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ricevuto il 18 Aprile 2013

Summary. — The single-spin asymmetry of unpolarized leptons scattering deep-
inelastically off transversely polarized nucleons is discussed. This observable is gen-
erated by a two-photon exchange between lepton and nucleon. In a partonic descrip-
tion of the asymmetry the non-perturbative part is given in terms of multiparton
correlations: quark-gluon correlation functions and quark-photon correlation func-
tions. Recently, a model for quark-gluon correlation functions was presented where
these objects were expressed through non-valence light cone wave functions. Using
this model, estimates for the single-spin asymmetries for a proton and a neutron are
presented.

PACS 13.60.Hb – Total and inclusive cross sections (including deep-inelastic pro-
cesses).
PACS 13.88.+e – Polarization in interactions and scattering.

1. – Introduction

One of the most fundamental and basic processes in hadronic physics is the deep-
inelastic scattering (DIS) of leptons off nucleons, l(l) + N(P ) → l(l′) + X. Single-spin
observables in inclusive DIS with either the lepton or nucleon being transversely polarized
strictly vanish due to time-reversal invariance for a single-photon exchange [1]. This
argument fails if two (or more) photons are exchanged between lepton and nucleon.

Experimentally, a recent measurement of the single-spin asymmetry (SSA) for a trans-
versely polarized nucleon, denoted by AUT , was performed by the HERMES Collabora-
tion [2], and again a result consistent with zero was found within an error of about 10−3.
Interestingly, preliminary data taken from (ongoing) precision measurements of AUT at
Jefferson Lab seem to indicate a non-zero effect [3].

A theoretical description of the SSA AUT in a partonic picture needs to deal with two
distinctive and complementary physical situations: The exchange of two photons between
the lepton and either i) one single quark or ii) two different quarks. The asymmetry
has been studied in refs. [4-7] for massless quarks. It was found that this observable
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generically behaves like M/Q where M denotes the nucleon mass, Q2 = −q2, and q = l−l′

the 4-momentum transfer to the nucleon. Thus the asymmetry is a power suppressed
(“twist-3”) observable, and can be expressed in terms of multipartonic non-perturbative
quark-gluon (scenario i)) and quark-photon (scenario ii) correlation functions. Effects of
a finite quark mass proportional to the transversity distribution hq

1(x) are also relevant
for scenario i) and have been studied in ref. [8].

2. – AUT in a partonic picture

The DIS differential cross section can be analyzed in terms of the commonly used DIS
variables that are defined as xB = Q2/(2P · q) and y = P · q/P · l. For the description of
AUT a transverse (to the lepton plane) spin vector ST of a polarized nucleon is needed. An
azimuthal angle φs between ST and the lepton plane determines the spatial orientation
of ST .

An analysis of the SSA AUT in inclusive DIS in a partonic picture has to be performed
at subleading twist accuracy [4, 6, 7]. This requires the introduction of typical hadronic
matrix elements of certain partonic operators that encode non-trivial correlations of the
transverse nucleon spin and the transverse partonic motion [9], as well as multipartonic
correlations [10,7]. However, the effects of transverse partonic motion and multipartonic
correlations are not independent. In fact, they can related to each other by means of
the QCD-equation of motion (EOM) [9]. An additional dependence originates from the
relation between the Sivers function and the so-called Qiu-Sterman matrix element [11].
If one applies the twist-3 factorization formalism of ref. [12] to the SSA AUT all of these
hadronic matrix elements are to be convoluted with corresponding partonic hard cross
sections, and eventually summed up (cf. [6]).

The hard cross sections relevant for scenario i) are calculated in perturbation theory
to O(α3) to obtain a non-zero result. This includes interferences of real lepton-quark(&
gluon) scattering amplitudes describing the radiation of a photon emitted by either the
lepton or the quark. Such real contributions typically contain phase space integrations.
Interferences from virtual two-photon-exchange one-loop diagrams and single photon
exchange diagrams may also contribute. The various hard cross sections can be combined
by application of QCD-EOM inspired relations between effects of transverse partonic
motion and multipartonic correlations, and eventually the soft divergences indicated by
poles in 1/ε cancel [6].

The hard cross sections can be computed along the same lines for scenario (2). To
leading order only tree-level diagrams interfere without phase space integrations [7].
Hence, no soft divergences appear in intermediate steps of the calculation.

Adding the results of refs. [6, 8, 7] leads to the following parton picture formula for
the single transverse spin dependent DIS cross section at O(α3

em),
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Fig. 1. – Prediction for the asymmetry AUT at JLab12 obtained from a model [13].

The perturbative coefficient functions Ĉ± in eq. (1) are integrable distributions and their
functional form is given in ref. [6]. Assuming that the non-perturbative quark-gluon
correlation functions Gq

F (x, x′) and G̃q
F (x, x′)(1) are analytic the x-integral in (1) is well-

defined. In addition the finite quark mass term of ref. [8,7] has been added to eq. (1) as
well as the contribution of ref. [7] describing scenario ii) where the two photons couple
to different quarks. The latter term involves a quark-photon correlation function Gγ

F (2).
The SSA AUT can be computed from (1) in the following way (dσ = E′dσ/d3k′):

AUT =
dσUT (φs) − dσUT (φs − π)

2dσUU
,(2)

with the well-known parton model result for the unpolarized cross section [9],

dσUU =
4α2

em

Q4y
f(y)

∑
q

e2
qxBfq

1 (xB) ,(3)

with f1 the unpolarized collinear parton distribution, and f(y) = −y + y2/2.

3. – Model for the quark-gluon correlations from light cone wave functions

In order to utilize eq. (1) to estimate the sign and size of the transverse target spin
asymmetry AUT on a proton and neutron one needs information on the full support of
the non-perturbative quark-gluon correlation functions Gq

F (x, x′), G̃q
F (x, x′)(3), as well as

the quark-photon correlation function Gγ,q
F (x, x) in the soft photon limit x′ = x and the

transversity distribution hq
1(x). Currently, only extractions from data exist for the so-

called “Soft Gluon Pole matrix element” Gq
F (x, x) [14] and the transversity distribution.

However, a recent model calculation gives predictions for Gq
F and G̃q

F on the full support
x �= x′ [13]. In this work the twist-3 quark-gluon correlation functions are expressed
in terms on non-valence-like light cone wave functions, and analytical results at a scale

(1) Definitions in terms of hadronic matrix elements for both functions can be found in ref. [10].
(2) Notice a slight redefinition Gγ

F (x, x) ≡ 1
2e2 FFT (x, x) of the object FFT introduced in [7].

(3) Note that Gq
F (x, x′) = Gq

F (x′, x) and G̃q
F (x, x′) = −G̃q

F (x′, x). Hence, G̃q
F (x, x) = 0.
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μ0 = 1 GeV were obtained. One specific feature of this model is that Gq
F,Model(x, x, μ0) =

0 due to the absence of final state interactions. This is in obvious contradiction to
parametrizations from data for Gq

F (x, x) [14], and the model does not properly describe
the physics of Gq

F (x, x′) in a small interval around x′ ∼ x. Nevertheless it may realistically
probe the physics outside of this interval, i.e., where x′ is further away from x. Under the
approximation that the quark-photon matrix element Gγ,q

F is proportional to the quark-
gluon matrix element Gq

F [7] one also has Gγ,q
F,Model(x, x, μ0) = 0. Hence, for massless

quarks the asymmetry AUT in (2) is completely determined by Gu,d
F,Model(x, x′, μ0) and

G̃u,d
F,Model(x, x′, μ0) at a fixed scale Q = 1 GeV. The model prediction for AUT is shown

in fig. 1. In this plot fixed target kinematics have been used for an electron beam energy
E = 12 GeV (JLab12 kinematics). A missing mass W = (P + q)2 > 4GeV2 = Wmin

was assumed to ensure that the asymmetry is probed in the DIS region. This defines
a maximal Bjorken-x xB,max = Q2/(Q2 + Wmin − M2) ∼ 0.25 for Q = 1 GeV. For a
fixed scale the energy transfer from the electron to the nucleon y varies with xB , that is,
y = Q2/(2MExB). Typical experimental values y ∼ 0.4–0.6 are probed at xB ∼ 0.1 at
Q = 1 GeV.

4. – Conclusions

The plot in fig. 1 shows that one can expect rather small asymmetries of about 10−5

from the model of ref. [13]. Although the JLab data [3] for the SSA AUT on a neutron is
still preliminary it gives hints that the asymmetry is much larger in reality for a neutron.
This discrepancy may point to missing physics in the integration region x ∼ x′ in eq. (1)
which is left out in the model of ref. [13]. One may consider larger values of Q > 1 GeV.
At larger scales a non-zero “Soft Gluon Pole” Gq

F (x, x, μ > 1GeV) �= 0 can be obtained
from evolution of the model results of ref. [13]. However, one would not expect the
asymmetry to be dramatically larger at higher scales due to the factor M/Q in eq. (1).
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