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Summary. — The origin of the specific singularities arising in transverse-
momentum dependent parton distribution functions is discussed and a new method
of their treatment is proposed.

PACS 11.10.Gh — Renormalization.
PACS 13.85.Hd — Inelastic scattering: many-particle final states.

Quantum Chromodynamics provides consistent description of the strong interactions
at small distance (large characteristic momentum), where the standard methods of per-
turbation theory supplied with the renormalization-group based resummations of large
logarithms are directly applicable. The non-Abelian nature of QCD plays a crucial role
at large distance (small momentum scale), where the coupling constant a grows, thus
breaking down the applicability of the standard perturbative methods. In the large dis-
tance domain set by the typical hadronic length Ry > Aqcp the intrinsic structure of
hadrons has to be taken into account. Internal hadronic degrees of freedom can be “seen”
in different experiments with different kinematical setup. The resulting images of the
hadrons are, therefore, also different. In particular, the longitudinal structure of hadrons
is accessible in fully inclusive deeply inelastic electron-nucleon scattering experiments. It
is successfully described in terms of the collinear (integrated) parton distribution func-
tions (PDFs). The novel view of the quark and gluon content of nucleons arises as the
result of the research programs dealing with high-energy semi-inclusive reactions with
polarized and unpolarized hadrons in initial and final states, where the transverse motion
and the spin-orbit correlations of the partons can be directly probed [1]. Understanding
the partonic structure of nucleons beyond the collinear approximation requires appro-
priate development of the theory. Multi-dimensional (beyond-the-collinear) imaging of
hadrons is an ideal test field of QCD as the true theory of strong interactions. The novel
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information of the spin and transverse partonic degrees of freedom will result from the
current and planned experiments at DESY, CERN, RHIC, JLab 12 GeV and Electron-Ion
Collider (see, e.g., [1] and references therein).

The present consideration addresses several important issues related to the study
of the three-dimensional image of nucleons within the transverse momentum-dependent
(TMD) factorization approach to the semi-inclusive hadronic processes [2]. Given that
the TMD matrix elements involve several local field operators defined at different space-
time points separated by non-light-like intervals, one has to introduce a system of the
Wilson lines that saves gauge invariance, although giving rise to a functional dependence
on path [3-5]. The crucial observation is that the requirement of the complete gauge
invariance calls for the very specific structure of the gauge links (WIlson lines) in the
operator definition of TMDs. Derivation of the proper evolution equations for the TMD
correlators is intimately related to the peculiar singularity structure of the light-like
cusped Wilson lines and loops of various shapes [6,7]. Strong interest in the mathemat-
ical structure of the corresponding loop space arises also in the context of the duality
between the n—gluon scattering amplitudes in the N' = 4 super-Yang-Mills theory and
vacuum expectation values of the Wilson loops of special form (see, e.g., the last entree
in [8]). Therefore, we observe possible relationship between the generic properties of the
polygonal Wilson loops and gauge-invariant hadronic correlators. Recently we proposed
a new approach to the analysis of the correlation functions which contain cusped light-
like Wilson lines [9]. This approach is based on a generalization of the universal quantum
dynamical principle by J. Schwinger and allows us to derive a differential equation which
connects the area variations and renormalization group behavior of those objects [10].

In a few words, the logical structure of this approach is as follows: We first made
use of the result that for the light-like planar dimensionally regularized (not renormal-
ized) Wilson rectangles the area variations can be introduced in terms of the ordinary
derivatives. The area differential equations in the configuration space determine then
the evolution of the light-like Wilson polygons and represent, therefore, the equations
of motion in the loop space. As the result, the derived differential equations provide a
closed set of dynamical equations for the loop functionals, and can be explicitly solved
in several interesting cases.

We start with the quantum dynamical principle proposed by Schwinger [10], which we
adopt in the following form: the area variations of a generic path-dependent functional
®(T") are governed by the equation
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where $ is an analogue of the Schwinger quantum action operator applicable to “highly-
singular” (for example, light-like) field correlators. The equations of motion in the loop
space must be the laws which prescribe how the loops change their shape. We have
to find the proper operator S , which governs the shape variations of the Wilson planar
polygons.

For an arbitrary smooth Wilson loop W(T'), the functional reads ®(T") = 1/N, Tr,-
P explig §. dz A(z)] and the leading O(g?) non-trivial term of its perturbative series reads
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where D*¥ is the dimensionally regularized (w = 4 — 2¢) gluon propagator (we adopt the
Feynman gauge)
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Applying the Stokes theorem, one obtains §. dzy O* = £ [, doy,(020F — 970*), O* =

fr dz* A(z), where T is the boundary of the surface Y. We get therefore the leading
perturbative term of the Makeenko-Migdal equation [3]:

dy, 6 (z —y) + O(g").
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Computing the NLO terms, one obtains the Makeenko-Migdal equation. However we are
mostly interested in the Wilson functionals which do not satisfy the conditions of the
applicability of the Stokes theorem, thus the derivation must be revisited.

In the present analysis we restrict ourselves to the shape variations of the planar
light-like Wilson rectangles preserving (classically) conformal invariance [8]. The leading
non-trivial term reads
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where the sides of the rectangle are parameterized as z!' = z!' — v!'T with the light-like
vectors v;. For this special class of the Wilson functlonals the area gets factorized from
the integrals and can be evaluated explicitly
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where 2(vivy) = 2NTN~. Setting the area differentiation operator to be §/dlno =
5/6In(2NTN ™) we obtain the combined differential equation

d )
(8) ud,u 5lnaan rect: } Zrcusp %)

where T'oysp(as) is the universal cusp anomalous dimension which plays a crucial role in
a number of important applications [11]. Let us emphasize that it is independent of the
smooth parts of the contours under consideration. This result resembles the situation in
2D-QCD, where the Makeenko-Migdal equations form a closed system [3,4].
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We apply then the method described above to the TMDs with the light-like longitudi-
nal Wilson lines F(x, k1) [7] (justification of this procedure will be given in a dedicated
work):
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with the “area” being hidden in the rapidity cutoff § ~ (pN~)~! [7]. It is worth noting
that only the overlapping (UV and rapidity simultaneously) divergences contribute to
the combined evolution. This equation can be formally integrated to give an explicit
expression for the evolution of the quark TMD in two scales: ultraviolet cutoff and
rapidity parameter. Nonperturbative information gets thus encoded in the integration
constants, while evolution itself is treated perturbatively. This solution will be reported
separately.

* ok ok

I thank the Organizers of the QCD-N12 Workshop in Bilbao for the invitation and
support. This work is sponsored by the Inter-University Attraction Pole (Belgium).
I appreciate important clarifying discussions with 1. V. Anikin, Y. M. Makeenko and
N. G. Stefanis. I thank T. Mertens and F. F. Van der Veken for fruitful and pleasant
collaboration.

REFERENCES

[1] BOER D. et al., arXiv:1108.1713 [nucl-th]; DUDEK J. et al., Eur. Phys. J. A, 48 (2012)
187.

[2] CorLiNs J. C. and SOPER D. E., Nucl. Phys. B, 193 (1981) 381; 194 (1982) 445; BELITSKY
A. V. and RADYUSHKIN A. V., Phys. Rept., 418 (2005) 1; BELITSKY A. V., J1 X. and
YuaN F., Nucl. Phys. B, 656 (2003) 165; BOER D., MULDERS P. J. and PujLMAN F.,
Nucl. Phys. B, 667 (2003) 201.

[3] MAKEENKO Y. M. and MIGDAL A. A., Phys. Lett. B, 88 (1979) 135; Nucl. Phys. B, 188
(1981) 269.

[4] PoLyakov A. M., Nucl. Phys. B, 164 (1979) 171; DOTSENKO V. S. and VERGELES S. N,
Nucl. Phys. B, 169 (1980) 527; AREFEVA 1. YA., Phys. Lett. B, 93 (1980) 347; CRAICGIE
N. S. and DORN H., Nucl. Phys. B, 185 (1981) 204; AoyAMA S., Nucl. Phys. B, 194 (1982)
513; STEFANIS N. G., Nuovo Cimento A, 83 (1984) 205; BALITSKY I. I. and BRAUN V. M.,
Nucl. Phys. B, 311 (1989) 541; BRANDT R. A., NERI F. and SATO M.-A., Phys. Rev. D,
24 (1981) 879; BRANDT R. A., GOCKsCH A., SATO M.-A. and NERI F., Phys. Rev. D,
26 (1982) 3611.

[5] STEFANIS N. G., hep-th/9607063; KArRANIKAS A. I. and KTORIDES C. N., JHEP, 11
(1999) 033; KaraNikas A. 1., KToriDES C. N. and STEFANIS N. G., Eur. Phys. J. C, 26
(2003) 445.

[6] CoLLiNs J. C., Int. J. Mod. Phys. Conf. Ser., 4 (2011) 85; CHEREDNIKOV I. O. and
STEFANIS N. G., Int. J. Mod. Phys. Conf. Ser., 4 (2011) 135; CHiU J.-Y., JAIN A.,
NELL D. and ROTHSTEIN I. Z., JHEP, 05 (2012) 084; Phys. Rev. Lett., 108 (2012)
151601; CoLrLins J. C. and RoGERS T. C., arXiv:1210.2100 [hep-ph]; STEFANIS N. G.,
arXiv:1211.7218 [hep-ph]; COLLINS J., arXiv:1212.5974 [hep-ph].

[7] CHEREDNIKOV I. O. and STEFANIS N. G., Phys. Rev. D, 77 (2008) 094001; 80 (2009)
054008; Nucl. Phys. B, 802 (2008) 146; STEFANIS N. G. and CHEREDNIKOV I. O., Mod.
Phys. Lett. A, 24 (2009) 2913; CHEREDNIKOV I. O., KARANIKAS A. I. and STEFANIS
N. G., Nucl. Phys. B, 840 (2010) 379.



ON SINGULARITIES OF THE TMDs, THEIR ORIGIN AND TREATMENT 219

8]

KORCHEMSKAYA I. A. and KORCHEMSKY G. P., Phys. Lett. B, 287 (1992) 169; BASSETTO
A., KORCHEMSKAYA I. A., KORCHEMSKY G. P. and NARDELLI G., Nucl. Phys. B, 408
(1993) 62; KORCHEMSKY G. P., Mod. Phys. Lett. A, 4 (1989) 1257; KORCHEMSKY G. P.
and MARCHESINI G., Phys. Lett. B, 313 (1993) 433; KORCHEMSKY G. P., DRUMMOND
J. M. and SOKATCHEV E., Nucl. Phys. B, 795 (2008) 385.

CHEREDNIKOV I. O., MERTENS T. and VAN DER VEKEN F. F., Phys. Rev. D, 86 (2012)
085035; Int. J. Mod. Phys. Conf. Ser., 20 (2012) 109; Phys. Part. Nucl., 44 (2013) 250.
SCHWINGER J. S., Phys. Rev., 82 (1951) 914.

Ivanov S. V., KORCHEMSKY G. P. and RADYUSHKIN A. V., Yad. Fiz., 44 (1986)
230; KORCHEMSKY G. P. and RADYUSHKIN A. V., Phys. Lett. B, 171 (1986) 459;
KORCHEMSKY G. P., Phys. Lett. B, 217 (1989) 330; 220 (1989) 629; KORCHEMSKY G. P.
and RADYUSHKIN A. V., Nucl. Phys. B, 283 (1987) 342.



