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Summary. — We have considered the propagation of electromagnetic waves in a
space-time representing an exact gravitational plane wave and calculated the induced
changes on the four-potential field Aμ of a plane electromagnetic wave. By choosing
a suitable photon round-trip in a Michelson interferometer, we have been able to
identify the physical effects of the exact gravitational wave on the electromagnetic
field, i.e. phase shift, change of the polarization vector, angular deflection and
delay. These results have been exploited to study the response of an interferometric
gravitational wave detector beyond the linear approximation of the general theory
of relativity. A much more detailled examination of this problem can be found in
our paper recently published in Classical and Quantum Gravity (28 (2011) 235007).

PACS 04.30.Nk – Wave propagation and interactions.
PACS 04.80.Nn – Gravitational wave detectors and experiments.
PACS 04.20.Gz – Spacetime topology, causal structure, spinor structure.

1. – Introduction

The spacetime metric of an exact gravitational plane wave with a single polarization
state (+ state) can be written in the “Rosen form” as follows [1, 2]:

(1) g = −1
2
(du ⊗ dv + dv ⊗ du) + F (u)2dx ⊗ dx + G(u)2dy ⊗ dy,

where the coordinates (u, v, x, y) are adapted to the spacetime symmetries; i.e. ∂v, ∂x,
∂y are all Killing vectors. The two null coordinates u and v are related to a standard
temporal coordinate t and a spatial coordinate z (the direction of propagation of the
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wave) by the transformation u = t − z and v = t + z. The vacuum Einstein field
equations associated with eq. (1) reduce to the single equation Ruu = 0, i.e.

(2)
F ′′(u)
F (u)

+
G′′(u)
G(u)

= 0,

where a prime denotes differentiation with respect to u. The wave is then propagating
along the positive z-axis with axes of polarization aligned with the coordinate axes x and
y. In the following we will consider a sandwich-wave solution, i.e. a curved-spacetime
region in the interval u ∈ [0, a2/τ ] between two Minkowskian regions, where the constant
parameters a and τ have been introduced, with τ representing the duration of the in-
teraction of particles or fields with the wave and 1/a the overall curvature of the wave
region. A possible choice of metric functions is the following [2]:

F (u) =

⎧⎪⎪⎨
⎪⎪⎩

1, u ≤ 0, (I)

cos(u/a), 0 ≤ u ≤ a2/τ, (II)

α + βu, a2/τ ≤ u, (III)

(3)

G(u) =

⎧⎪⎪⎨
⎪⎪⎩

1, u ≤ 0, (I)

cosh(u/a), 0 ≤ u ≤ a2/τ, (II)

γ + δu, a2/τ ≤ u, (III)

where labels I, II and III refer to In-zone, Wave-zone and Out-zone, respectively. The
constants α, β, γ and δ can be found by requiring C1 regularity conditions at the bound-
ary of the sandwich, u = 0 and u = a2/τ , that is

α = cos
(a

τ

)
+

a

τ
sin

(a

τ

)
, β = −1

a
sin

(a

τ

)
,(4)

γ = cosh
(a

τ

)
− a

τ
sinh

(a

τ

)
, δ =

1
a

sinh
(a

τ

)
.

2. – Scattering of electromagnetic waves by the gravitational wave

Maxwell’s equation in the Lorenz gauge, �Aα ≡ gμν∇μ∇νAα = 0, ∇μAμ = 0, can
be easily solved for the vector potential A, in this case leading to

(5) A� =
A0√
FG

eiφ e�.

This solution represents a field, which is not a wave in general, propagating in a direction
associated with positive v, x, y coordinates. Since it is a wave in region I (see [3]), we
will refer to φ as the phase and eμ as the polarization vector of the field also in the other
regions. In general, the phase φ is given by

(6) φ =
(∫ u

pudu

)
+ pvv + pxx + pyy, pu = pu(u) =

1
4pv

(
p2

x

F 2
+

p2
y

G2

)
,
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and the contravariant polarization vector by

(7) e = − 1
pv

(px

F
cos(ϑ) +

py

G
sin(ϑ)

)
∂v +

cos(ϑ)
F

∂x +
sin(ϑ)

G
∂y.

The explicit expression for the “phase” in region III is generically a function of the
coordinates u, v, x, y and can be re-xpressed in Cartesian coordinates U, V,X, Y by a
transformation U = u, X = F (u)x, Y = G(u)y, V = v + F (u)F ′(u)x2 + G(u)G′(u)y2.
It is dominated by its value along the null geodesics, namely

(8) φIII (d) =
Q2

x + Q2
y

4Qv
U + QvV + QxX + QyY + C̃III = QαXα + C̃III ,

In fact, let us consider the “phase” given by eq. (6) in region III and along a generic
curve Xα = Xα(λ) as a function of the parameter λ along that curve, and require its
variation dφIII/dλ to be vanishing in order to determine the dominant part. We find that
this extremal condition is satisfied exactly by the null geodesics in region III (see [3]). In
addition, we can say that even if our general solution for the electromagnetic field after the
passage of the gravitational wave is not exactly a plane wave, it is dominated by a plane
wave with the wave vector aligned with that of a null geodesic of the background, with
the phase given by eq. (8). Similarly to what happens for the phase the “polarization”
vector is also dominated by the corresponding value along the null geodesics (see [3]), in
the sense that the eX

III and eY
III components do not depend on the curve, while the eV

III

component reaches its extremal value on the null geodesics, namely

(9) eIII (d) = − 1
Qv

[Qx cos(ϑ) + Qy sin(ϑ)] ∂V + cos(ϑ)∂X + sin(ϑ)∂Y ,

where the Qα = const are the components of the dominant wave vector as emerging after
the scattering by the gravitational wave (analogous to the components px, py, pv of the
four-momentum of an unperturbed photon).

We will now consider the variation in the properties of the electromagnetic wave,
by comparing the dominant parts of the solutions before and after the passage of the
gravitational wave. The contravariant polarization vector has a variation only in the
v-component, namely

Δev =
([

1 − cos
(a

τ

)] px

pv
− 2 sin

(a

τ

) x0

a

)
cos(ϑ)(10)

+
([

1 − cosh
(a

τ

)] py

pv
+ 2 sinh

(a

τ

) y0

a

)
sin(ϑ).

After the passage of the gravitational wave and in terms of the dominant mode analysis
discussed above, the phase of the electromagnetic wave is shifted by

(11) Δφ = − a

4pv

[
p2

x tan
(a

τ

)
+ p2

y tanh
(a

τ

)]
+ pv(vs − v0),

where the x0, y0, v0 relate to a generic starting point Ps = (us, vs, xs, ys). Note that the
transformed coordinates (U, V,X, Y ) are Cartesian, so that the new metric functions are
such that FIII = GIII = 1. As a consequence, the amplitude of the dominant part of
the electromagnetic field is unaffected by the passage of the gravitational wave.
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3. – Photon moving along one axis

Let us now consider the motion of photons along x or y axes which represent the
direction of the arm of a Michelson interferometer with the beam splitter in the origin [4].
The photons start at the beam-splitter (denoted by ∗) and are reflected once by an end
mirror at a distance L from the origin, denoted by small s (we regard the mirrors as
fixed and therefore do not consider the timelike geodesics associated with them). At the
start of proper time, λ = 0, the photon is assumed at the generic point Ps,x or Ps,y on
the mirror (where xs = L and ys = 0 or xs = 0 and ys = L), where the momentum is
px or py in negative x- or y-direction (towards the origin). In Ps,x and Ps,y is vs = us,
ensuring zs = 0. The momenta px and py are constrained by demanding z∗ = 0 in the
origin, namely px = 2pv, py = 2pv, pv < 0. The choice of negative momentum pv ensures
that u increases with λ.

We consider two photons (or photon beams), making the round trip through the in-
terferometer along the x- and y-axis, respectively, and arriving again at the beam splitter
afterwards. The photons start from the origin at u∗ = us+L, and we can foresee two pos-
sible scenarios: I) The photons travel from the origin to the mirror unperturbed and are
reflected by the mirror (in P

′

s,x or P
′

s,y) at u
′

s = us+2L. On the return trip they encounter
the gravitational wave, and return to the origin at Ũ∗′

x or Ũ∗′

y respectively. II) The pho-
tons encounter the gravitational wave on the way to the mirror, where they are reflected
at Ũ

′

s,x or Ũ
′

s,y (depending on the interferometer arm we consider). They return to the
origin in the post-wave region and arrive there again at Ũ∗′

x or Ũ∗′

y respectively. The two
photons emerging from the gravitational wave experience a deflection in Z-direction of

(12) Z̃∗′

x =
1
2

[(
Qx

pv
+ 1

)
L + us − Ũ∗′

x

]
, Z̃∗′

y =
1
2

[(
Qy

pv
+ 1

)
L + us − Ũ∗′

y

]
,

respectively, and arrive at the origin at a coordinate time

Ũ∗′

x =
a2

τ
+ a

2L + (L + us) cos
(

a
τ

)
− a sin

(
a
τ

)
(L + us) sin

(
a
τ

)
+ a cos

(
a
τ

) ,(13)

Ũ∗′

y =
a2

τ
− a

2L + (L + us) cosh
(

a
τ

)
− a sinh

(
a
τ

)
(L + us) sinh

(
a
τ

)
− a cosh

(
a
τ

) .

We can regard the path of a single photon travelling through the interferometer as the cen-
ter of a photon beam. The deflection decreases the intensity of the interference pattern of
the two photon beams, but the magnitude of the deflection compared to the cross section
of the photon beam is very small, whereas the change in the interference pattern of two
photon beams due to their shifted phase is a much greater effect. It should also be noted
that the expressions for the deflection and delay of photons arriving at the origin after the
passage of the wave are the same for scenarios I and II. They are distinguished by the rela-
tion between us and L. In scenario I the photons have to leave the origin at L < |u∗| < 2L
to meet the wave on the return trip towards the origin, while in scenario II the photons
leave from the origin at 0 < |u∗| < L in order to encounter the wave on the way to the mir-
ror. (The above computations required an examination of the geodesics detailled in [3].)
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When the two photon beams arrive at the beam splitter again after the round trip,
they have a relative phase shift

(14) Δφ = Δφx − Δφy = −a tan
(a

τ

)
+ a tanh

(a

τ

)
and a relative change in polarization

Δev = 2
[
1 − cos

(a

τ

)
− us + L

a
sin

(a

τ

)]
cos(ϑ)(15)

−2
[
1 − cosh

(a

τ

)
+

us + L

a
sinh

(a

τ

)]
sin(ϑ).

The scenario considered (I or II) is distinguished by the choice of us in terms of L as above,
yielding different expressions for the relative change in polarization. The relative phase
shift depends only on the dimension of the gravitational wave, not on the construction
of the interferometer.

4. – Concluding remarks

We have considered the propagation of a test electromagnetic field on the background
of an exact gravitational plane wave with single (+) polarization, and have extended the
recent analysis of Finn in ref. [5], in which the gravitational wave has been considered in
the linear approximation. The existence of an exact solution for the phase shift between
the In-zone and Out-zone, where special relativity holds and there is no residual gauge
freedom of general relativity, makes us more confident about the physical interpretation
of the response of a gravitational interferometer. In this respect, we should also men-
tion that, in the limit of weak gravitational wave (a 	 1), we recover the results of
Rakhmanov in ref. [6]. In this limit mention should also be given to the pioneering work
of Mashhoon and Grishchuk [7]. It is worth noticing that the solution for the electromag-
netic field consists of a plane wave in the In-zone and a non singular field in the Out-zone
which emerges after the interaction. We found that the emerging field is dominated by
plane wave behaviour where the wave vector is aligned with the null geodesics of the
background. Furthermore, we determined the phase shift between the ingoing electro-
magnetic wave and the dominant part of the outgoing field as the significant response of
a Michelson interferometer to the presence of an exact gravitational wave. In addition,
we have calculated the change of the polarization vector, and the angular deflection and
delay of photon beams making the round trip in the interferometer. No matter how small
these effects are, they could be measured by using different detection methods.
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