
DOI 10.1393/ncc/i2013-11489-2

Colloquia: 12th Italian-Korean Symposium 2011

IL NUOVO CIMENTO Vol. 36 C, N. 1 Suppl. 1 Gennaio-Febbraio 2013

Oscillating instanton solutions and classification
of vacuum bubbles

Bum-Hoon Lee(1)(2)(∗), Chul H. Lee(3)(∗∗), Wonwoo Lee(1)(∗∗∗)
and Changheon Oh(3)( ∗∗∗)
(1) Center for Quantum Spacetime, Sogang University - Seoul 121-742, Korea
(2) Department of Physics and BK21 Division, Sogang University - Seoul 121-742, Korea
(3) Department of Physics, Hanyang University - Seoul 133-791, Korea

ricevuto il 9 Marzo 2012

Summary. — We discuss the nucleation process of an oscillating instanton solution
and a vacuum bubble in this presentation. We show that there exist the O(4)-
symmetric oscillating instanton solution and the vacuum bubbles with arbitrary
energies. The nontrivial solution corresponding to the tunneling is possible only
when gravity is switched on. The geometry of these solutions is finite and preserves
the Z2 symmetry. The action for the solutions are integrable both in de Sitter and
in flat background. The instatons do not have any singularity. Our solutions can be
interpreted as solutions describing an instanton-induced domain wall or braneworld-
like object rather than a kink-induced domain wall or braneworld. The oscillating
instanton solutions have a thick wall and the solutions can be interpreted as a
mechanism providing nucleation of the thick wall for topological inflation.

PACS 04.62.+v – Quantum fields in curved spacetime.
PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (in-
cluding cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe,
etc.).

1. – Introduction

The eternal inflationary universe scenario [1, 2] or multiverse scenario is related to
an expanding sea of metastable vacuum, which is also related to the question: How the
universe began if it had a beginning? The inflationary universe scenario is seen as a hope
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for a universe without a beginning. Another scenario as the string theory landscape [3]
has many stable and metastable vacua. Hence it is natural to question which vacuum
state is related to our universe, even we do not know on the vacuum selection principle
that singles out our universe in the landscape. These scenarios seem to provide with
escaping from the question on the initial conditions of the universe, i.e. it seems to be
eternal into the past. Unfortunately, inflationary spacetimes cannot be complete in the
past direction [4], even if the universe is eternal into the future. Accordingly, we have
a question again. How did the lower vacuum state representing flat or anti-de Sitter
background get up the higher vacuum state corresponding to de Sitter background? Can
we get a mechanism for the de Sitter universe with some entropy from the state with zero
or a very low entropy in an initial causal patch? One may consider another approach
which is related to the creation of our universe from nothing by a quantum tunneling [1,5].

With these questions we study the oscillating instanton solutions and classify the
possible types of a vacuum bubble, even if the nucleation process of a vacuum bubble
becomes only a simple toy model.

The tunneling process is quantum mechanically described by the Euclidean solution
obeying appropriate boundary conditions. The Euclidean solution interpolates between
two different classical vacua. There exist two kinds of Euclidean solutions describing
tunneling phenomena in the double-well potential. One, which is for tunneling in an
asymmetric double-well potential, corresponds to a bounce solution. The bounce solution
describes the decay of a background vacuum state. The other, which is for tunneling in
a symmetric double-well potential, corresponds to an instanton solution.

The bounce solution is related to the nucleation of a true (false) vacuum bubble
describing decay of a background vacuum state. The process has been studied within
various contexts for several decades. It was fist investigated in ref. [6], developed in
flat spacetime and the dynamics was introduced in ref. [7], and developed in the curved
spacetime in ref. [8]. This results was enlarged by Parke to the cases with an arbitrary
vacuum energy [9]. As a special case of the true vacuum bubble, a vacuum bubble with
a finite-sized background after nucleation was studied in ref. [10]. The decay of false
monopoles with a gauge group was also studied using the thin-wall approximation [11].

The mechanism for nucleation of a false vacuum bubble in a true vacuum background
has also been studied within various contexts. Nucleation of a large false vacuum bubble
in dS space was obtained in ref. [12] and nucleation with a global monopole in ref. [13].
The mechanism for nucleation of a small false vacuum bubble was obtained in the Einstein
gravity with a nonminimally coupled scalar field [14], with Gauss-Bonnet term in ref. [15],
and using Brans-Dicke type theory [16]. The classification of vacuum bubbles including
false vacuum bubbles in the dS background in the Einstein gravity was obtained in
ref. [17], in which the transition rate and the size of the instanton solution were evaluated
in the space, as the limiting case of large true vacuum bubble or large false vacuum bubble.
A homogeneous Euclidean configuration in which the scalar field jumps simultaneously
onto the top of the potential barrier was investigated in ref. [18]

The oscillating solution with O(4) symmetry in dS space was first studied in ref. [19],
where the authors found the solution to oscillating scalar field Φ in fixed background.
They adopted the fact that the role of damping term in the particle analogy picture can
be changed into that of anti-damping term in dS space if the evolution parameter exceeds
half of a given range. The oscillation means that the field in their solutions oscillates
back and forth between the two sides of the potential barrier. The analytic computation
as the solution of a self-gravitating scalar field and meanings of this type of solution were
further studied in ref. [20], in which we have observed that the interpolating solutions are
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possible even in AdS space if the local maximum value of the potential is positive. The
present work is the study whether there exist oscillating solutions not only in dS but also
in both flat and AdS space if the local maximum value of the potential is positive [21].

The paper is organized as follows: in the next section we set up the basic framework
for this work. In sect. 2, we present numerical oscillating instanton solutions by solving
the coupled equations for the metric and the scalar field simultaneously. We concentrated
on the case in flat background. The case in dS background was emphasized in ref. [21].
In sect. 3, we classify the possible types of a vacuum bubble in the background with
arbitrary vacuum energies. In sect. 4, we summarize and discuss our results.

2. – Oscillating instanton solutions

The vacuum-to-vacuum transition amplitude can be semiclassically represented as
Ae−ΔS , where the exponent ΔS is the difference between the Euclidean action cor-
responding to a classical solution and the background action itself. The pre-factor A
comes from the first-order quantum correction.

We consider the following action:

(1) S =
∫
M

√
−gd4x

[
R

2κ
− 1

2
∇αΦ∇αΦ − U(Φ)

]
+

∮
∂M

√
−h d3x

K − Ko

κ
,

where g ≡ det gμν , κ ≡ 8πG, R denotes the scalar curvature of the spacetime M, K
and Ko are the traces of the extrinsic curvatures of ∂M in the metric gμν and ημν ,
respectively, and the second term on the right-hand side is the boundary term [22]. The
gravitational field equations can be obtained properly from a variational principle with
this boundary term. This term is also necessary to obtain the correct action.

The potential U(Φ), which represents the energy density of a homogeneous and static
scalar field, has two degenerate minima

(2) U(Φ) =
λ

8

(
Φ2 − μ2

λ

)2

+ U0.

The cosmological constant is given by Λ = κUo, hence the space will be dS, flat, or AdS
depending on whether U0 > 0, U0 = 0, or U0 < 0.

To evaluate ΔS and show the existence of the solution, one has to take the analytic
continuation to Euclidean space. We assume the O(4) symmetry for both the geometry
and the scalar field as in ref. [8]

(3) ds2 = dη2 + ρ2(η)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)]
.

In this case Φ and ρ depend only on η, and the Euclidean field equations for them can
be written in the form:

(4) Φ′′ +
3ρ′

ρ
Φ′ =

dU

dΦ
and ρ′′ = −κ

3
ρ(Φ′2 + U),

respectively and the Hamiltonian constraint is given by

(5) ρ′2 − 1 − κρ2

3

(
1
2
Φ′2 − U

)
= 0.
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In order to yield the solution the constraint requires a delicate balance among the terms.
Otherwise the solution can provide qualitatively incorrect behavior [23].

For this to work, we choose the values of the field ρ and derivatives of the field Φ as
follows:

(6) ρ|η=0 = 0, ρ|η=ηmax
= 0,

dΦ
dη

∣∣∣∣
η=0

= 0, and
dΦ
dη

∣∣∣∣
η=ηmax

= 0,

where ηmax is the maximum value of η and will have a finite value. These conditions are
useful for obtaining solutions with Z2 symmetry.

To simplify things, we only consider the Euclidean action of the bulk part in eq. (1)
to get,

(7) SE =
∫
M

√
gE d4xE

[
−RE

2κ
+

1
2
Φ′2 + U

]
= 2π2

∫
ρ3dη[−U ],

where RE = 6[1/ρ2 − ρ′2/ρ2 − ρ′′/ρ] and we used eqs. (4) and (5) to arrive at this. Thus
the contributions coming from the geometry and kinetic energy in the Euclidean action
are included to be the potential effectively. The volume energy density has the following
form:

(8) ξ ≡ −H = −
[
−RE

2κ
+

1
2
Φ′2 + U

]
= U.

We will examine the change in the density with respect to the evolution parameter η.
In the thin-wall approximation scheme, the Euclidean action can be divided into three

parts: ΔS = ΔSin +ΔSwall +ΔSout, where ΔS = SE(solution)−SE(background). The
contribution from the wall is ΔSwall = 2π2ρ̄3So, where the surface tension of the wall
So(= 2μ3/3λ) is a constant, i.e. the uniform tension having the same value at all pints
on the surface. In the wall, the scalar field varies continuously between the true and false
vacuum values. If the thickness of the wall is small compared to the radius of the wall,
we can use the thin-wall approximation.

Actually, the wall can be a source of repulsive gravitation (p < 0), unlike the usual
pressure (p > 0) representing a source of gravitational attraction.

In ref. [21], we have considered oscillating instanton solutions in dS background, in
the main. In this work, we consider mainly the solutions in flat background.

Figure 1 shows oscillating instanton solutions representing tunneling starting from left
vacuum state in the case of flat-flat degenerate vacua. We take dimensionless variable [20]
κ̃ = 0.2 for all the cases. The first figure illustrates the potential, in which the number
n denotes the number of the crossing or the number of oscillations. The maximum
number nmax is 6. The second figure illustrates the initial point Φ̃o for each number
of oscillations. As expected, the number of oscillations increases as the initial point,
Φ̃(η̃initial) = Φ̃o, moves away from the vacuum state. The third figure illustrates the
solutions of ρ̃. We can see that the size of the geometry with a solution decreases as
the number of crossing increases because the period of the evolution parameter η̃max

decreases as the starting point moves away from the vacuum state. The solution of ρ̃
is η̃ in fixed flat space. Thus, the straight evolution line of ρ̃ near the vacuum state
indicate flat space. Figure 1(i) illustrates the one-crossing solution, n = 1, of the field
Φ̃. Figure 1(ii) illustrates the two-crossing solution, n = 2. There does not exist this
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Fig. 1. – The numerical solutions represent oscillating instanton solutions between flat-flat de-
generate vacua.

type of the solution including bounce solutions when gravity is switched off. However,
the solution is somewhat different from the double-bounce solution in ref. [24]. Since
our solution of Φ̃ does not asymptotically approach the other vacuum state, it is difficult
that we interpret our solution as the double-instanton solution or the spontaneous pair-
creation of instanton solutions. Figures 1(iii)-(vi) illustrate the n-crossing solution, n =
3, 4, 5, 6. Figures 1(i), (iii), and (v) illustrate the tunneling starting from the left vacuum
state to the right vacuum state. Figures 1(ii), (iv), and (vi) illustrate solutions going
back to the starting point after oscillations. This type of solutions is possible only if
gravity is taken into account. The maximum number of oscillations is determined by the
parameters κ̃ and Ũo observed in ref. [19].

Figure 2 shows the variation of terms, ρ̃′, Φ̃′, ρ̃′′, 3ρ̃′

ρ̃ Φ̃′, and dŨ/dΦ̃, with respect to
η̃ in eqs. (4) and (5). In figs. 1(i)-(vi), we see that the sign change of ρ̃′ from positive to
negative occurs at the half period due to the Z2 symmetry. The value of ρ̃′ at near initial
and final value of η̃ means the flat space at that point. The value of ρ′ spans from 1 to
−1 in all figures. The transition region of ρ̃′ means the rolling duration in the inverted
potential. In that region, all other terms also have dynamical behavior. The value of Φ̃′′

representing an acceleration of the particle in the inverted potential increases, decreases,
and becomes zero at the half period. The graph is odd function. The value of ρ̃′′ is
always negative or zero as an even function according to eq. (4). The damping term also
increases, decreases, and becomes zero as an odd function. The term dŨ/dΦ̃ has got
the same property. Figures 2(i), (iii), and (v) representing tunneling show that ρ̃′, Φ̃′′,
damping term, and dŨ/dΦ̃ change their sign simultaneously at the half period. While
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Fig. 2. – Variation of terms in equations of motion between flat-flat degenerate vacua.

figs. 2(ii), (iv), and (iv) representing solutions going back to the starting point show that
only ρ̃′ change its sign at the half period. All of the behaviors represented in each figure
can be well understood bearing Z2 symmetry in mind.

The behavior of the solutions in the Φ̃(η̃)-Φ̃′(η̃) plane using the phase diagram method
is shown in fig. 3. Figure 3(i) illustrates the phase diagram of a one-crossing solution, in
which the trajectory is restricted to the upper half region in the diagram. It is the turning
point from the damping phase to the anti-damping phase when Φ̃′ is the maximum value
and Φ̃ attains the first zero. The value of Φ̃ spans from −1 to +1 and Φ̃′ from zero
via maximum value to ∼ 0.49, to zero with symmetry about the y-axis. Figure 3(ii)
illustrates the diagram of a two-crossing solution, in which the trajectory does not reach
the opposite point Φ̃ = 1 but return to the starting point Φ̃ = −1. When the trajectory
goes back, Φ̃′ is negative with symmetry about the x-axis. It is the turning point from
the damping phase to the anti-damping phase when Φ̃′ reaches the second zero and Φ̃

Fig. 3. – The behavior of the solutions in the Φ-Φ′ plane using the phase diagram method. The
case is belong to the tunneling between flat-flat degenerate vacua.
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Fig. 4. – The diagram of energy density of each solutions. In each figure, the dotted line denotes
the volume energy density ξ and the solid line denotes the Euclidean energy Eξ at constant η.

takes positive value. Figure 3(iii) illustrates the diagram of three-crossing solution. It is
the turning point when Φ̃′ takes the negative maximum value and Φ̃ attains the second
zero. Figure 3(iv) illustrates the diagram of four-crossing solution. It is the turning point
when Φ̃′ reaches the third zero and Φ̃ takes negative value. The figure (v) illustrates the
diagram of five-crossing solution. It is the turning point when Φ̃′ takes the positive
value and Φ̃ attains the second zero. Figure 3(vi) illustrates the diagram of six-crossing
solution. It is the turning point when Φ̃′ reaches the third zero and Φ̃ takes the positive
value. Figures 3(i), (iii), and (v) have symmetry about the y-axis, whereas (ii), (iv), and
(vi) have symmetry about the x-axis. The maximum value of Φ̃′ decreases as the number
of crossing increases.

Figure 4 shows the diagram of the energy density of each solutions. In each figure,
the solid line denotes the Euclidean energy Eξ and the dotted line denotes the volume
energy density ξ in eq. (8). The Euclidean energy signifies the value after the integration
of variables except for η in the present work. The peaks represent a rolling phase in the
valley of the inverted potential. The maximum value ξmax is equivalent to Utop. The
number of peaks is thus equal to the number of crossing. The peaks broaden in their
range near Utop as the number of crossing increases. The Euclidean energy also has
peaks. However, the shape of the peaks becomes smooth and broadens as the number of
crossing increases. As can be seen from fig. 4(vi), the thickness of the wall increases as
the number of oscillations increases.

3. – Classification of vacuum bubbles

In this section, we consider the following potential:

(9) U(Φ) =
λ

8

(
Φ2 − μ2

λ

)2

− ε
√

λ

2μ

(
Φ − μ√

λ

)
+ Uo,

where U(Φ) has two non-degenerate minima with lower minima at ΦT and higher minima
at ΦF . The parameter ε represents the energy-density difference between U(ΦF ) and
U(ΦT ).
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We first classify the true vacuum bubbles according to the ref. [17], in which vacuum
bubbles were classified in a de Sitter background. We extend the possible type of true
vacuum bubbles to the cases including finite flat and anti-de Sitter background [25].

Now we consider the contribution from ΔSin = Sin
E (solution)−Sin

E (background). For
the general expression

Sin
E (solution) = 4π2

[∫ ρmax

0

dρ
ρ3UT − 3ρ

κ

(1 − κ
3 ρ2UT )1/2

−
∫ ρ̄

ρmax

dρ
ρ3UT − 3ρ

κ

(1 − κ
3 ρ2UT )1/2

]
,(10)

Sin
E (background) = 4π2

[∫ ρmax

0

dρ
ρ3UF − 3ρ

κ

(1 − κ
3 ρ2UF )1/2

−
∫ ρ̄

ρmax

dρ
ρ3UF − 3ρ

κ

(1 − κ
3 ρ2UF )1/2

]
,

where ρmax(F/T ) =
√

3/κUF/T for dS geometry. This can be seen by the relation

(11) dρ = ±dη

[
1 − κρ2U

3

]1/2

,

where + for 0 ≤ η < ηmax/2, 0 for η = ηmax/2, and − for ηmax/2 < η ≤ ηmax.
For a true vacuum bubble, the contribution from the outside ΔSout will be zero

since the outside geometry will be not changed after the nucleation. However, if one
consider the cases including finite flat and anti-de Sitter background one should consider
the effect. The contribution from the outside the wall is vanishing for dS, on the other
hand the contribution is non-vanishing for flat and AdS space. The final form from the
contribution of the outside part in both flat and AdS space is evaluated to be

(12) Bout =
12π2

κ2UF

[
2
(
1 − κ

3
ρ̄2UF

)3/2
]

+ Bfeff ,

where Bfeff = − 12π2

κ2UF
[1 + (1 − κ

3 ρ̃ i2
maxUF )3/2] + Bibp and where the second term in the

right-hand side of the above equation is from the effect of the surface term at ρ̃ i
max

and ΔSibp = −(6π2/κ)ρ̃i2
max(1 − κρ̃i2

maxUF /3)1/2. For dS space, ρi
max(ηmax) = 0 and

ΔSibp = 0.
In the present proceedings, we shall be simply presenting the possibly types of a

vacuum bubble.

– The types of true vacuum bubbles [17, 25]: 1) flat bubble - large dS background,
2) flat bubble - half dS background, 3) flat bubble - small dS background, 4) AdS
bubble - large dS background, 5) AdS bubble - flat dS background, 6) AdS bubble -
small dS background, 7) dS small bubble - large dS background, 8) dS small bubble
- flat dS background, 9) dS small bubble - small dS background, 10) AdS bubble -
flat infinite background, 11) AdS bubble - AdS infinite background, 12) AdS bubble
- flat finite background, 13) AdS bubble - AdS infinite background.

– The types of false vacuum bubbles [25]: 1) dS large bubble - dS small background,
2) dS half bubble - dS small background, 3) dS small bubble - dS small back-
ground, 4) dS large bubble - flat finite background, 5) dS half bubble - flat finite
background, 6) dS small bubble - flat finite background, 7) dS large bubble - AdS
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finite background, 8) dS half bubble - AdS finite background, 9) dS small bubble -
AdS finite background, 10) flat bubble - AdS finite background, 11) AdS bubble -
AdS finite background.

4. – Summary and discussions

In this presentation, we have discussed oscillating instanton solutions of a self-
gravitating scalar field between degenerate vacua and possible types of a vacuum bubble.

As a result of this tunneling, a finite-sized geometry with Z2 symmetry is obtained.
Our mechanism for making the domain wall or braneworld-like object is different from
the ordinary formation mechanism of the domain wall because our solutions are instanton
solutions rather than soliton solutions. In other words, our solutions can be interpreted
as solutions describing an instanton-induced domain wall rather than a kink-induced
domain wall or braneworld-like object. Domain walls can form in any model having
a spontaneously broken discrete symmetry. An inertial observer sees the domain wall
accelerating away with a specific acceleration. The thickness of the domain wall in flat
spacetime can be estimated by a balance between the potential energy and the gradient
energy. When the thickness of the domain wall is greater than or equal to the horizon
size corresponding to the vacuum energy in the interior of the domain wall, topological
inflation can occur [26]. The scalar field stays near the top of the potential at the
core. This potential energy serves as a vacuum energy in a similar way to the slow-
rollover inflationary models. This topological inflation does not require fine-tuning of
the initial conditions and is eternal even at the classical level due to the topological
reason. Our oscillating instanton solutions can be interpreted as mechanism providing
the nucleation of the thick wall for the topological inflation, even though we started
in the arbitrary vacuum state. The wrinkles representing the variation of the volume
energy density in the wall may be interpreted as density perturbations in the inflating
region. In this work, inflating regions described by the oscillating solutions and density
perturbations described by the variation of energy density can occur simultaneously.
Furthermore, oscillating bounce solutions also have the thick wall. Thus we expect that
(non-)topological inflation can be made by oscillating bounce solutions.
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