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Summary. — Exclusive pseudoscalar meson electroproduction in the multi-GeV
region was recently proposed as a way to obtain chiral odd generalized parton distri-
butions from data. We explain the idea and we show details of both the formulation
of the theory in terms of chiral odd generalized parton distributions, and of the
extraction procedure.

PACS 13.60.-r – Photon and charged-lepton interactions with hadrons.
PACS 14.20.-c – Baryons (including antiparticles).
PACS 13.60.Le – Meson production.
PACS 14.65.Bt – Light quarks.

1. – Introduction

QCD factorization theorems allow us to describe Deeply Virtual Compton Scattering
(DVCS) and Deeply Virtual Meson Production (DVMP) as the convolution of specific
Generalized Parton Distributions (GPDs) with hard scattering amplitudes [1]. Within
a collinear factorization scheme it was initially proposed that: i) factorization in DVMP
works rigorously for longitudinal virtual photon polarization [2], the transverse polariza-
tion case being yet unproven; ii) the only coupling that survives at the pion vertex in
the large Q2 limit is of the type γμγ5, the other possible term ∝ γ5P , being suppressed.
The resulting amplitudes were written in terms of the chiral even GPDs, H̃ and Ẽ [3-5].

In refs. [6, 7] we took, however, a different approach that brought us to identify
the chiral-odd GPDs including HT , ET , H̃T , ẼT [8, 9], as the observables in a class of
experiments related to Deeply Virtual πo Production (DVπoP), or more generally in
deeply virtual neutral pseudoscalar meson production [10]. Of the four chiral-odd GPDs
the only one that can be identified at leading order with a parton distribution in the zero
momentum transfer limit is HT . HT (X, ζ = 0, t = 0, Q2) ≡ h1(X,Q2), where h1(X,Q2)
is the transversity function, namely the probability of finding a transversely polarized
quark inside a transversely polarized nucleon (X is the Light Cone (LC) momentum
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Fig. 1. – Left: Leading order amplitude for DVMP, γ∗ + P → M + P ′. Crossed diagrams are
not shown in the figure; Right: Beam spin asymmetry, ALU , plotted vs. −t for four different
kinematics: Q2 = 1.3 GeV2, xBj = 0.13 (upper left), Q2 = 1.6 GeV2, xBj = 0.19 (upper
right), Q2 = 2.3 GeV2, xBj = 0.36 (lower left), and Q2 = 3.3 GeV2, xBj = 0.47 (lower right).

Experimental data from ref. [18]. Shown are curves obtained by considering only the GPDs, eET

(full curve), (2 eHT + (1 ± ξ)ET ) (dashes), and HT (dot-dashes). The result obtained including
all GPDs is shown in black.

fraction, X = k+/P+, t = Δ2 where Δ is the momentum transfer between the initial
and final protons, ζ is the fraction of LC momentum transfer, ζ = Δ+/P+, Q2 is the
photon’s virtuality, see fig. 1). Transversity has been notoriously an elusive quantity to
extract from experiment, only recently accessible through model dependent analyses of
semi-inclusive experiments [11].

In our approach we first of all assumed that a form of factorization is working for both
longitudinal and transverse virtual photons (notice, however, that a dedicated proof
is missing for factorization in the transverse polarization case). The coupling to the
outgoing pseudoscalar meson depends on the process’ JPC quantum numbers in the
t-channel [12]. In ref. [6] we noticed that for pseudoscalar electroproduction one has
at leading order JPC ≡ 1−−, 1+−, corresponding to either vector (V) or axial-vector
(A) fermion anti-fermion pairs. This, in turn, corresponds to 2J+1LS ≡3 S1,

1 P0. The
transition from γ∗(qq̄) into πo (JPC ≡ 0+−), therefore corresponds to a change of Orbital
Angular Momentum (OAM), ΔL = 0 for the vector case, and ΔL = 1 for the axial-vector.
Our idea is to introduce orbital angular momentum in the calculation of the one gluon
exchange mechanism for the transition form factor by using a technique similar to the
one first introduced in [13] (our form factor is consistent also with the one proposed
in ref. [14]). By doing so we describe the pion vertex with two form factors, an axial
vector type, FA(Q2), suppressed by O(1/Q2) with respect to the vector one, FV (Q2).
The two form factors enter the helicity amplitudes for the various processes in different
combinations. This gives rise to a more articulated form of the Q2 dependence, which
is more flexible and apt to describe the features of the data than the standard one. In
particular we can now understand and reproduce the persistence of a large transverse
component in the multi-GeV region.
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The scenario presented in ref. [6] was tested by estimating the contribution of the
chiral odd GPDs to a few observables that are particularly sensitive to the values of the
tensor charge. A sound model/parametrization for chiral odd GPDs was however missing
in that previous work. More recent work has been dedicated to presenting such a model in
detail [7,15]. Differently from the chiral even case where the GPDs integrate to the elec-
tromagnetic and weak form factors, very little can be surmised on the size/normalization
and shape of the chiral odd GPDs. Few constraints from phenomenology exist, namely
HT becomes the transversity structure function, h1, in the forward limit, and it inte-
grates to the tensor charge; the first moment of 2H̃T + ET can be interpreted as the
proton’s transverse anomalous magnetic moment [16], and ẼT ’s first moment is null [9].
By using a reggeized quark-diquark model we can however exploit the Parity and Charge
Conjugation symmetries obeyed by the helicity amplitudes to obtain further constraints
on the chiral odd GPDs.

In this contribution we show these recent developments. We compare our results to
the π0 electroproduction data from Jefferson Lab’s Hall B [17,18].

Finally, calculations similar to ours were recently presented in ref. [19, 20] based on
different model assumptions for the chiral odd GPDs.

2. – Formalism

We consider the loop diagram in fig. 1 integrated over the struck quark’s momentum,
namely d4k ≡ dk+dk−d2k⊥ ≡ P+dXdk−d2k⊥. The hadronic tensor has the form

FΛ,Λ′(ζ, t) =(1)

−iεμ T

∫
d4k

(2π)4
Tr

[(
γμi(�k+ �q)Γ5

(k + q)2 + iε
+

Γ5i(�k− �Δ− �q)γμ

(k − Δ − q)2 − iε

)
M(k, P,Δ)

]
.

where Γ5
odd = godd

π (Q)γ5. g
even(odd)
π is the quark-pion coupling in the structure of the

upper part of the handbag yielding,

Fodd
Λ,Λ′(ζ, t)=

godd
π (Q)

2P
+

∫ 1

−1+ζ

dX

(
1

X − ζ + iε
+

1
X − iε

) [
U(P ′,Λ′)

(
iσ+iHT (X, ζ, t)(2)

+
γ+Δi − Δ+γi

2M
ET (X, ζ, t) +

P+Δi − Δ+P i

M2
H̃T (X, ζ, t)

+
γ+P i − P+γi

2M
ẼT (X, ζ, t)

)
U(P,Λ)

]
.

The convolution in eq. (2) yields the following decomposition of the various helicity
amplitudes:

f++
10 = godd

π (Q)
√

t0 − t

2M(1 + ξ)2
[
2H̃T + (1 − ξ)

(
ET − ẼT

)]
,(3)

f+−
10 = godd

π (Q)

√
1 − ξ2

(1 + ξ)2

[
HT +

t0 − t

4M2
H̃T +

ξ2

1 − ξ2
ET +

ξ

1 − ξ2
ẼT

]
,(4)

f−+
10 = godd

π (Q)

√
1 − ξ2

(1 + ξ)2
t0 − t

4M2
H̃T ,(5)
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f−−
10 = godd

π (Q)
√

t0 − t

2M(1 + ξ)2
[
2H̃T + (1 + ξ)

(
ET + ẼT

)]
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f+−
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π (Q)
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[
HT +

ξ2
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ẼT
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f++
00 = −godd

π (Q)
√

t0 − t

2M(1 + ξ)2
[
2H̃T + ET − ξẼT

]
.(8)

3. – Some results

In ref. [21] we calculated the GPDs in the chiral even sector with the aim of inter-
preting DVCS data. We introduced a reggeized diquark model whose basic structures
are covariant quark-proton scattering amplitudes at leading order with proton-quark-
diquark vertices. The dominant components of the model are quark-diquark correlations
where the diquark system has both a finite radius and a variable mass, MX , differently
from constituent type models. At low mass values one has diquark systems with spin
J = 0+, 1+. Using the SU(4) symmetry the spin 0 and 1 components translate into
different values for the u and d quark distributions. More complex correlations ensue at
large mass values which are regulated by the Regge behavior of the quark-proton am-
plitude, ∝ ûα(t) = (M2

X)α(t). We can immediately deduce that for S = 0 the helicity
structures on the LHS and RHS of fig. 1 can be described in a factorized form, and
transform under Parity independently from one another. For S = 1 factorization breaks:
there is angular momentum exchange between the LHS and RHS. While this complica-
tion did not affect numerical results and it was therefore disregarded in [21], it is instead
central for addressing the chiral even-odd connection. The GPD content of one of the
many asymmetry observables measured in Hall B is shown in fig. 1 (right panel).
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