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Summary. — A nonuniform electric or magnetic field can induce a continually
varying index of refraction. A strong electromagnetic field can change the vacuum
index of refraction by the nonlinear electrodynamic effect. We calculate the bending
angle of a light ray under strong electric and magnetic field of charged black hole
and neutron star according to the nonlinear electrodynamics of the Euler-Heisenberg
interaction. We estimate that the electrical bending angle is negligibly small com-
pared with the gravitational bending. The bending of light by the magnetic field of
a neutron star is also significantly smaller than the bending angle by gravitation.

PACS 12.20.-m – Quantum electrodynamics.
PACS 95.30.-k – Fundamental aspects of astrophysics.

1. – Introduction

In the geometric optic approximation, the light path can be bent by a continually
changing index of refraction. Since the theory of classical electrodynamics is linear, the
vacuum of electrodynamics defined by the absence of charged matter is unique and triv-
ial. This means that the speed of light is constant and the index of refraction does not
change. Therefore the light path cannot be bent by electric or magnetic field. However,
the Euler-Heisenberg interaction [1, 2] that reflects the nonlinear interaction by quan-
tum electrodynamics can cause the vacuum index of refraction to be nontrivial. In the
presence of a nonuniform electric or magnetic background field the index of refraction
can vary continually over the light path. Thus the light can be bent when it passes the
neighborhood of an electrically or magnetically charged object.

It seems very difficult to test the bending directly in a terrestrial laboratory since
the maximum available field is of the order B, E/c ∼ 102 T [3-7]. Alternatively, the
bending of light has been studied in astronomical scale by several authors. For instance,
De Lorenci et al. [8] studied the bending of a high-energy photon when it passes around
a charged black hole and Denisov et al. [9-14] studied the light bending by the magnetic
field of a neutron star.
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Fig. 1. – Differential bending by nonuniform refractive index.

In this paper, we consider the propagation of a high-energy photon when it passes
the electric or magnetic field induced by astronomical objects like charged black hole or
magnetized neutron star. From the photon trajectory equation based on Snell’s law [15],
we will calculate the bending angle of light ray when it passes the electric field induced
by a charged black hole or magnetic field by a neutron star.

2. – Photon trajectory under a continually varying index of refraction

In geometric optics the index of refraction in matter is defined as the speed of light in
vacuum divided by the speed of light within matter, i.e., n = c/v. The gradient of the
index of refraction can cause the bending of the light ray. The bending can be calculated
by simple geometric optics.

The infinitesimal bending of the photon trajectory over δ�r can be obtained from
Snell’s law as

(1) δθ = tan θ
δn

n
=

1
n
|∇n × δ�r |,

where δn = ∇n · δ�r and θ denotes the angle between the unit vector u in the direction of
photon propagation and ∇n (see fig. 1). We can write the bending in a vector form as

(2) δu =
1
n

(δ�r ×∇n) × u,

which leads to the trajectory equation

(3)
du
ds

=
1
n

(u ×∇n) × u,

where s denotes the distance parameter of the light trajectory with ds = |d�r | and
u = d�r/ds.
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When the correction to the index of refraction is small, the trajectory equation can
be approximated to the leading order as

(4)
du
ds

= (u0 ×∇n) × u0,

where u0 denotes the initial direction of the incoming photon. Throughout the paper we
shall assume the photon comes in from x = −∞ and moves to the +x direction so that

(5) u0 = (1, 0, 0).

Defining ∇n = (η1, η2, η3), the trajectory equation can be written as

(6)
d2x

ds2
= 0,

d2y

ds2
= η2,

d2z

ds2
= η3.

The first equation shows that ds = dx at leading order and the trajectory equations for
y(x) and z(x) are given by

(7)
d2y

dx2
= η2,

d2z

dx2
= η3.

If one knows the functional form of the index of refraction, one can calculate the trajectory
of light ray from the above equation.

3. – Bending angle by a charged black hole

In the presence of an electric field, the correction to the speed of light due to the
nonlinear interaction is given by [16-26]

(8)
v

c
= 1 − aα2h̄3ε0

45m4c5
(u × E)2,

where u denotes the unit vector in the direction of photon propagation, a = 14 for
the perpendicular mode in which the photon polarization is perpendicular to the plane
spanned by u and E, and a = 8 for the parallel mode where the polarization is parallel
to the plane. Throughout the paper all units are in MKS. The index of refraction due to
the background electric field is given by

(9) n =
c

v
= 1 +

aα2h̄3ε0
45m4c5

(u × E)2.

We consider the bending of photon trajectory by a spherically symmetric charged
object of total charge Q. For this case the bending angle can be calculated in the same
way as in the Coulombic case with the electric field

(10) E =
Q

4πε0r2
r̂.
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Fig. 2. – Schematic of light bending by a Coulombic charge Q located at the origin.

The index of refraction to the leading order can be written explicitly as

(11) n = 1 +
aα2h̄3Q2

720π2ε0m4c5

(y − xy′)2

r6(1 + y′2)
,

where prime is the derivative with respect to x.
For a photon incoming from x = −∞ with impact parameter b (see fig. 2), the initial

condition reads

(12) y(−∞) = b, y′(−∞) = 0,

and from the first of the trajectory equation (7) to the leading order we have

(13) y′′ = η2 =
aα2Q2λ4

e

360π2ε0h̄c

(
y

r6
− 3y3

r8

)
,

where λe = h̄/mc is the Compton length of the electron. The total bending angle ϕe can
be obtained by integration

(14) y′(∞) =
∫ ∞

−∞
η2dx = tan ϕe � ϕe.

By putting y = b in η2, for the leading order solution, we obtain

(15) ϕe = − aα2Q2

640πε0h̄c

(
λe

b

)4

.

The bending always occurs toward the center of the charged object as in the bending by
gravitational field.

To compare the bending by electric field with the bending by gravitation, let us
consider a charged non-rotating black hole with mass M and charge Q. The bending by
gravitational field is well known:

(16) ϕg =
4GM
bc2

.
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Note that, from ϕg ∝ 1/b and ϕe ∝ 1/b4, the bending by the electric field can be
important at short distance. The charge and angular momentum per unit mass (J/M)
is constrained by the mass of the black hole, in Planck units, as [27]

(17) Q2 + (J/M)2 ≤ M2.

For non-rotating (J = 0) charged black hole, restoring the physical constants, the total
electric charge is constrained by the condition

(18)
Q2

4πε0
≤ GM2.

We can parameterize the charge as

(19) Q =
√

4πε0GMξ,

with 0 ≤ ξ ≤ 1. Then the magnitude of the bending angle by electric field can be written
as

(20) ϕe =
aα2ξ2

160
GM2

h̄c

(
λe

b

)4

=
aα2ξ2

640
bcM

h̄

(
λe

b

)4

ϕg.

For the numerical estimation, compare the possible maximal bending (ξ = 1 and
a = 14) with the gravitational bending for stellar black hole of ten times the solar mass
M = 10Msun = 2 × 1031 kg. Since our formalism is based on flat spacetime, not on
general relativity, the impact parameter should be large enough. We consider the case
when the impact parameter is ten times the Schwarzschild radius, b = 10rsh ∼ 300 km,
at which

(21) ϕg = 1.98 × 10−1 rad; ϕe = 5.47 × 101ϕg = 1.08 × 101 rad.

The bending by electric charge dominates the gravitational bending. Even for a non-
extremal charged black hole with ξ = 0.1, the electrical bending, ϕe = 1.08 × 10−1 rad,
is comparable to the gravitational bending.

However, we should not accept this naive estimation. Because the Euler-Heisenberg
Lagrangian is a low-energy effective action of QED presented by asymptotic series, the
application is limited to a weak-field approximation. Thus, our formalism can be applied
only to the region where the field strength is not as strong as the QED critical field
Ec = m2c3/eh̄ = 1.3 × 1018 V/m. In the region where the electric field is of the order
of or higher than Ec, the vacuum is strongly unstable and the electric field is highly
screened by the electron-positron pair creation [2,28]. Only photons entering the region
with electric field below Ec can have a chance to be observed.

Let us estimate the field strength for the case ξ = 0.1 and b = 10rsh, where the
electrical bending has the same order as the gravitational bending. Since the electric
field at a distance b is given by

(22) E =
√

G

4πε0

Mξ

b2
,
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Fig. 3. – Schematic of light bending by a magnetic dipole located at the origin. The dotted line
is the photon trajectory, the dashed line is the projection of the outgoing photon path on the
xz-plane, and φh (φv) is the bending angle of horizontal (vertical) direction.

the field strength at b = 10rsh and ξ = 0.1 is estimated as 1.7 × 1019 V/m. This number
is one order of magnitude above Ec. Even for ξ = 0.01, where ϕe ∼ 10−3ϕg, the field
strength is about the order of the critical field. So we conclude that the bending of
light by the electric field of a charged black hole is negligibly small compared with the
gravitational bending.

4. – Bending by a magnetic dipole

Now we consider the bending of the photon trajectory by a magnetic dipole. Ob-
viously, the bending by a magnetic dipole should depend on the orientation of dipole
relative to the direction of the incoming photon. We consider the bending by a magnetic
dipole located at the origin with arbitrary orientation (see fig. 3). We take the direction
of the incoming photon as the x-axis, the horizontal direction as the y-axis, and the
vertical direction as the z-axis. For the magnetic dipole M located at origin, we define
the directional cosines α = M̂ · x̂, β = M̂ · ŷ, γ = M̂ · ẑ such that M = MM̂ . The
magnetic field by the dipole can be written as

(23) B = (Bx, By, Bz) =
μ0M

4π

(
3(M̂ · �r )�r

r5
− M̂

r3

)
,

and the index of refraction due to this background magnetic field is given by

(24) n =
c

v
= 1 +

aα2h̄3ε0
45m4c3

(u × B)2.

Taking the unit vector in the direction of the photon propagation as

(25) u =
1√

1 + y′2 + z′2
(1, y′, z′),
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the index of refraction can be written explicitly as

n = 1 +
aα2h̄3ε0
45m4c3

(
μ0M

4π

)2 1
r10

[{
β(2y2 − x2 − z2) + 3αxy + 3γyz

}2

(26)

+
{

γ(2z2 − x2 − y2) + 3αxz + 3βyz
}2

]
.

The bending angle can be obtained by integrating the leading-order trajectory equa-
tion (7) with the boundary condition y(−∞) = b and z(−∞) = 0. The results for
horizontal (ϕh = y′(∞)) and vertical (ϕv = z′(∞)) deflections are

ϕh = − π

3 · 27

aα2ε0c

h̄

(
μ0M

4π

)2
λ4

e

b6
(15α2 + 41β2 + 16γ2),(27)

ϕv =
5π

3 · 26

aα2ε0c

h̄

(
μ0M

4π

)2
λ4

e

b6
βγ.(28)

Let us now consider three special cases where the relative orientations are so simple
that the bending occurs in one particular direction by symmetry. First, we consider
the case when the photon path is perpendicular to the dipole moment and traveling on
the equator of the dipole. Assume that the magnetic moment directs along ẑ and the
incident photon is coming from x = −∞. This is the specific case considered by Denisov
et al. [9]. Taking α = β = 0 and γ = 1, the horizontal (y) bending angle is given by

(29) ϕh = − π

24
aα2ε0c

h̄

(
μ0M

4π

)2
λ4

e

b6
.

This result agrees with Denisov et al. (see the eqs. (4) and (5) in [9]). There is no vertical
(z) bending by symmetry, ϕv = 0. It is obvious that there is no gradient for the index of
refraction in that direction. Second, consider the case when the photon path is parallel
or antiparallel to the dipole axis. Assume that the dipole at the origin directs along
the −x-axis in the xy-plane. Taking α = −1 and β = γ = 0, the bending angle in the
y-direction is given by

(30) ϕh = −5π

27

aα2ε0c

h̄

(
μ0M

4π

)2
λ4

e

b6
.

Also, there is no bending in the z-direction, ϕv = 0. Finally, consider the case when
the photon path is perpendicular to dipole moment and passes the north or south pole.
Locate the dipole at the origin directing along the y-axis in the xy-plane. Taking α =
γ = 0 and β = 1, the horizontal bending angle is given by

(31) ϕh = − 41π

3 · 27

aα2ε0c

h̄

(
μ0M

4π

)2
λ4

e

b6
.

This configuration gives the largest bending since the gradient of the index of refraction
is maximal along this direction.
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Now we compare the bending by a magnetic field with the gravitational bending.
We consider the possible maximum bending given by eq. (31) for a strongly magnetized
neutron star with solar mass M = Msun = 2 × 1030 kg and radius r0 = 10 km. For
strongly magnetized neutron stars the magnetic field at the surface can be as strong as
Bs = 108–1011 T. Parameterizing the impact parameter in units of the radius b = ζr0

with ζ > 1, the bending angle by a magnetic field can be written as

(32) ϕm =
41π

3 · 27

aα2ε0c

h̄
B2

s

λ4
e

ζ6
,

where we have used Bs = μ0M/4πr3
0, the magnetic field strength at the neutron star

surface.
As discussed for the electrical bending, the field strength should not be above the

QED critical field Bc = 4.4×109 T. The possible maximum (ζ = 1) value of the bending
angle when the magnetic field on the surface of the neutron star is of the order Bs = 109 T
is given by

(33) ϕg = 5.93 × 10−1 rad; ϕm = 1.40 × 10−4 rad,

for the ray passing the north or south pole. The field strength of Bs = 109 T is not
strong enough to compete with the gravitational bending. Thus the bending of light
by the magnetic field of a neutron star will also be negligibly small compared with the
gravitational bending.

5. – Summary

We have studied how photons can be bent when they travel through the strong electric
or magnetic field of a compact object like a charged black hole or a neutron star. We
calculated the bending angles according to the nonlinear electrodynamics of the Euler-
Heisenberg interaction. Since the Euler-Heisenberg Lagrangian is a low-energy effective
action of QED presented by asymptotic series, the application is limited to the weak-field
approximation. Thus our formalism is valid only for regions where the field strengths are
not as strong as Ec and Bc. Our estimation shows that the bending by an electrically
charged black hole is negligibly small compared with the bending by gravitation. We
found a general formula for light bending valid for any orientation of the magnetic dipole.
In summary, the light bending by both the electric and magnetic fields of astronomical
objects is significantly smaller than the gravitational bending.
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