Kinetic theory in curved spacetimes: Applications to black holes

D. Bini(1)(2)(3)(∗) and D. Gregoris(4)(2)(**) (1)

Istituto per le Applicazioni del Calcolo “M. Picone”, CNR - I-00185 Roma, Italy
(2) ICRA, University of Rome I “La Sapienza” - I-00185 Roma, Italy
(3) INFN, Sezione di Firenze - I-50019 Sesto Fiorentino (FI), Italy
(4) University of Rome I “La Sapienza” - I-00185 Roma, Italy

ricevuto il 9 Marzo 2012

Summary. — The equilibrium statistical moments of the Jüttner distribution function for a massive and a photon gas in an arbitrary spacetime are evaluated using a covariant approach and applications are considered to the case of a Schwarzschild black hole background spacetime. The motion of a massive test particle inside a photon gas is then studied to investigate drag effects on the particle motion due to radiation scattering, similarly to what happens for the so-called Poynting-Robertson effect.

PACS 04.20.Cv – Fundamental problems and general formalism.

1. – Covariant kinetic theory

Consider a Minkowski flat spacetime with line element written in standard Cartesian coordinates with $x^0 = t$ and $\eta_{\alpha\beta} = \text{diag}[-1, 1, 1, 1](1)$

\begin{equation}
(1) \quad ds^2 = \eta_{\alpha\beta} dx^\alpha dx^\beta = -dt^2 + \delta_{ab} dx^a dx^b
\end{equation}

and let

\begin{equation}
(2) \quad P^\beta = -E dt + p_a dx^a, \quad P = E \partial_t + p^a \partial_a,
\end{equation}

(*) E-mail: binid@icra.it
(**) E-mail: danielegregoris@libero.it
(*) Here greek indices run from 0 to 3 whereas latin ones from 1 to 3. We also use geometrized units with $c = G = \hbar = 1$. © Società Italiana di Fisica
the fully covariant \((P^\mu) \) as well as the contravariant \((P) \) representations of the 4-momentum of a particle with nonzero rest mass \(m \), i.e.

\[
P^2 \equiv P \cdot P = -m^2 = E^2 + \delta_{ab} p^a p^b \equiv -E^2 + p^2.
\]

Let us consider a gas of such particles all equal and point-like in equilibrium at the (absolute) temperature \(T \). The Jüttner distribution function [1]

\[
f = \alpha e^{-\beta \sqrt{P^2 + m^2}}, \quad \alpha = \frac{n\beta}{4\pi m^2 K_2(m\beta)},
\]

is the correct special relativistic extension with respect to the metric (1) of the Maxwell-Boltzmann distribution function, accounting for a finite maximum speed of the particles. Here \(n \) is the particles density number, \(\beta = 1/(k_B T) \), with \(k_B \) the Boltzmann constant, is the “inverse temperature” and \(K_2(x) \) is the modified Bessel function of second kind of second order of argument \(x \) [2]. An equivalent manifestly covariant form of eq. (4) is

\[
f = \alpha e^{\beta \xi_\mu P^\mu},
\]

where \(\xi_\mu = (\partial_t)_\mu \) is the time-like Killing vector of the metric (1), associated with the temporal coordinate \(t \) and \(P^\mu \) is given by eq. (2) (see, e.g., [3-6] for a review of Kinetic theory in a curved spacetime). Recently [7] a covariant method to evaluate the statistical moments of \(f \) in the metric (1) has been introduced leading to the following expressions for the density current of particles and the stress-energy tensor:

\[
N^\mu = 2 \int f \delta^+(P^2 + m^2) P^\mu \sqrt{-g} d^4P = \frac{1}{\beta} \frac{\partial I}{\partial \xi_\mu},
\]

\[
T^{\mu\nu} = 2 \int f \delta^+(P^2 + m^2) P^\mu P^\nu \sqrt{-g} d^4P = \frac{1}{\beta^2} \frac{\partial^2 I}{\partial \xi_\mu \partial \xi_\nu},
\]

where functional generator \(I \) is given by

\[
I = 2 \int f \delta^+(P^2 + m^2) \sqrt{-g} d^4P = \int f \frac{\sqrt{-g}}{|p^1|} dp^1 \wedge dp^2 \wedge dp^3.
\]

Here \(g = -1 \) is the determinant of the metric (1) and the Dirac delta function takes into account the mass-shell condition \(P_\mu P^\mu = -m^2 \) (the overall factor of 2 is necessary for a \(P \) future-oriented). Using the following parametrization for \(P \) (so that the normalization mass-shell condition is automatically satisfied)

\[
P = m \left[\cosh \chi \dot{t} + \sinh \chi \dot{\nu} \right], \quad \dot{\nu} = \sin \theta \cos \phi \dot{x} + \sin \theta \sin \phi \dot{\nu} + \cos \theta \dot{z},
\]

with \(0 \leq \chi \leq \infty, \ 0 \leq \theta \leq \pi, \ 0 \leq \phi \leq 2\pi \), we can evaluate the integral \(I \)

\[
I = \frac{4\pi \alpha m}{\beta} K_1(m\beta),
\]
where \(K(x) \) is the modified Bessel function of second kind of first order of argument \(x \). The statistical moments follow easily due to the following property of the Bessel functions:

\[
\frac{d}{dx}[x^{-n}K_n(x)] = -x^{-n}K_{n+1}(x),
\]

leading to the following expressions:

\[
N^\mu = N\xi^\mu, \quad T^{\mu\nu} = \frac{N}{\beta}\left(\eta^{\mu\nu} + \xi^\mu \xi^\nu J(m\beta)\right), \quad N = \frac{4\pi m^2\alpha K_2(m\beta)}{\beta},
\]

where \(J(x) = xK_3(x)/K_2(x) \).

Similarly, in the case of a photon gas (a gas of particles with null 4-momentum \(P \)) we can perform the same integral \(I \) by changing the parametrization of \(P \)

\[
P = \mathcal{E}(\partial_t + \hat{v}), \quad \hat{v} = \sin \theta \cos \phi \partial_x + \sin \theta \sin \phi \partial_y + \cos \theta \partial_z,
\]

where \(\mathcal{E} \) is the photon energy as measured by the fiducial observers and \(0 \leq \chi \leq \infty, \ 0 \leq \theta \leq \pi, \ 0 \leq \phi \leq 2\pi \) because in this case the mass-shell constraint in the momentum space is \(P_\mu P^\mu = 0 \). Now the (divergence-free and trace-free) stress-energy tensor is

\[
T^{\mu\nu} = \frac{C}{3\beta^4}\left[\eta^{\mu\nu} + 4\xi^\mu \xi^\nu\right].
\]

where in our units \(C = \frac{\pi^2}{15} \) has been determined comparing our result with the black-body theory.

Passing then to a generic spacetime with coordinates \(x^\alpha \) and metric \(ds^2 = g_{\alpha\beta}dx^\alpha dx^\beta \), still admitting a killing timelike vector field \(\xi \), it is easy to check that the above relations for a gas of massive particles gas can be extended by simply including a redshift factor for the temperature, that is

\[
N^\mu = N m^\mu, \quad T^{\mu\nu} = \frac{N}{\beta \xi}\left(g^{\mu\nu} + m^\mu m^\nu J(m\beta\xi)\right), \quad N = \frac{4\pi m^2\alpha K_2(m\beta\xi)}{\beta \xi};
\]

similarly, for a photon gas

\[
T^{\mu\nu} = \frac{C}{3\beta^4 \xi^4}\left[g^{\mu\nu} + 4m^\mu m^\nu\right],
\]

where \(N = \sqrt{-N_\mu N^\mu}, \ m^\mu = \xi^\mu / \xi \) (unitary and timelike) with \(\xi = \sqrt{-\xi_\mu \xi^\mu} \) representing the fiducial congruence of observers. Written in this form both quantities \(N^\mu \) and \(T^{\mu\nu} \) can be obtained from the generating functional

\[
I = (4\pi m^2)^2 \frac{K_1(m \beta \xi)}{m \beta \xi}
\]

and satisfy the corresponding conservation laws, \(\nabla_\mu N^\mu = 0 \) and \(\nabla_\mu T^{\mu\nu} = 0 \). In the next section we will explicitly evaluate these quantities in the case of a Schwarzschild black-hole spacetime.
2. – Test gases on a Schwarzschild background

Let us consider as a background spacetime the Schwarzschild metric written in standard coordinates \((t, r, \theta, \phi)\)

\[
ds^2 = -N(r)^2 dt^2 + N(r)^{-2} dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2,
\]

\(N(r) = \sqrt{1 - \frac{2M}{r}},\)

\((M\) is the mass of the black hole). The metric (18) is static, \(i.e.\) it admits the time-like Killing vector \(\xi = \partial_t\). A family of fiducial observers with 4-velocity aligned with \(\partial_t\) has the following adapted orthonormal frame:

\[
e^\hat{t} = N(r)^{-1} \partial_t, \quad e^\hat{r} = \frac{1}{r} \partial_r, \quad e^\hat{\theta} = \frac{1}{r \sin \theta} \partial_\theta, \quad e^\hat{\phi} = \frac{1}{r} \sin \theta \partial_\phi.
\]

According to the general results of the previous section the energy-momentum tensor of a fluid of massive particles is characterized by

\[
T = \frac{n K^2(m \beta N(r))}{\beta N^2(r) K^2(m \beta)} \left[(J(m \beta N(r)) - 1) e^\hat{t} \otimes e^\hat{t} + \delta^{\hat{a}}_{\hat{b}} e^\hat{a} \otimes e^\hat{b}\right],
\]

and

\[
N = \frac{4 \pi m^2 \alpha K^2(m \beta N(r))}{\beta N(r)},
\]

whereas a photon gas corresponds to

\[
T = \frac{C}{(\beta N(r))^4} \left[3 e^\hat{t} \otimes e^\hat{t} + \delta^{\hat{a}}_{\hat{b}} e^\hat{a} \otimes e^\hat{b}\right].
\]

2’.1. Scattering by a radiation field. – Let us assume that a test photon gas, described by the energy-momentum tensor (22), is superposed to the Schwarzschild background and let us consider a single massive test particle in motion with 4-velocity

\[
U = \gamma \left(e^\hat{t} + \nu^\hat{a} e^\hat{a}\right), \quad \gamma = \frac{1}{\sqrt{1 - \delta_{\hat{a}\hat{b}} \nu^\hat{a} \nu^\hat{b}}}.
\]

The particle is then accelerated by the radiation field. Denoting by \(a(U)^\alpha = \nabla_U U^\alpha\) the particle’s 4-acceleration, the equations of motion are given by

\[
ma(U)^\alpha = -\sigma P(U)^\alpha_\mu T^{\mu\nu} U^\nu,
\]

where \(\sigma\) is the cross section of the process (\(e.g.\), Thomson scattering) and \(P(U)^\hat{a}_{\hat{\nu}} = \delta^\hat{a}_{\hat{\nu}} + U^\hat{a} U_{\hat{\nu}}\) projects orthogonally to \(U\). Let us limit our analysis to equatorial motion of
the test particle, i.e., $\theta = \pi/2, \quad \nu^\theta = 0$, allowed thanks to the spherical symmetry of the problem either in the presence of the radiation field. The equations of motion reduce to

$$
\frac{d\nu^\nu}{d\tau} = - \frac{A\nu^\nu}{N^4(r)} - N(r)\frac{\gamma}{r} \left[\nu_K^2 (1 - (\nu^r)^2) - (\nu^\phi)^2 \right],
$$

$$
\frac{dr}{d\tau} = \gamma N(r)\nu^r,
$$

$$
\frac{d\nu^\phi}{d\tau} = - \frac{A\nu^\phi}{N^4(r)} + \frac{\gamma N(r)}{r \nu_K^2} \nu^\theta \nu^r,
$$

$$
\frac{d\phi}{d\tau} = \frac{\gamma}{r} \nu^\phi,
$$

where we have introduced the Keplerian velocity ν_K with the Lorentz factor $\gamma_K = (1 - \nu_K^2)^{-1/2}$ and the coupling constant A between the test particle and the field:

$$
\nu_K^2 = \frac{M}{r - 2M}, \quad \gamma_K^2 = \frac{r - 2M}{r - 3M}, \quad A = 8 \frac{\sigma C}{m^2 \beta T}.
$$

The numerical integration of these equations shows that a spiral (inward) motion is the general feature; in particular a particle initially at $r = 6M$ (innermost stable circular orbit for the Schwarzschild metric) with initial null radial velocity and initial azimuthal velocity coinciding with the geodesic value ν_K falls anyway into the black hole. In addition, we see that there are not equilibrium orbits, irrespective of the value of σ which quantifies the intensity of the process.

This study broadens the one present in [8,9] where a different description of the photon field is considered. Comparing and contrasting more in detail with the above-mentioned works as well as with other related literature will be the object of a future work.

REFERENCES

