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Summary. — Observing quantum particle creation by black holes (Hawking radi-
ation) in the astrophysical context is, in ordinary situations, hopeless. Nevertheless
the Hawking effect, which depends only on kinematical properties of wave propaga-
tion in the presence of horizons, is present also in the nongravitational contexts, for
instance in stationary fluids undergoing supersonic flow. We present results on how
to observe the analog Hawking radiation in Bose-Einstein condensates by a direct
measurement of the density correlations due to the phonon pairs (Hawking-quanta–
partner) created by the acoustic horizon.

PACS 04.62.+v – Quantum fields in curved spacetime.
PACS 04.70.Dy – Quantum aspects of black holes, evaporation, thermodynamics.
PACS 03.75.Kk – Dynamic properties of condensates; collective and hydrodynamic
excitations, superfluid flow.

1. – Hawking radiation and experimental prospects

In 1974 Stephen Hawking [1] discovered that due to quantum mechanics black holes
are not “black”, but emit particles in the form of thermal radiation at a characteristic
temperature

TH =
�κ

2πkB
,(1)

where κ (= c3/4GM for a Schwarzschild black hole) is the horizon’s surface gravity. This
astonishing result was obtained by studying the vacuum of matter fields in the vicinity
of the event horizon, the black hole’s boundary marking the region from where nothing
(not even light) can escape.

c© Società Italiana di Fisica 99



100 A. FABBRI

v c

super sub

v0

c >| >0| | v |
s 0s

|v0| =

horizon

c s

Fig. 1. – Schematic representation of an acoustic black hole in a fluid. v0 = v0(x) and cs = cs(x)
are, respectively, the fluid and sound velocities. The left region has supersonic flow and the
right one is subsonic; they are connected through an acoustic horizon.

Quantum vacuum fluctuactions are usually pictured in terms of pairs of virtual par-
ticles being continuously created out of the vacuum, but which almost instantaneously
(after a time of the order of Planck time tP ∼ 10−43 s) annihilate and disappear leaving
no observable effect. The presence of the event horizon can change dramatically this
picture, since when one member of the pair is created just inside the horizon and the
other just outside, the one in the interior (the partner) gets trapped and may leave the
other free to propagate far away where it is detected as a real particle (Hawking quanta).
This heuristic argument was given by Hawking in [2] to explain the basic mechanism
responsible for the black hole’s emission.

Because of its physical consequences (namely, the information loss problem [3]) the
Hawking effect is nowadays considered as a milestone for the construction of a quantum
theory of gravity. Nevertheless, it is practically impossible to observe it. Since we
cannot, for obvious reasons, check at the same time the existence of the Hawking quanta
and of their partners inside the horizon, an experimental verification of the Hawking
effect requires the detection of the emitted thermal flux at the temperature (1) far from
the black hole. The bad news is that, unfortunately, in ordinary situations where the
black holes are created from gravitational collapse of massive stars the Hawking flux
at TH ∼ 10−7 KMSun

M ≤ 10−7 K gets completely overwhelmed by the cosmic microwave
background radiation at TCMB ∼ 3 K(1).

2. – A way out: analog Hawking radiation from acoustic black holes in fluids

To remedy this disappointing situation, in 1981 Bill Unruh [6] explored an alternative
route. It was known that the propagation of sound waves in inhomogeneous Eulerian
fluids and that of (massless) scalar fields in curved backgrounds are mathematically
equivalent. Moreover, sound waves get trapped in regions of supersonic flow in the
same way light is trapped inside a gravitational black hole. Therefore a stationary fluid
configuration consisting in a region of subsonic flow and one of supersonic flow connected
through an acoustic horizon represents an acoustic analog of a gravitational black hole,
see fig. 1.

(1) Alternative possibilities to detect it are based on mini black holes (with a much higher TH)
production, by density fluctuatons in the early Universe [4] and in particle accelerators due to
the existence of large extra dimensions [5].
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Unruh pushed this analogy further at the quantum level. Quantized sound waves
(phonons) in these acoustic black holes behave like quantized scalar fields in gravitational
black holes. The same analysis Hawking used can then be applied here leading to the
prediction that acoustic black holes will produce a thermal flux of phonons from their
acoustic horizon at a temperature given by (for a 1D fluid for simplicity)

T an
H =

1
4πkBcs

d(c2
s − v2

0)
dx

|hor ,(2)

where cs is the sound speed, v0 the fluid velocity and the derivative is evaluated at the
acoustic horizon (where cs = |v0|).

Although we limited here to the case of fluids, these same considerations apply also
to other condensed-matter systems in the long-wavelength (hydrodynamic) approxima-
tion [7]. Besides offering new unexpected possibilities to test the Hawking effect in a
nongravitational domain, this application also allows to address from first principles a
delicate point in Hawking’s derivation called the trans-Planckian problem.

It is well known that in the propagation from the horizon to infinity light signals
undergo an infinite exponential redshift. Applied to Hawking’s analysis, this implies
that in order for the Hawking quanta to reach the asymptotic region (where they are
detected) the relevant field modes in the near-horizon region must be characterized by an
enormous initial frequency, well beyond the Planck scale. This poses a problem because
in these regimes one should more appropriately use a quantum theory of gravity, the lack
of which poses serious concerns both on the validity of Hawking’s analysis and its final
result.

One can address this problem in the fluid case, since the theory describing scales below
the interatomic distance (the analogous of Planck scale in gravity) is in many cases well
known.

Many directions are being explored, the most recent ones ranging from water tanks
experiments (stimulated Hawking radiation from white hole flows [8]) to laser pulse
filaments [9](2) and to Bose-Einstein condensates (BECs), the focus of this contribution.

3. – The gravitational analogy in BECs

Bose-Einstein condensates are ultracold bosonic systems characterized by the fact
that (almost) all constituents share the same quantum state. Perfect condensates do not
exist; due to quantum effects a small noncondensed fraction is always present, even at
absolute zero temperature (quantum depletion). To describe them one writes down the
Bose field operator Ψ̂ = Ψ0(1 + φ̂), where the classical wave function Ψ0 describes the
macroscopic condensate and the quantum operator ψ̂ the small noncondensed fraction.
In the dilute gas approximation (see for instance [11]) Ψ0 satisfies the Gross-Pitaevski
equation

i�∂tΨ0 =

(
−�

2�∇2

2m
+ Vext + g|Ψ0|2

)
Ψ0,(3)

(2) The interpetation of these results is still controversial, see for instance [10].



102 A. FABBRI

where m is the constituents mass, Vext the trapping potential and g the nonlinear
atom-atom interaction constant, while φ̂ treated as a linear perturbation follows the
Bogoliubov-de Gennes equation

i�∂tφ̂ = −
(

�
2�∇2

2m
+

�
2

m

�∇Ψ0

Ψ0

�∇
)

φ̂ + mc2
s(φ̂ + φ̂†),(4)

with cs =
√

gn
m the speed of sound. Equation (3) gives the background while (4) describes

the quantum fluctuations and is valid at all scales.
To make contact with the gravitational analogy we need to consider the hydrody-

namical approximation of the above equations, and this is more easily achieved in the
density-phase representation in which we write Ψ̂ =

√
n̂eiθ̂. Again we consider the split-

ting n̂ = n0 + n̂1 and θ̂ = θ0 + θ̂1 with n0, θ0 the background and n̂1, θ̂1 the linear
fluctuations. Provided the background varies on scales bigger than the healing length
ξ = �

mcs
(the microscopic scale, analogous to the Planck length in gravity), eq. (3) for

n0, θ0 reduces to the continuity and Euler equations for irrotational inviscid fluids (the
analogous of Einstein’s field equations). Similar arguments applied to (4) give two oper-
atorial equations for the density and phase fluctuations n̂1 = n0(φ̂ + φ̂†), θ̂1 = φ̂−φ̂†

2i in
the form

n̂1 = − n

mc2
s

[
v0∂xθ̂1 + ∂tθ̂1

]
,(5)

where v0 = �∂xθ0
m is the condensate velocity (we consider a quasi-1D condensate for

simplicity), while the equation for θ̂1 decouples and is mathematically equivalent to the
Klein-Gordon equation for a massless, minimally coupled scalar field

1√−g
∂μ(

√
−ggμν∂ν θ̂1) = 0(6)

in the background metric

ds2 =
n

mcs

(
−(c2

s − v2
0)dt2 + 2v0dtdx + dx2 + dy2 + dz2

)
.(7)

Equation (6) is the equation Hawking used to quantize a scalar field in the Schwarzschild
background. The acoustic metric (7) possesses an acoustic horizon located at |v0| = cs

with surface gravity κ = 1
2cs

d(c2
s−v2

0)
dx |hor, and unlike its gravitational analogue it does

not need to have the interior (supersonic) region to terminate into a (nasty) spacelike
singularity. Since Hawking’s analysis only relies on the kinematical properties of the
horizon, event or acoustic, the prediction that in the formation of an acoustic black hole
a thermal flux of phonons at the temperature (2) will be produced is then straightforward.

The experimental realization of an acoustic black hole in a BEC was carried out
for the first time in [12]. Because of their extremely low temperatures (of the order
of TC ∼ 100 nK, much below TCMB) they offer much more favourable experimental
conditions for the detection of the Hawking effect with respect to gravity. Indeed, acoustic
black-hole configurations can be constructed for which T an

H ∼ 10 nK, only one order of
magnitude below TC . Nevertheless, the signal is tiny and competing effects (the bigger
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Fig. 2. – Pair creation (Hawking-quanta–partner) from the black-hole horizon.

background temperature, quantum noise, etc. (3)) still easily overcome the Hawking flux
of the created phonons making it practically unobservable.

4. – One step forward: the Hawking effect in density correlations in BECs

Another experimental advantage of having to do with acoustic black holes instead of
gravitational ones is that acoustic horizons, unlike event horizons, allow measurements
to be performed on both sides, the exterior (subsonic) and the interior (supersonic)
regions. This is very important because we can then try to characterize experimentally
the Hawking effect through the pair production process responsible for it. This was done
in [14], to which we refer for more details.

In [14] the phase fluctuation θ̂1 was treated as a 2D conformal scalar field propagating
in the (t, x) section of the acoustic metric (7), for which the two-point function 〈θ̂1θ̂1〉
is known analytically(4). This powerful result allowed us to construct in closed form,
using (5), the equal time normalized density-density correlation function in the Unruh
state (the state appropriate to describe black hole evaporation). Focussing in particu-
lar on points situated on either side with respect to the acoustic horizon, we got the
characteristic stationary behaviour

G
(2)
BH ≡ 1

n2
0

〈n̂1n̂1〉 ∼ κ2 cosh−2

[
κ

2

(
x

v + cl
− x′

v + cr

)]
.(8)

Here v < 0, i.e. the flow is from right to left while x = 0 is the acoustic horizon dividing
the right (x > 0) subsonic and left (x < 0) supersonic regions. The formation of the
horizon triggers the spontaneous creation of pairs of phonons (of equal and opposite
frequencies, as required by energy conservation) on both sides of the horizon. In the
lab they propagate along the lines x = (v + cl)t (< 0) (partner), x′ = (v + cr)t (> 0)
(Hawking quanta), see fig. 2(5). This happens for all t and leads to a stationary signal

(3) For a recent experiment disentangling these contributions see [13].
(4) This approximation only slightly overestimates the flux of the emitted phonons.
(5) Although we are considering its hydrodynamic/relativisistic approximation, the system we
started with is nonrelavistic and velocities add up following Galileo’s law.
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Fig. 3. – Numerical results for the density correlator confirming the existence of the Hawking
peak (red tongue perpendicular to the main diagonal) in the microscopic BEC theory.

correlating points x, x′ such that

x

v + cl
=

x′

v + cr
.(9)

The correlator (8) has a peak exactly along this line: this signal is a clear manifestation
of the pair-production process at the base of the Hawking effect. Quantitative estimates
based on existing experiments suggest the the magnitude of this peak, of the order of
10−3, is small but not negligible.

One can object that this result and the thermal flux prediction, being based on the
gravitational analogy, are subject to a “trans-Planckian” problem analogous to that in
gravity. Indeed, sound waves propagating from the near horizon region get exponentially
redshifted, and this implies that the physics of the Hawking effect is in principle sensitive
to microscopic scales, in particular those smaller than ξ. In BECs we can study the
“trans-Planckian” problem by going back to the basic equations (3) and (4), valid at all
scales (we do not have the analogous equations in gravity).

The result (8) served both as a motivation and a guide for a subsequent numerical
analysis performed within the full theory using Montecarlo techniques [15]. The results,
shown in fig. 3, confirmed the existence of the Hawking peak in the microscopic theory.
A quantitative comparison of the height and width of the peak with (8) showed excellent
agreement with the hydrodynamical prediction in the regime κ 	 1

ξ . Outside this regime
(which in the gravity context would require knowledge of a quantum theory of gravity)
acoustic black holes still emit at an approximately thermal rate (up to a certain cutoff
frequency wmax ∼ 1

ξ [16]) and the location of the Hawking peak is still given by (9) (for
analytical results in this regime, see [17] and references therein).

A nice way to explain why there is no trans-Planckian problem in BECs is depicted in
fig. 4. By tracing backwards in time the trajectories of the Hawking quanta and partners,
once the near horizon region is reached microscopic physics effects change the phonon’s
dispersion relation which becomes ‘superluminal’. This causes the two trajectories to
stop hovering close to the horizon (where, instead, they would remain forever in the
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Fig. 4. – Because of short-distance effects (scales smaller than ξ) Hawking quanta and partners
appear to be produced in the interior of the acoustic black hole, thus resolving the trans-
Planckian problem in BECs.

hydrodynamical/relativistic approximation) and enter the interior region. The resulting
blueshift along the trajectories is now finite, of the order of 1

ξ (we recover the infinite
blueshift in the hydrodynamcal ξ → 0 limit).

Another important result of the numerical analysis in [15] is that the Hawking peak of
fig. 3 is still visible even when a nonzero thermal background (with a temperature bigger
than TH) is present. Thus, unlike the emitted thermal flux (which is easily masked by
the background) the correlator signal (8) is the looked for ’smoking gun’ of the Hawking
effect in the experimental search.

5. – Acoustic white holes in BECs: another experimental signature of the
Hawking effect

White holes, time reversal of black holes, have not captured much interest in gravity.
They expel to the exterior everything that lies inside their horizon, exactly the opposite
behaviour of black holes. They “emerge” from an initial singularity, a kind of big-bang
singularity, which prevents physical predictions about them to be made until we shall
find a way to deal with singularities in the quantum theory.

v c
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Fig. 5. – Schematic representation of an acoustic white hole in a fluid, obtained from fig. 1 by
reversing the sign of the fluid velocity v0.
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Fig. 6. – Trajectories of Hawking quanta and partners in acoustic white holes.
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Fig. 7. – Short-distance physics (scales smaller than ξ) cause Hawking quanta and partner to
enter the white-hole horizon instead of accumulating along the horizon on both sides (fig. 6).

This problem is not present in the fluid case, and acoustic black and white holes can
be studied on the same footing. A schematic representation of an acoustic white hole is
given in fig. 5, and is simply obtained by reversing the sign of the fluid velocity v0 in
fig. 1 (and also in the acoustic metric (7)). An acoustic white hole is represented by a
supersonic fluid decelerating until it becomes subsonic, whereas the acoustic black hole is
the other way around, namely an accelerating fluid turning from subonic to supersonic.
In both cases, the acoustic horizon lies where the fluid velocity equals the sound speed.

Spontaneous pair production in stationary backgrounds requires the existence of neg-
ative energy states. These exist in supersonic regions of both acoustic black holes and
white holes, indicating that an analog Hawking effect exists in both configurations and not
just in black holes(6). Its features in white holes are however totally different. Because
of the time-reversal property with respect to the black hole case (fig. 2), the trajectories
in fig. 6 show that Hawking quanta and partners now accumulate along the horizon, and
they do this with a diverging blueshifted frequency. This implies that hydrodynamical
white-hole horizons (as well as relativistic ones) are unstable: the Hawking effect in white
holes crucially depends on the details of the short-distance physics.

(6) Perhaps surprisingly, such an effect exists also for an everywhere inhomogeneous supersonic
fluid with no acoustic horizon, see [17]. What seems to depend on the existence of an acoustic
horizon is the thermal character of the created flux.
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The “superluminal” modification of phonon’s dispersion relation in BECs causes (as in
the black hole case) departure from the hydrodynamical picture in fig. 6 when a maximum
frequency ∼ 1

ξ is reached, allowing both trajectories to enter the horizon (fig. 7).
These arguments indicate that the main Hawking signal in BEC acoustic white holes

takes place inside the horizon. Analytical results derived within the linear Bogoliubov
theory show that for x, x′ < 0, i.e. inside the horizon, the density-density correlator has
the typical oscillating behaviour [18]

G
(2)
WH(x, x′) ∼ [A cos p0(x + x′) + B sin p0(x + x′) + C cos p0(x − x′)] Iε,(10)

with p0 the nontrivial zero mode (∼ 1
ξ ) of the “superluminal” Bogoliubov dispersion

(present only in the supersonic region), and the overall amplitude Iε =
∫

ε
dw
w , formally

infrared divergent, is regulated by introducing the low-frequency cutoff ε = 1
t where

t measures time elapsed from horizon formation. A closer inspection shows [19] that
the two-point function in the relevant low-frequency regime factorizes as the product of
the same function φ0 evaluated at the points x and x′, typical of an emerging classical
behaviour. It describes the emission of a zero-frequency undulating wave away from the
horizon with a macroscopically growing amplitude (i.e. the 1

w term in Iε) fixed by the
low-frequency spectrum of the spontaneously produced Hawking phonons. It is worth
mentioning that undulations were observed in water tanks experiments in [8], but their
connection with the Hawking effect was not pointed out.

6. – Conclusions and future prospects

We have described how the analog Hawking radiation can be measured in Bose-
Einstein condensates by a direct measurement of the density correlations between the
spontaneously produced pairs of phonons (Hawking quanta and partners) on both sides
of the acoustic horizon (such a measurement would be impossible to perform in gravity).
This provides the looked for “smoking gun” of the Hawking effect and makes these type
of measurements very promising for an experimental verification of the Hawking effect
in the near future. Methods to amplify this signal have been proposed [20] by letting the
condensate to expand freely after the acoustic black hole is formed.

Finally, it is worth to mention that density correlation measurements between atoms
velocities were performed recently in [21] to observe the creation of correlated excitations
with equal and opposite momenta in homogeneous condensates undergoing a sudden
variation of their trapping potential. While this effect can be interpreted as the analog
of cosmological particle creation, this technique will prove useful to test the Hawking
effect in stationary supersonic flows.

∗ ∗ ∗
This work is part of a research developed within the Project “Acoustic black holes”

of Centro Fermi, in collaboration with Roberto Balbinot.
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