Colloquia: QCDN12

Model prediction for the transverse single target-spin asymmetry in inclusive DIS

M. Schlegel

Institute for Theoretical Physics, University of Tübingen - Tübingen, Germany

ricevuto il 18 Aprile 2013

Summary. — The single-spin asymmetry of unpolarized leptons scattering deepinelastically off transversely polarized nucleons is discussed. This observable is generated by a two-photon exchange between lepton and nucleon. In a partonic description of the asymmetry the non-perturbative part is given in terms of multiparton correlations: quark-gluon correlation functions and quark-photon correlation functions. Recently, a model for quark-gluon correlation functions was presented where these objects were expressed through non-valence light cone wave functions. Using this model, estimates for the single-spin asymmetries for a proton and a neutron are presented.

PACS $13.60.\,\text{Hb}$ – Total and inclusive cross sections (including deep-inelastic processes).

PACS 13.88.+e – Polarization in interactions and scattering.

1. – Introduction

One of the most fundamental and basic processes in hadronic physics is the deepinelastic scattering (DIS) of leptons off nucleons, $l(l) + N(P) \rightarrow l(l') + X$. Single-spin observables in inclusive DIS with either the lepton or nucleon being transversely polarized strictly vanish due to time-reversal invariance for a single-photon exchange [1]. This argument fails if two (or more) photons are exchanged between lepton and nucleon.

Experimentally, a recent measurement of the single-spin asymmetry (SSA) for a transversely polarized nucleon, denoted by A_{UT} , was performed by the HERMES Collaboration [2], and again a result consistent with zero was found within an error of about 10^{-3} . Interestingly, preliminary data taken from (ongoing) precision measurements of A_{UT} at Jefferson Lab seem to indicate a non-zero effect [3].

A theoretical description of the SSA A_{UT} in a partonic picture needs to deal with two distinctive and complementary physical situations: The exchange of two photons between the lepton and either i) one *single* quark or ii) two *different* quarks. The asymmetry has been studied in refs. [4-7] for massless quarks. It was found that this observable

© Società Italiana di Fisica

generically behaves like M/Q where M denotes the nucleon mass, $Q^2 = -q^2$, and q = l-l' the 4-momentum transfer to the nucleon. Thus the asymmetry is a power suppressed ("twist-3") observable, and can be expressed in terms of multipartonic non-perturbative quark-gluon (scenario i)) and quark-photon (scenario ii) correlation functions. Effects of a finite quark mass proportional to the transversity distribution $h_1^q(x)$ are also relevant for scenario i) and have been studied in ref. [8].

2. $-A_{UT}$ in a partonic picture

The DIS differential cross section can be analyzed in terms of the commonly used DIS variables that are defined as $x_B = Q^2/(2P \cdot q)$ and $y = P \cdot q/P \cdot l$. For the description of A_{UT} a transverse (to the lepton plane) spin vector S_T of a polarized nucleon is needed. An azimuthal angle ϕ_s between S_T and the lepton plane determines the spatial orientation of S_T .

An analysis of the SSA A_{UT} in inclusive DIS in a partonic picture has to be performed at subleading twist accuracy [4, 6, 7]. This requires the introduction of typical hadronic matrix elements of certain partonic operators that encode non-trivial correlations of the transverse nucleon spin and the transverse partonic motion [9], as well as multipartonic correlations [10,7]. However, the effects of transverse partonic motion and multipartonic correlations are not independent. In fact, they can related to each other by means of the QCD-equation of motion (EOM) [9]. An additional dependence originates from the relation between the Sivers function and the so-called Qiu-Sterman matrix element [11]. If one applies the twist-3 factorization formalism of ref. [12] to the SSA A_{UT} all of these hadronic matrix elements are to be convoluted with corresponding partonic hard cross sections, and eventually summed up (cf. [6]).

The hard cross sections relevant for scenario i) are calculated in perturbation theory to $\mathcal{O}(\alpha^3)$ to obtain a non-zero result. This includes interferences of real lepton-quark(& gluon) scattering amplitudes describing the radiation of a photon emitted by either the lepton or the quark. Such real contributions typically contain phase space integrations. Interferences from virtual two-photon-exchange one-loop diagrams and single photon exchange diagrams may also contribute. The various hard cross sections can be combined by application of QCD-EOM inspired relations between effects of transverse partonic motion and multipartonic correlations, and eventually the soft divergences indicated by poles in $1/\varepsilon$ cancel [6].

The hard cross sections can be computed along the same lines for scenario (2). To leading order only tree-level diagrams interfere without phase space integrations [7]. Hence, no soft divergences appear in intermediate steps of the calculation.

Adding the results of refs. [6, 8, 7] leads to the following parton picture formula for the single transverse spin dependent DIS cross section at $\mathcal{O}(\alpha_{\rm em}^3)$,

$$(1) \quad E'\frac{\mathrm{d}\sigma_{UT}}{\mathrm{d}^{3}l'} = -|S_{T}|\sin\phi_{s}\frac{4\alpha_{\mathrm{em}}^{3}}{yQ^{4}}\frac{M}{Q}\frac{x_{B}y}{\sqrt{1-y}} \\ \times \sum_{q} \left[e_{q}^{3}\int_{0}^{1}\mathrm{d}x\Big(\hat{C}_{+}(x,x_{B},y)\ G_{F}^{q}(x_{B},x) + \hat{C}_{-}(x,x_{B},y)\ \tilde{G}_{F}^{q}(x_{B},x)\Big) \\ + e_{q}^{3}(1-y)\frac{m_{q}}{M}h_{1}^{q}(x_{B}) + \frac{2-y}{2y}f(y)e_{q}^{2}\left(1-x_{B}\frac{\mathrm{d}}{\mathrm{d}x_{B}}\right)G_{F}^{\gamma,q}(x_{B},x_{B})\right].$$

 $\mathbf{238}$

Fig. 1. – Prediction for the asymmetry A_{UT} at JLab12 obtained from a model [13].

The perturbative coefficient functions \hat{C}_{\pm} in eq. (1) are integrable distributions and their functional form is given in ref. [6]. Assuming that the non-perturbative quark-gluon correlation functions $G_F^q(x, x')$ and $\tilde{G}_F^q(x, x')(1)$ are analytic the x-integral in (1) is welldefined. In addition the finite quark mass term of ref. [8,7] has been added to eq. (1) as well as the contribution of ref. [7] describing scenario ii) where the two photons couple to different quarks. The latter term involves a quark-photon correlation function $G_F^{\gamma}(^2)$.

The SSA A_{UT} can be computed from (1) in the following way $(d\sigma = E' d\sigma/d^3 k')$:

(2)
$$A_{UT} = \frac{\mathrm{d}\sigma_{UT}(\phi_s) - \mathrm{d}\sigma_{UT}(\phi_s - \pi)}{2\mathrm{d}\sigma_{UU}}$$

with the well-known parton model result for the unpolarized cross section [9],

(3)
$$\mathrm{d}\sigma_{UU} = \frac{4\alpha_{\mathrm{em}}^2}{Q^4 y} f(y) \sum_q e_q^2 x_B f_1^q(x_B) \,,$$

with f_1 the unpolarized collinear parton distribution, and $f(y) = -y + y^2/2$.

3. – Model for the quark-gluon correlations from light cone wave functions

In order to utilize eq. (1) to estimate the sign and size of the transverse target spin asymmetry A_{UT} on a proton and neutron one needs information on the full support of the non-perturbative quark-gluon correlation functions $G_F^q(x, x')$, $\tilde{G}_F^q(x, x')(^3)$, as well as the quark-photon correlation function $G_F^{\gamma,q}(x,x)$ in the soft photon limit x'=x and the transversity distribution $h_1^q(x)$. Currently, only extractions from data exist for the socalled "Soft Gluon Pole matrix element" $G_F^q(x,x)$ [14] and the transversity distribution. However, a recent model calculation gives predictions for G_F^q and \tilde{G}_F^q on the full support $x \neq x'$ [13]. In this work the twist-3 quark-gluon correlation functions are expressed in terms on non-valence-like light cone wave functions, and analytical results at a scale

^{(&}lt;sup>1</sup>) Definitions in terms of hadronic matrix elements for both functions can be found in ref. [10].

⁽²⁾ Notice a slight redefinition $G_F^{\gamma}(x,x) \equiv \frac{1}{2e^2} F_{FT}(x,x)$ of the object F_{FT} introduced in [7]. (3) Note that $G_F^q(x,x') = G_F^q(x',x)$ and $\tilde{G}_F^q(x,x') = -\tilde{G}_F^q(x',x)$. Hence, $\tilde{G}_F^q(x,x) = 0$.

 $\mu_0 = 1 \text{ GeV}$ were obtained. One specific feature of this model is that $G_{F,\text{Model}}^q(x, x, \mu_0) = 0$ due to the absence of final state interactions. This is in obvious contradiction to parametrizations from data for $G_F^q(x, x)$ [14], and the model does not properly describe the physics of $G_F^q(x, x')$ in a small interval around $x' \sim x$. Nevertheless it may realistically probe the physics outside of this interval, *i.e.*, where x' is further away from x. Under the approximation that the quark-photon matrix element $G_F^{\gamma,q}$ is proportional to the quark-gluon matrix element G_F^q [7] one also has $G_{F,\text{Model}}^{\gamma,q}(x,x,\mu_0) = 0$. Hence, for massless quarks the asymmetry A_{UT} in (2) is completely determined by $G_{F,\text{Model}}^{u,d}(x,x',\mu_0)$ and $\tilde{G}_{F,\text{Model}}^{u,d}(x,x',\mu_0)$ at a fixed scale Q = 1 GeV. The model prediction for A_{UT} is shown in fig. 1. In this plot fixed target kinematics have been used for an electron beam energy E = 12 GeV (JLab12 kinematics). A missing mass $W = (P + q)^2 > 4 \text{ GeV}^2 = W_{\min}$ was assumed to ensure that the asymmetry is probed in the DIS region. This defines a maximal Bjorken- $x x_{B,\max} = Q^2/(Q^2 + W_{\min} - M^2) \sim 0.25$ for Q = 1 GeV. For a fixed scale the energy transfer from the electron to the nucleon y varies with x_B , that is, $y = Q^2/(2MEx_B)$. Typical experimental values $y \sim 0.4$ –0.6 are probed at $x_B \sim 0.1$ at Q = 1 GeV.

4. – Conclusions

The plot in fig. 1 shows that one can expect rather small asymmetries of about 10^{-5} from the model of ref. [13]. Although the JLab data [3] for the SSA A_{UT} on a neutron is still preliminary it gives hints that the asymmetry is much larger in reality for a neutron. This discrepancy may point to missing physics in the integration region $x \sim x'$ in eq. (1) which is left out in the model of ref. [13]. One may consider larger values of Q > 1 GeV. At larger scales a non-zero "Soft Gluon Pole" $G_F^q(x, x, \mu > 1 \text{ GeV}) \neq 0$ can be obtained from evolution of the model results of ref. [13]. However, one would not expect the asymmetry to be dramatically larger at higher scales due to the factor M/Q in eq. (1).

REFERENCES

- [1] CHRIST N. and LEE T. D., Phys. Rev., 143 (1966) 1310.
- [2] AIRAPETIAN A. et al., Phys. Lett. B, 682 (2010) 351.
- [3] Jefferson Lab experiment E07-013, Spokespersons: AVERETT T. D., HOLMSTROM T., JIANG X. and KATICH J. M., Ph.D. thesis, The College of William and Mary, 2011.
- [4] METZ A., SCHLEGEL M. and GOEKE K., Phys. Lett. B, 643 (2006) 319.
- [5] SCHLEGEL M. and METZ A., AIP Conf. Proc., **1149** (2009) 543.
- [6] SCHLEGEL M., Phys. Rev. D, 87 (2013) 034006.
- [7] METZ A., PITONYAK D., SCHAFER A., SCHLEGEL M., VOGELSANG W. and ZHOU J., Phys. Rev. D, 86 (2012) 094039.
- [8] AFANASEV A., STRIKMAN M. and WEISS C., Phys. Rev. D, 77 (2008) 014028.
- [9] BACCHETTA A., DIEHL M., GOEKE K., METZ A., MULDERS P. J. and SCHLEGEL M., JHEP, 02 (2007) 093.
- [10] ACCARDI A., BACCHETTA A., MELNITCHOUK W. and SCHLEGEL M., JHEP, 11 (2009) 093.
- [11] BOER D., MULDERS P. J. and PIJLMAN F., Nucl. Phys. B, 667 (2003) 201; QIU J. W. and STERMAN G. F., Phys. Rev. Lett., 67 (1991) 2264; Nucl. Phys. B, 378 (1992) 52.
- [12] ELLIS R. K., FURMANSKI W. and PETRONZIO R., Nucl. Phys. B, 207 (1982) 1; 212 (1983) 29.
- [13] BRAUN V. M., LAUTENSCHLAGER T., MANASHOV A. N. and PIRNAY B., Phys. Rev. D, 83 (2011) 094023.
- [14] KOUVARIS C. et al., Phys. Rev. D, 74 (2006) 114013; ANSELMINO A. et al., Eur. Phys. J. A, 39 (2009) 89; KANG Z.-B. and PROKUDIN A., Phys. Rev. D, 85 (2012) 074008.