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Summary. — The equilibrium statistical moments of the Jüttner distribution
function for a massive and a photon gas in an arbitrary spacetime are evaluated using
a covariant approach and applications are considered to the case of a Schwarzschild
black hole background spacetime. The motion of a massive test particle inside a
photon gas is then studied to investigate drag effects on the particle motion due to
radiation scattering, similarly to what happens for the so-called Poynting-Robertson
effect.

PACS 04.20.Cv – Fundamental problems and general formalism.

1. – Covariant kinetic theory

Consider a Minkowski flat spacetime with line element written in standard Cartesian
coordinates with x0 = t and ηαβ = diag[−1, 1, 1, 1](1)

(1) ds2 = ηαβdxαdxβ = −dt2 + δabdxadxb

and let

(2) P � = −Edt + padxa, P = E∂t + pa∂a,

(∗) E-mail: binid@icra.it
(∗∗) E-mail: danielegregoris@libero.it
(1) Here greek indices run from 0 to 3 whereas latin ones from 1 to 3. We also use geometrized
units with c = G = h̄ = 1.
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the fully covariant (P �) as well as the contravariant (P ) representations of the 4-
momentum of a particle with nonzero rest mass m, i.e.

(3) P 2 ≡ P · P = −m2 = −E2 + δabp
apb ≡ −E2 + p2.

Let us consider a gas of such particles all equal and point-like in equilibrium at the
(absolute) temperature T . The Jüttner distribution function [1]

(4) f = αe−β
√

p2+m2
, α =

nβ

4π m2K2(mβ)
,

is the correct special relativistic extension with respect to the metric (1) of the Maxwell-
Boltzmann distribution function, accounting for a finite maximum speed of the particles.
Here n is the particles density number, β = 1/(kBT ), with kB the Boltzmann constant,
is the “inverse temperature” and K2(x) is the modified Bessel function of second kind of
second order of argument x [2]. An equivalent manifestly covariant form of eq. (4) is

(5) f = αeβξμP μ

,

where ξμ = (∂t)μ is the time-like Killing vector of the metric (1), associated with the
temporal coordinate t and Pμ is given by eq. (2) (see, e.g., [3-6] for a review of Kinetic
theory in a curved spacetime). Recently [7] a covariant method to evaluate the statistical
moments of f in the metric (1) has been introduced leading to the following expressions
for the density current of particles and the stress-energy tensor:

Nμ = 2
∫

f δ+(P 2 + m2)Pμ√−gd4P =
1
β

∂I

∂ξμ
,(6)

Tμν = 2
∫

f δ+(P 2 + m2)PμP ν√−gd4P =
1
β2

∂2I

∂ξμ∂ξν
,(7)

where functional generator I is given by

(8) I = 2
∫

fδ+(P 2 + m2)
√
−gd4P =

∫
f

√−g

|pt|
dp1 ∧ dp2 ∧ dp3.

Here g = −1 is the determinant of the metric (1) and the Dirac delta function takes into
account the mass-shell condition PμPμ = −m2 (the overall factor of 2 is necessary for a
P future-oriented). Using the following parametrization for P (so that the normalization
mass-shell condition is automatically satisfied)

(9) P = m
[
cosh χ ∂t + sinhχ ν̂

]
, ν̂ = sin θ cos φ∂x + sin θ sin φ∂y + cos θ∂z,

with 0 ≤ χ ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, we can evaluate the integral I

(10) I =
4παm

β
K1(mβ),
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where K1(x) is the modified Bessel function of second kind of first order of argument
x. The statistical moments follow easily due to the following property of the Bessel
functions:

(11)
d
dx

[x−nKn(x)] = −x−nKn+1(x),

leading to the following expressions:

(12) Nμ = Nξμ, Tμν =
N

β

(
ημν + ξμξνJ(mβ)

)
, N =

4πm2αK2(mβ)
β

,

where J(x) = xK3(x)/K2(x).
Similarly, in the case of a photon gas (a gas of particles with null 4-momentum P ) we

can perform the same integral I by changing the parametrization of P

(13) P = E (∂t + ν̂) , ν̂ = sin θ cos φ∂x + sin θ sin φ∂y + cos θ∂z,

where E is the photon energy as measured by the fiducial observers and 0 ≤ χ ≤ ∞, 0 ≤
θ ≤ π, 0 ≤ φ ≤ 2π because in this case the mass-shell constraint in the momentum space
is PμPμ = 0. Now the (divergence-free and trace-free) stress-energy tensor is

(14) Tμν =
C

3β4

[
ημν + 4ξμξν

]
.

where in our units C = π2

15 has been determined comparing our result with the black-body
theory.

Passing then to a generic spacetime with coordinates xα and metric ds2 = gαβdxαdxβ ,
still admitting a killing timelike vector field ξ, it is easy to check that the above relations
for a gas of massive particles gas can be extended by simply including a redshift factor
for the temperature, that is

Nμ = Nmμ, Tμν =
N

βξ

(
gμν + mμmνJ(mβξ)

)
, N =

4πm2αK2(mβξ)
βξ

;(15)

similarly, for a photon gas

(16) Tμν =
C

3β4ξ4

[
gμν + 4mμmν

]
,

where N =
√
−NμNμ, mμ = ξμ/ξ (unitary and timelike) with ξ =

√
−ξμξμ representing

the fiducial congruence of observers. Written in this form both quantities Nμ and Tμν

can be obtained from the generating functional

(17) I = (4παm2)
K1(mβξ)

mβξ

and satisfy the corresponding conservation laws, ∇μNμ = 0 and ∇μTμν = 0. In the
next section we will explicitly evaluate these quantities in the case of a Schwarzschild
black-hole spacetime.
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2. – Test gases on a Schwarzschild background

Let us consider as a background spacetime the Schwarzschild metric written in stan-
dard coordinates (t, r, θ, φ)

(18) ds2 = −N(r)2dt2 + N(r)−2dr2 + r2dθ2 + r2 sin2 θdφ2, N(r) =

√
1 − 2M

r
,

(M is the mass of the black hole). The metric (18) is static, i.e. it admits the time-like
Killing vector ξ = ∂t. A family of fiducial observers with 4-velocity aligned with ∂t has
the following adapted orthonormal frame:

(19) et̂ = N(r)−1∂t, er̂ = N(r)∂r, eθ̂ =
1
r
∂θ, eφ̂ =

1
r sin θ

∂φ.

According to the general results of the previous section the energy-momentum tensor of
a fluid of massive particles is characterized by

(20) T =
nK2(mβN(r))
βN2(r)K2(mβ)

[
(J(mβN(r)) − 1) et̂ ⊗ et̂ + δâb̂eâ ⊗ eb̂

]
,

and

(21) N =
4πm2αK2(mβN(r))

βN(r)
,

whereas a photon gas corresponds to

(22) T =
C

(βN(r))4
[
3et̂ ⊗ et̂ + δâb̂eâ ⊗ eb̂

]
.

2.1. Scattering by a radiation field . – Let us assume that a test photon gas, described
by the energy-momentum tensor (22), is superposed to the Schwarzschild background
and let us consider a single massive test particle in motion with 4-velocity

(23) U = γ
(
et̂ + νâeâ

)
, γ =

1√
1 − δâb̂ν

âν b̂

.

The particle is then accelerated by the radiation field. Denoting by a(U)α = ∇UUα the
particle’s 4-acceleration, the equations of motion are given by

(24) ma(U)α = −σP (U)α
μTμνUν ,

where σ is the cross section of the process (e.g., Thomson scattering) and P (U)α̂
ν̂ =

δα̂
ν̂ +U α̂Uν̂ projects orthogonally to U . Let us limit our analysis to equatorial motion of



KINETIC THEORY IN CURVED SPACETIMES: APPLICATIONS TO BLACK HOLES 47

the test particle, i.e., θ = π/2, ν θ̂ = 0, allowed thanks to the spherical symmetry of the
problem either in the presence of the radiation field. The equations of motion reduce to

dν r̂

dτ
= − Aν r̂

N4(r)
− N(r)

γ

r

[
ν2

K(1 − (ν r̂)2) − (νφ̂)2
]
,(25)

dr

dτ
= γN(r)ν r̂,

dνφ̂

dτ
= − Aνφ̂

N4(r)
+

γN(r)
rγ2

K

νφ̂ν r̂,

dφ

dτ
=

γ

r
νφ̂,

where we have introduced the Keplerian velocity νK with the Lorentz factor γK = (1 −
ν2

K)−1/2 and the coupling constant A between the test particle and the field:

(26) ν2
K =

M

r − 2M
, γ2

K =
r − 2M

r − 3M
, A = 8

σC

mβ4
.

The numerical integration of these equations shows that a spiral (inward) motion is the
general feature; in particular a particle initially at r = 6M (innermost stable circular
orbit for the Schwarzschild metric) with initial null radial velocity and initial azimuthal
velocity coinciding with the geodesic value νK falls anyway into the black hole. In
addition, we see that there are not equilibrium orbits, irrespective of the value of σ
which quantifies the intensity of the process.

This study broadens the one present in [8,9] where a different description of the photon
field is considered. Comparing and contrasting more in detail with the above-mentioned
works as well as with other related literature will be the object of a future work.
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