energy can be computed relatively easily. The first class of examples
considered are configurations for which the spectrum is known explicitly. The second
class comprises examples where an implicit knowledge is given and eigenvalues follow as
roots of non-trivial special functions.

4.1. Explicit eigenvalue spectrum. – We start with the example of parallel plates
a distance a apart. Imposing Dirichlet boundary conditions, the relevant eigenvalue
problem reads,

−Δu�(x, y, z) = ω2
� u�(x, y, z), u�(x, y, 0) = u�(x, y, a) = 0,

with Δ the Laplacian in R
3. Eigenfunctions clearly are

u	k,n(x, y, z) = eikxx+ikyy sin
(nπz

a

)
, (kx, ky) ∈ R

2, n ∈ N,

from which the eigenvalues

ω2
	k,n

= �k2 +
(πn

a

)2

, �k ∈ R
2, n ∈ N,

follow. The zeta function density per unit area then becomes

ζ(s) =
∫ ∞

−∞

d2k

(2π)2

∞∑
n=1

[
�k2 +

(πn

a

)2
]−s

=
1
4π

1
s − 1

(π

a

)2−2s

ζR(2s − 2)(21)

and the Casimir energy

E0 = − π2

1440a3
,

and Casimir force,

F0 = − d
da

E0 = − π2

480a4
,(22)

follow. For the continuation of (21) to s = −1/2 we used properties of the Riemann zeta
function [10].

Note, the above calculation only takes the contributions from in between the two
plates into account. The exterior contribution with respect to the plate at a is easily
found introducing a plate at x = L and sending L to infinity. The exterior contribution
to the force is found by replacing a with L − a in (22) and is seen to vanish,

FCas =
π2

480(L − a)4
L→∞→ 0.(23)

The result (22) therefore gives the correct result for the plate at a.
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Other boundary conditions, in particular Neumann boundary conditions, can be
treated along the same lines and adding the Dirichlet and Neumann result, the an-
swers (1) and (2) for the electromagnetic field follow.

A natural generalization of the previous problem is to consider higher dimensions.
The relevant differential equation in d-dimensions becomes

(−Δ + m2)φ	n(x1, . . . , xd) = ω2
	nφ	n(x1, . . . , xd)

with suitable boundary conditions imposed. The relevant zeta function in this context is
the zeta function of Epstein [11]. In detail, for periodic boundary conditions eigenfunc-
tions and eigenvalues are

φ	n(x1, . . . , xd) = A exp
{

2πn1

L1
x1 + . . . +

2πnd

Ld
xd

}

ω2
	n =

(
2πn1

L1

)2

+ . . . +
(

2πnd

Ld

)2

+ m2, ni ∈ Z(24)

leading to the zeta function

ζ(s) =
∑

	n∈Zd

(
r1n

2
1 + . . . + rdn

2
d + m2

)−s
= ζE(s,m2|�r ),

where the series converges for 	s > d/2 and where for the case at hand ri = (2π/Li)2.
The analytical continuation of this type of zeta function can be done by using the integral
representation of the Γ-function in the form

1
λs

=
1

Γ(s)

∫ ∞

0

dt ts−1e−λt,

where λ = ω2
	n is set. Next one applies the Poisson resummation formula [12]

∞∑
n=−∞

e−(πn
a )2

t =
a√
πt

∞∑
n=−∞

e−
a2n2

t

to each summation, which leads to an integral representation of the McDonald func-
tion [10],

∫ ∞

0

dt t−ν−1e−ct− b
t = 2

(c

b

)ν/2

Kν(2
√

cb).

Applying these formulas to the spectrum (24) at hand, one finds

ζE(s,m2|�r ) =
πd/2

√
r1 . . . rd

Γ
(
s − d

2

)
Γ(s)

md−2s +
2πsm

d−2s
2

Γ(s)
√

r1 . . . rd

×
∑

	n∈Zd/	0

[
n2

1

r1
+ . . . +

n2
d

rd

] 1
2 (s− d

2 )
K d

2−s

(
2πm

(
n2

1

r1
+ . . . +

n2
d

rd

)1/2
)

,(25)
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which is easily analyzed about s = −1/2. Note, that an odd dimension d leads to a
singular Casimir energy because of the Γ-function in the first term of (25). A detailed
analysis can be found in [13], where a varying number of free and periodic dimensions is
considered.

Other boundary conditions can be dealt with along the same lines. For example,
considering Dirichlet boundary conditions, and taking for simplicity d = 2, the relevant
expressions are

φn,k(x, y) = A sin
(

nπx

L1

)
sin

(
kπy

L2

)
,

λn,m =
(

nπ

L1

)2

+
(

kπ

L2

)2

+ m2, n, k ∈ N,

ζ(s) =
∞∑

n=1

∞∑
k=1

[(
nπ

L1

)2

+
(

kπ

L2

)2

+ m2

]−s

,

giving the relevant zeta function

ζ(s) =
1
4
ζE

(
s,m2|�r

)
− 1

4
ζE(s,m2|r1) −

1
4
ζE(s,m2|r2) +

1
4
m−2s.

In fact, Dirichlet or Neumann boundary conditions and any mixture of them can be
expressed in terms of periodic boundary conditions [13]. Signs of the energy and force
depend in a complicated way on the lengths Li and no clear pattern evolves.

Another example with explicit eigenvalue knowledge is the sphere. Choosing its radius
to be one, the eigenvalue problem reads

(−Δ + ξR)Y = λY, R = d(d − 1).

The simplest situation occurs for conformal coupling ξ = 1
4

d−1
d , in which case [14]

λ = ω2
� =

(
� +

d − 1
2

)2

, deg(�) = (2� + d − 1)
(� + d − 2)
�!(d − 1)!

,(26)

where deg(�) is the angular degeneracy. The zeta function associated with this spectrum
becomes

ζ(s) =
∞∑

�=0

deg(�)(
� + d−1

2

)2s .

Rewriting the degeneracy using

deg(�) =
(

� + d − 1
d − 1

)
+

(
� + d − 2

d − 1

)
,

it is seen that the relevant zeta function for this configuration is the Barnes zeta func-
tion [15]

ζB(s, b) =
∞∑

	m=0

(b + m1 + . . . + md)−s =
∞∑

�=0

(
� + d − 1

d − 1

)
(� + b)−s.
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In detail, the sphere zeta function in terms of the Barnes zeta function reads [16]

ζ(s) = ζB

(
2s,

d − 1
2

)
+ ζB

(
2s,

d + 1
2

)
.

Particular dimensions can easily be worked out by expressing the Barnes zeta function
in terms of the Hurwitz zeta function; see [7], Appendix A. For example in d = 2 the
degeneracy is deg(�) = 2� + 1 and so

ζ(s) =
∞∑

�=0

(2� + 1)
(

� +
1
2

)2s

= 2
∞∑

�=0

(
� +

1
2

)2s−1

= 2ζH

(
2s − 1;

1
2

)

with resulting Casimir energy

E0 = 2ζH

(
−2;

1
2

)
= 0.

In fact one can show that the Casimir energy vanishes for all even dimensions. Further-
more, e.g.,

E3
0 =

1
240

, E5
0 = − 31

60480
, E7

0 =
289

604800
, . . .

For these results and more, for example that the Casimir energy is singular for other
than conformal couplings, see [17], where, however, no use has been made of the Barnes
zeta function.

4.2. Implicit eigenvalue spectrum. – Often, the eigenvalues are not known explicitly,
but instead eigenfunctions are known. In that case an eigenfunction expansion of the
Green’s function can be exploited, as has been done extensively on the ball for different
fields, dimensions and boundary conditions; see, e.g., [3]. Alternatively, the zeta function
scheme can be used. Then the whole calculation is based upon an implicit eigenvalue
equation, by which we mean that eigenvalues are defined implicitly as solutions to tran-
scendental equations. The techniques to deal with this situation have been developed in
the context of heat kernel coefficients and subsequently applied to functional determi-
nants and Casimir energies; for a review see [7].

In order to outline the technique in some detail, let us consider a scalar field in a
three-dimensional ball of radius R with Dirichlet boundary conditions. In this setting,
eigenvalues ω2

k are determined through

−Δφk(�r ) = ω2
kφk(�r ), φk(�r )||	r|=R = 0.

In terms of spherical coordinates (r,Ω), eigenfunctions have the form

φ�,m,n(r,Ω) = r−1/2J�+1/2(ω�,nr)Y�,m(Ω),(27)

with Y�,m(Ω) denoting the spherical surface harmonics [14], and where Jν are Bessel
functions of the first kind [10]. The boundary condition forces the eigenvalues to be
zeroes of Bessel functions. For a given angular momentum quantum number �, imposing
Dirichlet boundary conditions, from (27), eigenvalues ω2

�,n are determined by

J�+1/2(ω�,nR) = 0, n = 1, 2, 3, . . .(28)
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Choosing an anticlockwise contour γ that encloses all solutions of (28), Cauchy’s residue
theorem allows the zeta function to be written as

ζ(s) =
∞∑

�=0

(2� + 1)
∫

γ

dk

2πi
k−2s ∂

∂k
ln J�+1/2(kR).(29)

The factor (2� + 1) following from (26) with d = 3 represents the degeneracy for each
angular momentum � and the summation is over all angular momenta. It can be shown
that the representation given is well defined for 	s > 3/2.

The construction of the analytical continuation of ζ(s) to the relevant point s = −1/2
is a non-trivial task. We do it by subtracting and adding back suitable asymptotic terms.
In order to explain the basic mechanism at work let us pretend we do not know anything
about the following sum related to the Hurwitz zeta function,

R(s) =
∞∑

�=1

1
(� + a)s

, 0 < a < 1,(30)

but we do know elementary properties about the zeta function ζR(s) of Riemann,

ζR(s) =
∞∑

�=1

1
�s

.

Clearly, this series converges for 	s > 1. Let us say we want to know the value of R(s) at
s = 0. One way to proceed is to subtract and add the large-� behavior of the summand
and to rewrite (30) as follows:

R(0) =
∞∑

�=1

1
(� + a)s

∣∣∣∣∣
s=0

=
∞∑

�=1

1
�s

1(
1 + a

�

)s

∣∣∣∣∣
s=0

=
∞∑

�=1

[
1
�s

(
1(

1 + a
�

)s − 1 +
as

�

)
+

1
�s

− as

�s+1

]
s=0

=
∞∑

�=1

[
1
�s

(
1(

1 + a
�

)s − 1 +
as

�

)]
s=0

+ ζR(s)|s=0 −asζR(s + 1)|s=0

= 0 + ζR(0) − a ResζR(1) = −1
2
− a.

The relevant features observed here, and that carry through more generally, are that
the asymptotic terms can be handled analytically, whereas the original expression with
asymptotic terms subtracted is finite and can be evaluated numerically; here it happens
to be zero, but that is naturally not so in other cases.
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Of course the technicalities in (29) are more involved. For the example of the three-
dimensional ball, after deforming the contour in (29) to the imaginary axis, the relevant
asymptotics is the uniform asymptotic expansion of the Bessel function Iν(k) for ν → ∞
as z = k/ν remains fixed [18]. We have

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)1/4

[
1 +

∞∑
k=1

uk(t)
νk

]
,

where

t =
1√

1 + z2
and η =

√
1 + z2 + ln

[
z

1 +
√

1 + z2

]
.

The uk(t) are polynomials in t defined by a recursion relation [18]. The ability to integrate
the leading orders in the resulting asymptotic expansion and to perform the summation in
closed form, or at least to determine the resulting singularity structure, are the key factors
needed to construct the analytical continuation. For the given example this step was done
using properties of hypergeometric functions and the Barnes zeta function [19,20].

Without going into further details, once this is accomplished, it can be used to evalu-
ate, largely analytically, but partly numerically, the zeta-function about s = −1/2, thus
obtaining the global Casimir energy for this setting [21-24]. Other boundary conditions
and fields follow along the same line [7]. For example adding Dirichlet and suitable Robin
boundary condition of a massless field, the final answer for the Casimir energy for the
electromagnetic field with perfectly conducting boundary conditons is found to be

Eel. magn.
0 =

0.04617
a

,

thus the resulting Casimir force,

F el. magn.
0 =

0.04617
a2

,

is repulsive. For massive field results are singular and a discussion of that situation is
given in sect. 6.

Similar strategies can be applied to the case of a spherically symmetric potential,
when the relevant operator reads

P = −Δ + m2 + V (r)(31)

with m the mass of a scalar field. Although for non-trivial potentials V (r) eigenfunctions
are not known, the lack of this knowledge can be replaced by information coming from
scattering theory. In particular one can show that

ζ(s) =
sin(πs)

π

∞∑
�=0

(2� + 1)
∫ ∞

m

dk(k2 − m2)−s ∂

∂k
ln f�(k),

where f�(k) denotes the Jost function associated with the operator (31). The needed
asymptotics then follows from the Lippmann-Schwinger equation [25] and the Casimir
energy can be found [26]. Other fields can be treated as well [27, 28, 7] and variants of
the above approach have been developed [29].
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5. – Renormalization of the Casimir energy

As the examples of the previous section have shown, the Casimir energy (and force)
sometimes contain singularities and sometimes they do not. It is the aim of this section
to systematically study the singularity structure, which will allow us to know at the
beginning of a calculation whether or not to expect finite, unambiguous answers. For
this study we will use the frequency-cutoff regularization which will naturally lead to a
study of the associated zeta functions.

Starting point of the analysis is the Casimir energy representation

E0(δ) =
1
2

∑
J

ωJe−δω2
J(32)

and we need to find the δ → 0 behavior of this expression. An elegant way to approach
the problem is the representation of exponentials as

e−v =
1

2πi

∫ c+i∞

c−i∞
dα Γ(α)v−α, 	c > 0,(33)

a representation known to be very useful in a variety of contexts [30]. Equation (33) can
be easily understood by moving the contour to the left crossing over the singularities
coming from the Γ-function. The resulting series expansion appears to be just that of
the exponential function.

Using (33) in (32), after interchanging summation and integration, the zeta function
of the spectrum results and one finds

E0(δ) =
1
2

∑
J

ωJ
1

2πi

∫ c+i∞

c−i∞
dαΓ(α)(δω2

J )−α

=
1

4πi

∫ c+i∞

c−i∞
dα Γ(α)δ−αζ

(
α − 1

2

)
, 	c >

d + 1
2

.(34)

The condition on the real part of c restricting the location of the contour is necessary
to enable one to interchange sum and integral. It is now clearly seen that the small-δ
behavior of E0(δ) is determined by the location of the poles of the integrand to the left of
the contour and by its residues. The source of singularities are the poles of the Γ-function
at α = −n, n ∈ N0, and the poles of the zeta function. Let us therefore study next the
meromorphic structure of the spectral zeta function ζ(s).

The approach usually employed for this purpose is to relate the zeta function with
the associated heat kernel

K(t) =
∑

J

e−tω2
J .

The connection between the two functions is

ζ(s) =
∑

J

(ω2
J )−s =

1
Γ(s)

∫ ∞

0

dt ts−1
∑

J

e−tω2
J =

1
Γ(s)

∫ ∞

0

dt ts−1K(t).(35)
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Assuming, as we do, ω2
J > 0, the heat kernel is exponentially damped for t → ∞ and

singularities in the zeta function can only be generated from the small-t behavior of
K(t). The small-t behavior of K(t) is an extremely well studied quantity [7,31-33]. More
general than (5), one usually studies it in the context of Laplace-type operators P written
in the unified form

P = −gjk∇V
j ∇V

k − E,(36)

where gjk is the metric on a Riemannian manifold M and ∇V is the connection on M
acting on a smooth vector or spinor bundle V over M . Finally, E is an endomorphism
of V . In what we have presented so far, gjk = δjk was the flat metric, and E = −m2,
respectitvely E = −m2 − V (r) in (31). If the manifold M has a smooth boundary ∂M ,
we supplement (36) by suitable local boundary conditions represented in the form

Bφ|∂M = 0.

The asymptotic series describing the t → 0 behavior in this context is [31,34,35]

K(t) t→0∼
∞∑

n=0,1/2,1,...

an(P,B) tn−d/2,(37)

with the so-called heat kernel coefficients an(P,B) depending, of course, on the operator
P considered and on the boundary condition B imposed. Using the pseudo-differential
operator calculus the structure of the heat kernel coefficients is found to be [36,37]

an(P,B) =
∫
M

dx cn(x, P ) +
∫

∂M
dy bn(y, P,B),(38)

where the coefficients cn(x, P ) and bn(y, P,B) are built from local (geometric) invariants
coming from the operator P and from the geometry defined by M and ∂M . For manifolds
without boundary the term involving bn(y, P,B) is not present and cn(x, P ) vanishes for
n a half-integer.

In order to understand how these coefficients are built up from geometric invariants let
us use a dimensional argument. From the operator P it is clear that the eigenvalues ω2

J

carry the dimension length−2. To make e−tω2
J a well-defined quantity we need to assign

a dimension of length2 to the parameter time t. As a result, the heat kernel K(t) carries
no dimension. The expansion (37) therefore implies that an(P,B) must have dimension
lengthd−2n. Taking into account that each integration generates a length, this gives

cn(x, P ) : length− 2 n, bn(y, P,B) : length1− 2 n.

The general form of these coefficients is now found by writing down linear combinations of
the following building blocks (“;” denotes differentiation with respect to the Levi-Civita
connection of M),

E, R, Rij , Rijkl : length−2;Kab = Na;b : length−1; contractions, covariant derivatives,

with unknown universal multipliers such that the correct length dimension results. The
universal multipliers in the volume terms involving the cn(x, P ) are determined purely
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algebraically. These coefficients are known to high orders [38,39]. The boundary contri-
butions bn(y, P,B) can be determined very effectively using mainly a mixture of conformal
transformation techniques [40, 32] and special case considerations [7]. For these, results
up to b5/2 are known [41,42]. As far as needed, explicit results for these coefficients will
be given in sect. 6.

In order to proceed with the analysis of (34), let us relate the heat kernel coefficients
to certain zeta function properties. Substituting the asymptotic expansion (37) into (35),
we compute

ζ(s) ≈ 1
Γ(s)

∞∑
n=0,1/2,1,...

an(1, P,B)
∫ 1

0

dt ts−1+n− d
2

≈ 1
Γ(s)

∞∑
n=0,1/2,1,...

an(P,B)
s + n − d

2

.

Here the ≈ sign indicates that the zeta function is approximated using the series (37).
We neglected an entire function that does not contribute to singular terms as well as to
ζ(−q), q ∈ N0. From here we read off

Res(ζ(s)Γ(s))|s= d
2−n = an(P,B),

which implies for z = d/2, (d − 1)/2, . . . , 1/2,−(2n + 1)/2, n ∈ N0, that

Resζ(z) =
a d

2−z(P,B)

Γ(z)
,(39)

and for q ∈ N0,

ζ(−q) = (−1)qq!a d
2 +q(P,B).

We are now in the position to analyze the singularity structure of the Casimir energy
starting from the representation (34). Specifically we consider the case of d = 3 dimen-
sions, in which case the rightmost poles of the integrand are located at α = 2, 3/2, 1, 0.
Shifting the contour in (34) to the left and using the residue theorem shows for the
regularized Casimir energy in the frequency-cutoff

E0(δ) =
1√
π

a0δ
−2 +

√
π

4
a1/2δ

−3/2 +
1

2
√

π
a1δ

−1

+
1

4
√

π
a2[γ + ln δ] +

1
2
FPζ

(
−1

2

)
+ O(δ),(40)

where FP means the finite part. Note, that the coefficient a3/2 does not contribute.
Instead, in the zeta function scheme (18), from (39), one finds

E0(s) = − 1
4
√

π
a2

[
1
s

+ lnμ2

]
+

1
2
FPζ

(
−1

2

)
+ O(s).
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The freedom to multiply δ by a number does change the pole and the logarithmic con-
tributions, but not the finite part contribution. While the pole contributions can be
identified uniquely, the logarithmic term acquires an additive ambiguous contribution.
In the zeta function regularization the parameter μ is arbitrary. Its change gives an
additive contribution. In both cases, the additive contributions are proportional to a2.
This is a general feature holding for all regularizations.

This shows that the two regularizations are equivalent in the sense that finite ambigu-
ities are the same and in the absence of those, answers agree modulo singularities that are
removed in the process of renormalization by introducing suitable counterterms. Note
that the absence of finite ambiguities corresponds to a2 = 0, or, if d space dimensions
were treated, a(d+1)/2 = 0. The remarks below eq. (38) then explain why Casimir energies
sometimes are singular in odd dimension d, whereas they are finite in even dimension.

From the above results it is clear that the heat kernel coefficients are the mathematical
objects at the heart of singular and ambiguous contributions to Casimir energies and
forces. These coefficients will now be used to discuss a few configurations that will yield
unambiguous Casimir energies or forces.

6. – Configurations with finite Casimir energy/force

In this section we will use heat kernel coefficients to discuss how the renormalized
Casimir energy should be computed. Furthermore, we use them to argue if configurations
will lead to finite answers for the Casimir energy or force. Configurations considered are
pistons, the electromagnetic field in the presence of a perfectly conducting surface, and
the case of separate bodies.

In order to state the heat kernel coefficients it is convenient to introduce some nota-
tion. We will use G[M ] =

∫
M

dxG(x) and G[∂M ] =
∫

∂M
dyG(y). In addition E;m will

denote the covariant derivative normal to the boundary, and : denotes covariant differen-
tiation tangentially with respect to the Levi-Civita connection of the boundary. Finally,
we sum over repeated upper and lower indices. The needed relevant heat kernel coeffi-
cients in three dimensional flat space bounded by some smooth surface ∂M are [7,32,33]
(we present a3/2 for completeness)

a±
0 = (4π)−d/2[M],(41)

a±
1/2 = ±(4π)(d−1)/2 1

4
[∂M],(42)

a±
1 = (4π)−d/2E[M] + (4π)−d/26−1(2K + 12S)[∂M],(43)

a±
3/2 = ± 1

384(4π)(d−1)/2

(
96E+

(
13
7

)
K2+

(
2

−10

)
KabK

ab+96SK+192S2

)
[∂M],(44)

a±
2 = (4π)−d/2360−1(60ΔE + 180E2)[M]

+(4π)−D/2360−1

((
−240
120

)
E;m + 24Ka

:a + 120EK +
(

40/3
40/21

)
K3

+
(

8
−88/7

)
KabK

abK +
(

32/3
320/21

)
KabK

b
cK

ac + 720SE + 144SK2

+48SKabK
ab + 480S2K + 480S3 + 120Sa

:a

)
,(45)
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where the upper index + refers to Dirichlet and the − to Robin boundary conditions.
These are defined by

(φ;m − Sφ)|∂M = 0.

Let us start by discussing a unique way to define the renormalized Casimir energy of a
massive scalar field [21]. The renormalized Casimir energy in this setting is defined by
the condition that

lim
m→∞

Eren
0 = 0,(46)

imposed because an infinitely heavy field should not be able to have quantum fluctua-
tions. To impose condition (46) computationally we need to find the large-m behavior
of E0. Note, that the heat kernel associated with the eigenvalue problem (20) factorizes
according to

K(t) = e−m2tK0(t),(47)

where K0(t) is the heat kernel for the massless problem. Substituting this form (47)
into (35) and performing the integration, after using the small-t asymptotics of K0(t),
gives the large-m expansion of the zeta function

ζ(α) =
1

Γ(α)

∫ ∞

0

dttα−1e−m2tK0(t) ∼
1

Γ(α)

∑
�=0,1/2,1,...

a�
Γ(α + � − 3/2)
m2(α+�−3/2)

,

which shows that the heat kernel expansion generates the large mass expansion of the
relevant zeta function and of the vacuum energy. To analyze the Casimir energy we
expand this about α = −1/2, which gives

E0(s) = − m4

8
√

π
a0

(
1
s
− 1

2
+ ln

[
4μ2

m2

])
− 2m3

6
a1/2 +

m2

4
√

π
a1

(
1
s
− 1 + ln

[
4μ2

m2

])

+
m

2
a3/2 −

1
4
√

π
a2

(
1
s
− 2 + ln

[
4μ2

m2

])
+ O

(
1
m

)
+ O(s).(48)

This shows that the normalization (46) amounts to

Eren
0 = E0 − Ediv

0(49)

with Ediv
0 being given by the explicitly stated terms in (48). It is clearly seen that some

of the terms, namely the odd powers in the mass, need renormalization despite being
finite. This is specific to the zeta function scheme as we have seen in (40), where terms
proportional to a0, a1/2, a1 and a2 were seen to need renormalization. Here, in addition
a3/2 is included as it happens for example in the proper time cutoff [43]. Definition (49)
has been applied in a variety of settings [21] and gives a unique answer for renormalized
Casimir energies of massive theories.
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Let us next discuss the piston configuration with Dirichlet boundary conditions. In
their modern form pistons were introduced by Cavalcanti [44] in a two-dimensional set-
ting. In his study, the Casimir piston consists of a rectangular box divided by a movable
partition into two compartments. In the meantime, cylindrical boxes with arbitrary cross
sections have been studied. For the analysis of the singularities in the Casimir energy and
force the relevant heat kernel coefficients consist of a sum of those in (41)–(45), one for
each chamber. In this case, as in all other cases, the singularity coming from the volume
as represented by a+

0 is eliminated by subtracting the contribution that would result in
the absence of boundaries. That is, we subtract the free space contribution occupying
the volume of the piston. The remaining singularities in the Casimir energy cannot as
easily be argued away, but the force can be seen to be finite and unambiguously defined.
To see this point note that the force on the piston at x = a is

F0 = − ∂

∂a
E0.

So once we know the singularities in E0 do not depend on a the statement made follows.
But clearly as we move around the piston, the area of the boundary of the configuration as
well as the extrinsic curvature of the cylinder like shell do not change, which implies that
a+
1/2, . . . , a

+
2 do not depend on a. Similarly one can argue for different boundary condi-

tions. Detailed analysis of the force for these types of configurations are available [45-49]
and we will not report further on these.

Let us next briefly discuss the electromagnetic field with perfectly conducting bound-
ary conditions. For concreteness let us have the spherical shell in three dimensions as a
surface in mind, although the statements to be made hold more generally [50]. In this
case the TE modes reduce to Dirichlet boundary conditions and the TM modes result in
Robin conditions with the parameter S = −1. This fact leads to very subtle cancelations
that make even the Casimir energy finite. Namely the singular pieces arising separately
from the TE and TM modes cancel because of the opposite signs in (42). This is a conse-
quence of the conformal invariance of the electromagnetic field. Contributions resulting
from a±

1 cancel for TE and TM separately between the inside and outside of the sphere.
The same happens for a±

2 such that the Casimir energy is finite. Again, this case is very
well known and studied and we refer to [24,51,52] for further details.

Finally, for separate bodies the configuration space will be the complement of the
bodies. The infinite volume contribution from a±

0 is once again removed by subtracting
the free space contribution. The remaining singularities contain an integral over the
surface of each body; these reflect the divergencies in the self-energy of each body. There
are no divergent terms involving any interaction between the bodies. The above implies
that once the self-energies of each body are subtracted the remainder will be finite.
Furthermore, the Casimir force between the bodies is finite as none of the singularities
depends upon the distance between the bodies. Similarly one can argue for a field
in the presence of an external potential with two non-overlapping regions of support.
How to perform the computation of Casimir energies for these situations has only been
understood well relatively recently and we dedicate the remainder of this article to the
TGTG-representation of the Casimir energy for separate bodies.

To conclude this section, let us stress that the above described configurations without
ambiguities in the Casimir energy are somewhat special and that in general the interpre-
tation of singularities might be difficult pointing to associated physical problems.
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7. – Separate bodies and the TGTG representation

Let F be the boundary surface parameterized by

�r = �u(�η) = �u(η1, η2).

As derived earlier, see (17),

E0 = − i

2T
Tr ln K̃,

where K̃ is the Green’s function restricted to the surface F , see (15). Taking into account
the time independence of the setting, we first Wick rotate to imaginary time x4 and use
the Fourier-transformation for the time variable in K̃, thus writing

E0 = − i

2T
Tr ln K̃ = − i

2T
i

∫ ∞

−∞
dx4

〈
x4

∣∣∣Tr3 ln K̃
∣∣∣ x4

〉

= − i

2T
i

∫ ∞

−∞
dx4

∫ ∞

−∞

dξ

2π
Tr3 ln K̃ξ = − i

2T
iT

∫ ∞

−∞

dξ

2π
Tr3 ln K̃ξ

=
1
2π

∫ ∞

0

dξ Tr3 ln K̃ξ,

where Tr3 indicates that only spatial variables are integrated over and it is used that K̃ξ

does not depend on the sign of ξ. This follows from the fact that K̃ξ has kernel

K̃ξ(�η, �η ′) =
∫

d�r

∫
d�r ′H(�η, �r )Gξ(�r, �r ′)H(�η ′, �r ′),

where Gξ is the Green’s function in the Fourier space with respect to the imaginary time
variable. If the surface F describes two disjoint bodies, it can be written as the union of
two surfaces with empty intersection, namely F = FA ∪ FB with FA ∩ FB = ∅. In that
case the kernel K̃ξ has the block structure

K̃ξ =
(

K̃ξ,AA(�ηA, �η ′
A) K̃ξ,AB(�ηA, �η ′

B)
K̃ξ,BA(�ηB , �η ′

A) K̃ξ,BB(�ηB , �η ′
B)

)
.

In order to isolate the interaction between the surfaces and to eliminate the parts corre-
sponding to the self-energy of each body, one needs to rewrite K̃ξ as a product in which
the factors (

K̃ξ,AA 0
0 1

)
and

(
1 0
0 K̃ξ,BB

)

appear. This is easily done and the relevant rewriting is

K̃ξ =
(

K̃ξ,AA 0
0 1

) (
1 0
0 K̃ξ,BB

) (
1 K̃−1

ξ,AAK̃ξ,AB

K̃−1
ξ,BBK̃ξ,BA 1

)
.
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In this representation the self-energy part of the Casimir energy is easily subtracted and
the relevant finite part of the Casimir energy is found to be

E =
1
2π

∫ ∞

0

dξ Tr3 ln
(
1 − K̃−1

ξ,AAK̃ξ,ABK̃−1
ξ,BBK̃ξ,BA

)
.

Instead of modeling the presence of bodies by imposing boundary conditions one might
think about representing them by some background potential V (�r ). Following the same
steps that led to (17) the representation of the Casimir energy is

E0 = − 1
2π

∫ ∞

0

dξ Tr3 lnG(V )
ξ

with the appropriate Green’s function defined through[
ξ2 − �∇2 + V (�r )

]
G

(V )
ξ (�r, �r′) = δ3(�r − �r′).

As before, the case we really have in mind is where V (�r ) consists of two parts with
disjoint supports and where we want to subtract those parts in the Casimir energy that
only correspond to one support being present. In order to exploit the structure in this
case we will reexpress G

(V )
ξ in terms of G

(0)
ξ and the potential. In some detail, in operator

language the defining equations are[
ξ2 − �∇2 + V

]
G(V)

ξ = 1,
[
ξ2 − �∇2

]
G(0)

ξ = 1,

which allow for different rewriting. First, it is possible to rewrite G(V)
ξ in terms of G(0)

ξ

as follows,[
ξ2 − �∇2

]
G(V )

ξ = G(0)−1
ξ G(V )

ξ = 1 − VG(V )
ξ =⇒ G(V )

ξ = G(0)
ξ − G(0)

ξ VG(V )
ξ ,(50)

which corresponds to the Lippmann-Schwinger equation [25]. Alternatively, one can
proceed by using the formal solution of the Dyson equation

(
G(0)−1

ξ + V
)
G(V)

ξ = G(0)−1
ξ

(
1 + G(0)

ξ V
)
G(V)

ξ = 1 =⇒ G(V)
ξ =

(
1 + G(0)

ξ V
)−1

G(0)
ξ ,

where in a natural way the so-called T -matrix occurs,

T = V
(
1 + G(0)

ξ V
)−1

.

This operator is the basic object for expressing the properties of scatterers in the theory
of light scattering [53]. Using it in (50) the result is

G(V)
ξ = G(0)

ξ − G(0)
ξ T G(0)

ξ .

Let us next exploit the structure further when

V (�r ) = VA(�r ) + VB(�r ),
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where the following manipulations also hold when the supports of VA and VB are not
disjoint. Clearly the goal of the following manipulations will be the separation of A-only
and B-only contributions. To this end note the identity

1 + G(0)
ξ (VA + VB) =

(
1 + G(0)

ξ VA

) (
1 + G(0)

ξ VB

)
− G(0)

ξ VAG(0)
ξ VB

=
(
1 + G(0)

ξ VA

)
(1 −Mξ)

(
1 + G(0)

ξ VB

)
,

where

Mξ =
(
1 + G(0)

ξ VA

)−1

G(0)
ξ VAG(0)

ξ VB

(
1 + G(0)

ξ VB

)−1

.

Rewriting Mξ in terms of the T -matrix, noticing that (1 + G(0)
ξ VA)−1 and G(0)

ξ VA com-
mute, gives

Ti = Vi

(
1 + G(0)

ξ Vi

)−1

=⇒ Mξ = G(0)
ξ TA G(0)

ξ TB .

This allows us to isolate interaction terms in the Casimir energy and to completely
express it in terms of the free Green’s function and the T -matrix. First we write

Tr3 lnGVA+VB

ξ = Tr3 ln
(
1 + G(0)

ξ (VA + VB)
)−1

G(0)
ξ

= Tr3 lnG(0)
ξ −Tr3 ln

(
1+G(0)

ξ VA

)
−Tr3 ln

(
1+G(0)

ξ VB

)
−Tr3 ln(1−Mξ)

= −Tr3 lnG(0)
ξ + Tr3 lnG(VA)

ξ + Tr3 lnG(VB)
ξ − Tr3 ln (1 −Mξ) ,

such that the finite Casimir interaction energy is

E =
1
2π

∫ ∞

0

dξ Tr3 ln (1 −Mξ) =
1
2π

∫ ∞

0

dξ Tr3 ln
(
1 − G(0)

ξ TAG(0)
ξ TB

)
,(51)

where all separation independent contributions were dropped. The kernel Mξ more
explicitly reads

Mξ(�r, �r ′) =
∫

A

dr ′′
∫

B

dr̃

∫
B

dr̃ ′TA(�r, �r ′′)G(0)
ξ (�r ′′, �̃r)TB(�̃r, �̃r ′)G(0)

ξ (�̃r ′, �r ′).

The basic statement for this configuration is that E, eq. (51), does not have divergences
as a consequence of what was dropped. This can also be checked explicitly by studying its
structure. In this way one has a representation of the interaction energy and for the force
which is finite at all intermediate steps. This allows for a direct numerical evaluation
for arbitrary geometries of interacting bodies. Remarkable results have been obtained in
this way; see [1] and references therein. For plane parallel surfaces representation (51)
coincides with the famous Lifshitz formula [54].



THE CASIMIR EFFECT AND ITS MATHEMATICAL IMPLICATIONS 161

8. – Conclusions

In this article we have given an introduction into various aspects of the Casimir energy.
We started with various representations of the Casimir energy and their regularizations.
Example calculations for explicitly or implicitly known spectrum followed emphasizing
the basic ideas and strategies. For technical details important references are provided.
As the examples make clear, the Casimir energy sometimes is plagued by singularities
and we explain in detail how these are related to the small-t asymptotics of the heat
kernel. In doing so, different regularization schemes are also related. The insight into
the divergence structure of the Casimir energy, and thus force, is then used to discuss
unambiguous configurations.
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