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Summary. — We show that (a) the conformal properties of Anti-de Sitter (AdS)
space, (b) the properties of a field theory in one dimension under the full conformal
group found by de Alfaro, Fubini and Furlan, and (c) the frame-independent single-
variable light-front Schrödinger equation for bound states all lead to the same result:
a relativistic non-perturbative model which successfully incorporates salient features
of hadronic physics, including confinement, linear Regge trajectories, and results
which are conventionally attributed to spontaneous chiral symmetry breaking.

PACS 12.38.Aw – General properties of QCD (dynamics, confinement, etc.).
PACS 11.25.Tq – Gauge/string duality.
PACS 11.25.Hf – Conformal field theory, algebraic structures.
PACS 12.38.-t – Quantum chromodynamics.

1. – Conformal invariance and QCD

One of the most intriguing features of QCD for massless quarks is its underlying
conformal invariance, invariance under both scale (dilatation) and special conformal
transformations [1]. For example, in the case of perturbative QCD, the running cou-
pling αs(Q2) becomes constant in the limit of zero β-function and zero quark mass, and
conformal symmetry becomes manifest. In fact, the renormalization scale uncertainty
in pQCD predictions can be eliminated by using the Principle of Maximum Conformal-
ity (PMC) [2]. Using the PMC/BLM procedure [3], all non-conformal contributions in
the perturbative expansion series are summed into the running coupling by shifting the
renormalization scale in αs from its initial value, and one obtains unique, scale-fixed,
scheme-independent predictions at any finite order. One can also introduce a general-
ization of conventional dimensional regularization which illuminates the renormalization
scheme and scale ambiguities of pQCD predictions, exposes the general pattern of non-
conformal terms, and allows one to systematically determine the argument of the running
coupling order by order in pQCD in a form which can be readily automatized [4]. The
resulting PMC scales and finite-order PMC predictions are both to high accuracy inde-
pendent of the choice of initial renormalization scale. For example, PMC scale-setting
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leads to a scheme-independent pQCD prediction [5] for the top-quark forward-backward
asymmetry which is within one σ of the Tevatron measurements. The PMC procedure
also provides scale-fixed, scheme-independent commensurate scale relations [6], relations
between observables which are based on the underlying conformal behavior of QCD such
as the Generalized Crewther relation [7]. The PMC satisfies all of the principles of the
renormalization group: reflectivity, symmetry, and transitivity, and it thus eliminates an
unnecessary source of systematic error in pQCD predictions [8].

Anti-de Sitter space in five dimensions (AdS5) provides a geometric representation
of the conformal group. One can modify AdS space by using a dilaton factor in the
AdS metric eϕ(z) to introduce the QCD confinement scale. Although such a mass scale
explicitly breaks the dilatation invariance of the equations of motion, the action can still
be conformally invariant, as was first shown by V. de Alfaro, S. Fubini and G. Furlan
(dAFF) [9] in the context of one-dimensional quantum field theory; i.e, the change in the
mass scale of the potential can be compensated by the time scale in the action. However,
this manifestation of conformal symmetry can only occur if the dilaton profile ϕ(z) ∝ zs

is constrained to have the specific power s = 2, a remarkable result which follows from
the dAFF construction of conformally invariant quantum mechanics [10]. The quadratic
form ϕ(z) = κ2z2 leads to linear Regge trajectories [11] in the hadron mass squared.

2. – Light-front holography

A remarkable holographic feature of dynamics in AdS space in five dimensions is
that it is dual to Hamiltonian theory in physical space-time, quantized at fixed light-
front (LF) time [12]. For example, the equation of motion for mesons on the light-front
has exactly the same single-variable form as the AdS/QCD equation of motion; one
can then interpret the AdS fifth dimension variable z in terms of the physical variable
ζ, representing the invariant separation of the q and q̄ at fixed light-front time. As
discussed in the next sections, this light-front holographic principle provides a precise
relation between the bound-state amplitudes in AdS space and the boost-invariant LF
wavefunctions describing the internal structure of hadrons in physical space-time. The
resulting valence Fock-state wavefunction eigensolutions of the LF QCD Hamiltonian
satisfy a single-variable relativistic equation of motion analogous to the non-relativistic
radial Schrödinger equation. The quadratic dependence in the quark-antiquark poten-
tial U(ζ2, J) = κ4ζ2 + 2κ2(J − 1) in the Light-Front Schrödinger equation (LFSE) is
determined uniquely from conformal invariance, whereas the constant term 2κ2(J −1) is
fixed by the duality between AdS and LF quantization, a correspondence which follows
specifically from the separation of kinematics and dynamics on the light-front [13]. The
LF potential thus has a specific power dependence–in effect, it is a light-front harmonic
oscillator potential. It is confining and reproduces the observed linear Regge behavior
of the light-quark hadron spectrum in both the orbital angular momentum L and the
radial node number n. The pion is predicted to be massless in the chiral limit [14]—the
positive contributions to m2

π from the LF potential and kinetic energy is cancelled by
the constant term in U(ζ2, J) for J = 0. The derived running QCD coupling displays an
infrared fixed point [15].

The construction of dAFF retains conformal invariance of the action despite the
presence of a fundamental mass scale. The AdS approach, however, goes beyond the
purely group-theoretical considerations of dAFF, since features such as the masslessness
of the pion and the separate dependence on J and L are consequences of the potential
derived from the holographic LF duality with AdS for general J and L [10, 13].
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The quantization of QCD at fixed light-front time [16] (Dirac’s Front Form) provides
a first-principles Hamiltonian method for solving non-perturbative QCD. It is rigorous,
has no fermion-doubling, is formulated in Minkowski space, and it is frame-independent.
Given the boost-invariant light-front wavefunctions ψn/H (LFWFs), one can compute a
large range of hadron observables, starting with structure functions, generalized parton
distributions, and form factors. It is also possible to compute jet hadronization at the
amplitude level from first principles from the LFWFs [17]. A similar method has been
used to predict the production of antihydrogen from the off-shell coalescence of relativistic
antiprotons and positrons [18]. The LFWFs of hadrons thus provide a direct connection
between observables and the QCD Lagrangian. Solving non-perturbative QCD is thus
equivalent to solving the light-front Heisenberg matrix eigenvalue problem. Angular
momentum Jz is conserved at every vertex. The LF vacuum is defined as the state of
lowest invariant mass and is trivial up to zero modes. There are thus no quark or gluon
vacuum condensates in the LF vacuum– the corresponding physics is contained within
the LFWFs themselves [19,20], thus eliminating a major contribution to the cosmological
constant.

The simplicity of the front form contrasts with the usual instant-form formalism.
Current matrix elements defined at ordinary time t must include the coupling of photons
and vector bosons fields to connected vacuum-induced currents; otherwise, the result is
not Lorentz-invariant. Thus the knowledge of the hadronic eigensolutions of the instant-
form Hamiltonian are insufficient for determining form factors or other observables. In
addition, the boost of an instant form wavefunction from p to p + q changes particle
number and is an extraordinarily complicated dynamical problem.

It is remarkable fact that AdS/QCD, which was originally motivated by the AdS/CFT
correspondence between gravity on a higher-dimensional space and conformal field the-
ories in physical space-time [21], has a direct holographic mapping to light-front Hamil-
tonian theory [12]. The AdS mass parameter μR maps to the LF orbital angular mo-
mentum. The formulae for electromagnetic [22] and gravitational [23] form factors in
AdS space map to the exact Drell-Yan-West formulae in light-front QCD [24-26]. Thus
the light-front holographic approach provides an analytic frame-independent first ap-
proximation to the color-confining dynamics, spectroscopy, and excitation spectra of the
relativistic light-quark bound states of QCD. It is systematically improvable in full QCD
using the basis light-front quantization (BLFQ) method [27] and other methods.

3. – The light-front Schrödinger equation: a semiclassical approximation to
QCD

In the limit of zero quark masses the longitudinal modes decouple from the invariant
LF Hamiltonian equation HLF |φ〉 = M2|φ〉 with HLF = PμPμ = P−P+ − 
P 2

⊥. The
generators P = (P−, P+, 
P⊥), P± = P 0 ± P 3, are constructed canonically from the
QCD Lagrangian by quantizing the system on the light-front at fixed LF time x+, x± =
x0 ± x3 [28]. The LF Hamiltonian P− generates the LF time evolution with respect
to x+, whereas the LF longitudinal P+ and transverse momentum 
P⊥ are kinematical
generators.

It is advantageous to reduce the full multiparticle eigenvalue problem of the LF Hamil-
tonian to an effective light-front Schrödinger equation which acts on the valence sector
LF wavefunction and determines each eigensolution separately [29]. In contrast, diag-
onalizing the LF Hamiltonian yields all eigensolutions simultaneously, a complex task.
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The central problem for deriving the LFSE becomes the derivation of the effective inter-
action U which acts only on the valence sector of the theory and has, by definition, the
same eigenvalue spectrum as the initial Hamiltonian problem. In order to carry out this
program one must systematically express the higher Fock components as functionals of
the lower ones. This method has the advantage that the Fock space is not truncated,
and the symmetries of the Lagrangian are preserved [29].

The light-front Hamiltonian for QCD can be derived directly from the QCD La-
grangian [28]. The result is relativistic and frame-independent. The qq̄ LF Fock state
wavefunction for a meson can be written as ψ(x, ζ, ϕ) = eiLθX(x) φ(ζ)√

2πζ
, thus factoring

the angular dependence θ and the longitudinal, X(x), and transverse mode φ(ζ). In
the limit of zero quark masses the longitudinal mode decouples and the LF eigenvalue
equation PμPμ|φ〉 = M2|φ〉 takes the form of a light-front wave equation for φ [12]

[
− d2

dζ2
− 1 − 4L2

4ζ2
+ U

(
ζ2, J,M2

)]
φJ,L,n(ζ2) = M2φJ,L,n(ζ2),(1)

a relativistic single-variable LF Schrödinger equation. This equation describes the spec-
trum of mesons as a function of n, the number of nodes in ζ, the total angular momentum
J , which represent the maximum value of |Jz|, J = max |Jz|, and the internal orbital
angular momentum of the constituents L = max |Lz|. The variable z of AdS space is
identified with the LF boost-invariant transverse-impact variable ζ [24], thus giving the
holographic variable a precise definition in LF QCD [12, 24]. For a two-parton bound
state ζ2 = x(1 − x)b 2

⊥, where x is the longitudinal momentum fraction and b⊥ is the
transverse-impact distance between the quark and antiquark. In the exact QCD theory
U is related to the two-particle irreducible qq̄ Green’s function.

The potential in the LFSE is determined from the two-particle irreducible (2PI) qq̄ →
qq̄ Greens’ function. In particular, the higher Fock states in intermediate states leads
to an effective interaction U(ζ2, J,M2) for the valence |qq̄〉 Fock state [29]. A related
approach for determining the valence light-front wavefunction and studying the effects
of higher Fock states without truncation has been given in ref. [30].

Unlike ordinary instant-time quantization, the light-front Hamiltonian equations of
motion are frame independent; remarkably, they have a structure which matches exactly
the eigenmode equations in AdS space. This makes a direct connection of QCD with
AdS methods possible. In fact, one can derive the light-front holographic duality of
AdS by starting from the light-front Hamiltonian equations of motion for a relativistic
bound-state system in physical space-time [12].

4. – Effective confinement from the gauge/gravity correspondence

Recently we have derived wave equations for hadrons with arbitrary spin starting
from an effective action in AdS space [13]. An essential element is the mapping of the
higher-dimensional equations to the LF Hamiltonian equation found in ref. [12]. This
procedure allows a clear distinction between the kinematical and dynamical aspects of
the LF holographic approach to hadron physics. Accordingly, the non-trivial geometry of
pure AdS space encodes the kinematics, and the additional deformations of AdS encode
the dynamics, including confinement [13].

A spin-J field in AdSd+1 is represented by a rank J tensor field ΦM1...MJ
, which is

totally symmetric in all its indices. In presence of a dilaton background field ϕ(z) the
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effective action is [13]

Seff =
∫

ddx dz
√

|g| eϕ(z) gN1N ′
1 . . . gNJN ′

J

(
gMM ′

DMΦ∗
N1...NJ

DM ′ΦN ′
1...N ′

J
(2)

−μ2
eff (z)Φ∗

N1...NJ
ΦN ′

1...N ′
J

)
,

where the indices M,N = 0, . . . , d,
√

g = (R/z)d+1 and DM is the covariant derivative
which includes parallel transport. The coordinates of AdS are the Minkowski coordinates
xμ and the holographic variable z, xM = (xμ, z). The effective mass μeff (z), which en-
codes kinematical aspects of the problem, is an a priori unknown function, but the
additional symmetry breaking due to its z-dependence allows a clear separation of kine-
matical and dynamical effects [13]. The dilaton background field ϕ(z) in (2) introduces
an energy scale in the five-dimensional AdS action, thus breaking conformal invariance.
It vanishes in the conformal ultraviolet limit z → 0.

A physical hadron has plane-wave solutions and polarization indices along the 3 + 1
physical coordinates ΦP (x, z)ν1...νJ

= eiP ·xΦJ (z)εν1...νJ
(P ), with four-momentum Pμ

and invariant hadronic mass PμPμ = M2. All other components vanish identically. The
wave equations for hadronic modes follow from the Euler-Lagrange equation for tensors
orthogonal to the holographic coordinate z, ΦzN2...NJ

= 0. Terms in the action which are
linear in tensor fields, with one or more indices along the holographic direction, ΦzN2...NJ

,
give us the kinematical constraints required to eliminate the lower-spin states [13]. Upon
variation with respect to Φ̂∗

ν1...νJ
, we find the equation of motion [13]

[
−zd−1−2J

eϕ(z)
∂z

(
eϕ(z)

zd−1−2J
∂z

)
+

(mR)2

z2

]
ΦJ = M2ΦJ ,(3)

with (mR)2 = (μeff (z)R)2 − Jz ϕ′(z) + J(d − J + 1), which is the result found in
refs. [12, 31] by rescaling the wave equation for a scalar field. Similar results were found
in ref. [32]. Upon variation with respect to Φ̂∗

N1...z...NJ
we find the kinematical constraints

which eliminate lower spin states from the symmetric field tensor [13]

ημνPμ ενν2...νJ
(P ) = 0, ημν εμνν3...νJ

(P ) = 0.(4)

Upon the substitution of the holographic variable z by the LF invariant variable ζ and
replacing ΦJ (z) = (R/z)J−(d−1)/2e−ϕ(z)/2 φJ(z) in (3), we find for d = 4 the LFSE (1)
with effective potential [33]

U(ζ2, J) =
1
2
ϕ′′(ζ2) +

1
4
ϕ′(ζ2)2 +

2J − 3
2ζ

ϕ′(ζ2),(5)

provided that the AdS mass m in (3) is related to the internal orbital angular momentum
L = max |Lz| and the total angular momentum Jz = Lz + Sz according to (mR)2 =
−(2 − J)2 + L2. The critical value L = 0 corresponds to the lowest possible stable
solution, the ground state of the LF Hamiltonian. For J = 0 the five dimensional mass
m is related to the orbital momentum of the hadronic bound state by (mR)2 = −4 + L2

and thus (mR)2 ≥ −4. The quantum mechanical stability condition L2 ≥ 0 is thus
equivalent to the Breitenlohner-Freedman stability bound in AdS [34].
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Fig. 1. – I = 1 parent and daughter Regge trajectories for the π-meson family (left) with
κ = 0.59 GeV; and the ρ-meson family (right) with κ = 0.54 GeV.

A particularly interesting example is a dilaton profile exp (±κ2z2) of either sign, since
it leads to linear Regge trajectories [11] and avoids the ambiguities in the choice of
boundary conditions at the infrared wall. For the confining solution ϕ = exp (κ2z2) the
effective potential is U(ζ2, J) = κ4ζ2 + 2κ2(J − 1) and eq. (1) has eigenvalues M2

n,J,L =
4κ2

(
n + J+L

2

)
, with a string Regge form M2 ∼ n + L. A discussion of the light meson

and baryon spectrum, as well as the elastic and transition form factors of the light
hadrons using LF holographic methods, is given in ref. [31]. As an example the spectral
predictions for the J = L + S light pseudoscalar and vector meson states are compared
with experimental data in fig. 1 for the positive sign dilaton model.

The effective interaction U(ζ2, J) is instantaneous in LF time and acts on the lowest
state of the LF Hamiltonian. This equation describes the spectrum of mesons as a func-
tion of n, the number of nodes in ζ2, the internal orbital angular momentum L = Lz, and
the total angular momentum J = Jz, with Jz = Lz + Sz the sum of the orbital angular
momentum of the constituents(1) and their internal spin. It is the relativistic frame-
independent front-form analog of the non-relativistic radial Schrödinger equation for
muonium and other hydrogenic atoms in presence of an instantaneous Coulomb potential.

The AdS/QCD harmonic oscillator potential could in fact emerge from the exact
QCD formulation when one includes contributions from the LFSE potential U which are
due to the exchange of two connected gluons; i.e., “H” diagrams [35]. We notice that
U becomes complex for an excited state since a denominator can vanish; this gives a
complex eigenvalue and the decay width.

The correspondence between the LF and AdS equations thus determines the effective
confining interaction U in terms of the infrared behavior of AdS space and gives the
holographic variable z a kinematical interpretation. The identification of the orbital
angular momentum is also a key element of our description of the internal structure of
hadrons using holographic principles.

5. – Uniqueness of the confining potential

If one starts with a dilaton profile eϕ(z) with ϕ ∝ zs, the existence of a massless pion
in the limit of massless quarks determines uniquely the value s = 2. To show this, one can

(1) The SO(2) Casimir L2 corresponds to the group of rotations in the transverse LF plane.
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use the stationarity of bound-state energies with respect to variation of parameters [10].
The quadratic dilaton profile also follows from the algebraic construction of Hamiltonian
operators by (dAFF) [9]. The action S = 1

2

∫
dt(Q̇2−g/Q2), is invariant under conformal

transformations in the variable t, and there are in addition to the Hamiltonian Ht two
more invariants of motion for this field theory, namely the dilation operator D and K,
corresponding to the special conformal transformations in t. Specifically, if one introduces
the new variable τ defined through dτ = dt/(u + v t + w t2) and the rescaled fields
q(τ) = Q(t)/(u + v t + w t2)1/2, it then follows that the operator G = uHt + v D + w K
generates evolution in τ [9]. The Hamiltonian corresponding to the operator G which
introduces the mass scale is a linear combination of the old Hamiltonian Ht, D, the
generator of dilations, and K, the generator of special conformal transformations. It
contains the confining potential (4uw − v2)ζ2/8, that is the confining term in (5) for a
quadratic dilaton profile and thus κ4 = (4uw − v2)/8.

The construction of new Hamiltonians from the generators of the conformal group
has been used by dAFF to construct algebraically the spectra and the eigenfunctions of
these operators. The conformal group in one dimension is locally isomorphic to the group
of pseudo-rotations O(2, 1). The compact operator R = 1

2 (K + Ht) generates rotations
in the Euclidean 1-2 plane, whereas the non-compact operators L1 = 1

2 (K − Ht) and
L2 = D generate pseudo-rotations (boosts) in the non-Euclidean 2-3 and 1-3 plane
respectively. As in the familiar case of angular momentum, one can introduce raising
and lowering operators L± = L1±L2 and construct the spectrum and the eigenfunctions
analogously to the angular momentum operators. Interestingly, this is just the method
employed in ref. [36] to obtain an integrable LF confining Hamiltonian by following
Infeld’s observation that integrability follows immediately if the equation of motion can
be factorized as a product of linear operators [37]. The method can be extended to
describe baryons in AdS while preserving the algebraic structure [36, 38]. Our approach
has elements in common with those of ref. [39], where the scale of the confinement
potential arises from a boundary condition when solving Gauss’ equation.

6. – Summary

The triple complementary connection of (a) AdS space, (b) its LF holographic dual,
and (c) the relation to the algebra of the conformal group in one dimension, is character-
ized by a quadratic confinement LF potential, and thus a dilaton profile with the power
zs, with the unique power s = 2. In fact, for s = 2 the mass of the J = L = n = 0 pion is
automatically zero in the chiral limit, and the separate dependence on J and L leads to
a mass ratio of the ρ and the a1 mesons which coincides with the result of the Weinberg
sum rules [40]. One predicts linear Regge trajectories with the same slope in the relative
orbital angular momentum L and the principal quantum humber n. The AdS approach,
however, goes beyond the purely group theoretical considerations of dAFF, since fea-
tures such as the masslessness of the pion and the separate dependence on J and L are
a consequence of the potential (5) derived from the duality with AdS for general J and
L. The constant term in the potential, which is not determined by the group theoretical
arguments, is fixed by the holographic duality to LF quantized QCD [13]. The resulting
Lagrangian, constrained by the conformal invariance of the action, has the same form as
the AdS Lagrangian with a quadratic dilaton profile.

In their discussion of the evolution operator Hτ as a model for confinement, dAFF
mention a critical point, namely that “the time evolution is quite different from a sta-
tionary one”. By this statement they refer to the fact that the variable τ is related to
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the variable t for the case uw > 0, v = 0 by τ = 1√
u w

arctan(
√

w
u t), i.e., τ has only

a limited range. The finite range of invariant LF time τ = x+/P+ can be interpreted
as a feature of the internal frame-independent LF time difference between the confined
constituents in a bound state. For example, in the collision of two mesons, it would allow
us to compute the LF time difference between the two possible quark-quark collisions.

The treatment of the chiral limit in the LF holographic approach to strongly coupled
QCD is substantially different from the standard approach based on chiral perturbation
theory. In the conventional approach [41], spontaneous symmetry breaking by a non-
vanishing chiral quark condensate 〈ψ̄ψ〉 plays the crucial role. In QCD sum rules [42]
〈ψ̄ψ〉 brings in non-perturbative elements into the perturbatively calculated spectral sum
rules. It should be noted, however, that the definition of the condensate, even in lattice
QCD necessitates a renormalization procedure for the operator product, and it is not
a directly observable quantity. In Bethe-Salpeter [43] and light-front analyses [44], the
Gell Mann-Oakes-Renner relation [45] for m2

π/mq involves the decay matrix element
〈0|ψ̄γ5ψ|π〉 instead of 〈0|ψ̄ψ|0〉.

In the color-confining AdS/QCD light-front model discussed here, the vanishing of the
pion mass in the chiral limit, a phenomenon usually ascribed to spontaneous symmetry
breaking of the chiral symmetry, is obtained specifically from the precise cancellation
of the LF kinetic energy and LF potential energy terms for the quadratic confinement
potential. This mechanism provides a viable alternative to the conventional description of
non-perturbative QCD based on vacuum condensates, and it eliminates a major conflict
of hadron physics with the empirical value for the cosmological constant [19,20].

∗ ∗ ∗
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