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Evolution and dynamics of cusped light-like Wilson loops
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Summary. — We discuss the possible relation between the singular structure of
TMDs on the light-cone and the geometrical behaviour of rectangular Wilson loops.

PACS 11.10.Gh – Renormalization.
PACS 11.15.Tk – Other nonperturbative techniques.
PACS 11.25.Tq – Gauge/string duality.

1. – Introduction

The singularity structure of transverse momentum dependent parton density functions
(or TMDs for short) is known to be a lot more complex than that of collinear parton
density functions. For the most common singularities this does not really pose a problem
(e.g. ultraviolet poles can be removed by general methods, like standard renormalisation
using the R-operation). However, light-like singularities can be much more difficult to
treat. A TMD is considered “light-like” when at least one of its segments is on-light-cone
(on-LC for short). In this case it is not entirely clear whether standard renormalisation
remains a sufficient technique, due to the emergence of extra overlapping divergences. A
standard TMD can be defined as [1]

(1) f(x,k⊥) =
1
2

∫
dz−d2z⊥
2π(2π)2

eik·z 〈P, S| ψ̄(z)U†(z;∞)γ+U(∞; 0)ψ(0) |P, S〉
∣∣∣∣
z+=0

,

where the Wilson lines are split into their longitudinal and transversal parts:

U(∞, 0) = U(∞−,∞⊥;∞−,0⊥)U(∞−,0⊥; 0−,0⊥)(2)

= P exp
[
−ig

∫ ∞

0

dz⊥ A⊥(∞−, z⊥)
]
P exp

[
−ig

∫ ∞

0

dz− A+(z−,0⊥)
]

.
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The overlapping divergences, coming from the light-like behaviour of the TMD, will
manifest themselves as terms of the order 1/ε2 or, depending on the regulator used in
the gluon propagator, (ln ε)/ε, where ε is the regulator used in dimensional regularisation.
These overlapping divergences will give the only contribution to the evolution equations,
which are governed by the cusp anomalous dimension. The latter is given by [2,3]

(3) Γcusp =
αs CF

π
(χ coth χ − 1) on-LC−−−−→ αs CF

π
,

where χ is the cusp angle. In the on-LC limit we have χ → ∞, which renders the cusp
anomalous dimension independent on χ (in fact, it becomes infinite, but on-LC it will
be redefined as the factor in front of the double pole). For this reason it is common in
literature to refer to this setup as having a “hidden cusp”.

In what follows we will take a closer look on Wilson loops, which are Wilson lines on
a closed path. Although that at a first glance they seem totally uncorrelated to TMDs,
there might exist a profound relation between both. We will try to show that a Wilson
loop on a specific path, namely a rectangular loop on the null plane and with light-like
segments, has a singularity structure which can be related to that of on-LC TMDs. This
is an important motivation for the possible existence of a duality between those two
objects.

2. – Wilson loops and loop space

As mentioned before, a Wilson loop is a Wilson line on a closed path. Because a
Wilson loop should be a fully self-contained object by definition, all indices (Lorentz and
Dirac) are traced over, and the loop is evaluated in the ground state. Then a general
Wilson loop can be written as

(4) W[C] =
1

Nc
tr 〈0| P exp

[
ig

∮
C

dzμAa
μ(z)ta

]
|0〉 ,

where C is any closed path and Aa
μ is the (non-Abelian) gauge field, evaluated in the fun-

damental representation. This loop is a pure phase, transforming coordinate dependence
into path dependence. As is known (see [4, 5]), Wilson loops can be used as elementary
building bricks to completely recast QCD in loop space. To achieve this, the definition of
a Wilson loop needs to be extended to make it (possibly) dependent on multiple contours.
We define a n-th–order Wilson loop (consisting of n sub-loops) as

(5) Wn(C1, . . . , Cn) = 〈0|Φ(C1) . . . Φ(Cn) |0〉 ,

where each sub-loop is defined as

(6) Φ(C) =
1

Nc
trP exp

[
ig

∮
C

dzμAμ(z)
]

.

Thus each sub-loop is Lorentz and Dirac invariant, but only together they are evaluated
in the ground state to form a n-th–order Wilson loop. Note that a W1 loop coincides with
our original definition in eq. (4). Treating these n-th–order Wilson loops as elementary
objects in loop space, we note that all gauge kinematics are encoded in a W1 loop. On the
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other hand, all gauge dynamics are governed by a set of geometrical evolution equations,
the Makeenko-Migdal equations [6]:

(7) ∂ν δ

δσμν(x)
W1(C) = g2Nc

∮
C

dzμδ(4) (x − z)W2(Cxz Czx).

Here a path C gets deformed by taking two opposite points x and z, and bringing them
infinitesimally close, such that we separate a newly formed closed contour from the
original one. In other words, we deform the contour C into two closed contours Cxz and
Czx that are still connected in one point.

Of special importance are the two geometrical operations we introduced in the
Makeenko-Migdal equations, namely the path derivative ∂μ and the area derivative

δ
δσμν(x) [6]:

∂μΦ(C) = lim
|δxμ|→0

Φ(δx−1
μ C δxμ) − Φ(C)

|δxμ|
,(8)

δ

δσμν(x)
Φ(C) = lim

|δσμν(x)|→0

Φ(C δC) − Φ(C)
|δσμν(x)| .(9)

The path derivative resembles most our standard notion of a derivative: it measures the
variation of the contour while keeping the area constant. On the other hand, the area
derivative is the most intuitive interpretation of a geometric derivative: it quantifies the
variation of a contour by comparing the original contour C with a new contour containing
small (non area-conserving) deformations δC.

Although the Makeenko-Migdal equations provide an elegant method to describe the
evolution of a generalised Wilson loop solely in function of its path, they have their
limitations. For starters, they are not closed since the evolution of W1 depends on W2.
Formally, this limitation is superfluous in the large Nc limit since then we can make use
of the ’t Hooft factorisation property W2(C1, C2) ≈ W1(C1)W1(C2) [6], making the MM
equations closed. The remaining limitations of the MM equations are more severe. For
one, the evolution equations are derived by applying the Schwinger-Dyson methodology
on the Mandelstam formula

(10)
δ

δσμν(x)
Φ(C) = ig tr {FμνΦ(Cx)}

and using Stokes’ theorem. These might, as well as the area derivative, not be well defined
for all types of paths. In particular, all contours containing one or more cusps (these
are non-smooth obstructions, often externally driven) might induce some problematic
behaviour, as it is (at least) not straightforward to define continuous area differentiation
inside a cusp, nor it is to continuously deform a contour in a general topology [7]. This
is somewhat bothersome, as most interesting dynamics lies in contours with cusps.

3. – Evolution of rectangular Wilson loops

The question at hand is whether it is possible to fully describe the evolution of a
general Wilson loop in a geometric but mathematically satisfying way (i.e. avoiding non-
rigorously defined methods like the Mandelstam formula). We are quite confident that
it is highly unprobable to achieve this in a general way. However, one could classify
different contours based on their geometrical structure, and treat the evolution on a
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Fig. 1. – Parametrisation of a rectangular Wilson loop in coordinate space.

case-by-case basis. In this paper, we will investigate a rectangular contour with light-like
segments on the null-plane, as depicted in fig. 1. Physically, it could represent the soft
part of a 4-gluon scattering diagram. It is however more instructive to treat this loop as
is; an elementary object in loop space. The final aim is to relate its evolution expressed
in coordinate space to a geometric evolution. This is inspired on previous work by [8],
where a duality is established between a Wilson loop built from N light-like segments in
loop space, and the N -gluon scattering amplitude in Super Yang-Mills theories.

The segment lengths

(11) vi = xi − xi+1

are expected to be related to the external momenta (from which the cusps dynamically
emerge) and will from now on be treated as such. They are light-like (v2

i = 0) and on
the null-plane (v⊥ = 0). To investigate its singularity structure, we evaluate the loop (4)
at one loop level in coordinate space [9]:

(12) WL.O. = 1 − αsCF

π

(
2πμ2

)ε
Γ(1 − ε)

[
1
ε2

(
−s

2

)ε

+
1
ε2

(
− t

2

)ε

− 1
2

ln2 s

t

]
,

where s and t are the Mandelstam energy/rapidity variables (note the positive sign in
t):

(13) s = (v1 + v2)
2
, t = (v2 + v3)

2
.

Note the 1/ε2 poles, which are the overlapping divergencies that stem from the light-like
behaviour of the contour segments. The fact that they appear already at leading order
renders this kind of Wilson loop non-renormalisable (at least not using the standard R-
operation). The most straightforward way to manage them is by deriving an evolution
equation for the loop. This is done by double differentiation (after rescaling s̄ = πeγE μ2s):

(14)
d

d lnμ

d
d ln s

WL.O = −2
αsCF

π
= −2Γcusp,

where we recognise the cusp anomalous dimension in the light-cone limit from (3). Thus,
as anticipated earlier, the only contribution to the evolution equations stems from the
overlapping divergencies. Their concurrent appearance in and similarity to the on-LC
TMD case and in the case of an on-LC rectangular Wilson loop again hints to the
existence of a duality between both.
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Fig. 2. – Angle-conserving deformations of a light-like rectangular loop on the null-plane.

4. – Geometrical behaviour

Let start with an attempt to define the area derivative in a more rigorous way. If we
do not touch the cusp, we should be save, so we shall only consider contour deformations
that conserve the cusp angle, see fig. 2. As the cusp angle tends to infinity (because the
segments are on-LC), these deformations are sufficient to describe general area variations
for this class of contours, rendering the area differentials well defined [7]. This gives

(15) δσ+− =
∮

dx−x+ = v+δv−, δσ−+ =
∮

dx+x− = v−δv+.

Next we introduce the area variable Σ:

(16) Σ ≡ v− · v+ =
1
2
s,

δ

δ ln Σ
= σμν

δ

δσμν
.

Replacing s by Σ in eq. (14) gives −4Γcusp, in other words, we get one cusp anomalous
dimension per cusp in the contour. Motivated by this, we conjecture a general evolution
equation for light-like polygon Wilson loops on the null-plane:

(17)
d

d lnμ

[
σμν

δ

δσμν
lnW

]
= −

∑
i

Γcusp.

Note that this equation is in perfect agreement with the non-Abelian exponentiation of
the regularised Wilson loops:

(18) W = exp

[∑
k=1

αk
sCk (W) Fk (W)

]
,

where Ck ∼ CF Nk−1
c and the summation goes over all “webs” Fk, see [10].

5. – Relation to TMDs

Besides for light-like rectangular Wilson loops, eq. (17) is expected to be valid for
light-like TMDs, as they posses the same singularity structure. The area variable then
gets replaced by the rapidity variable. This gives

(19)
d

d ln μ

d
d ln θ

f(x,k⊥) = 2Γcusp.
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The minus disappeared because θ ∼ Σ−1 (θ = η/(p · v−) and p ∼ v+, so θ ∼ (v+v−)−1),
and there is a factor 2 since we haven two (hidden) cusps. Note that this result is very
similar to the Collins-Soper evolution equations for off-LC TMDs.

We can use the derived formula to get evolution equations for other similar objects,
like the Π-shape Wilson (semi-)loop with one of the segments lying on the light-cone and
two semi-infinite off-light-cone sides, see [11] for a more detailed analysis.
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