
DOI 10.1393/ncc/i2013-11490-9

Colloquia: 12th Italian-Korean Symposium 2011

IL NUOVO CIMENTO Vol. 36 C, N. 1 Suppl. 1 Gennaio-Febbraio 2013

Dense stellar matter with strangeness: Kaon condensation
and strange quark matter

Hyun Kyu Lee(∗)
Department of Physics, Hanyang University - Seoul 133-791, Korea, and
Asia Pacific Center for Theoretical Physics - 790-784 Pohang, Korea

ricevuto il 9 Marzo 2012

Summary. — The density of compact star (neutron-star) core is supposed to be
much higher than the normal nuclear-matter density. Among the various possibilities
the emergence of strangeness at higher density has been suggested, in the form of,
for example, meson or hyperon condensation and/or deconfined quark matter. In
this work, we explore the possible effect of strangeness on the nuclear symmetry
energy, which is responsible for how new degrees of freedom can be populated in the
nucleon matter. And we discuss the scenario where the kaon condensed matter is
driving the system into a strange quark matter.

PACS 97.60.Jd – Neutron stars.
PACS 21.65.-f – Nuclear matter.
PACS 06.30.Dr – Mass and density.

1. – Introduction

The new degrees of freedom other than nucleon such as meson condensations (pions,
kaons) and/or hyperons, quark matter with perturbative and/or nonperturbative vari-
ations, have been discussed as possible constituents of the core of compact stars. The
recent observation of a 1.97 solar-mass (M�) neutron star, PSR J1614-2230 [1], raises a
highly pertinent issue on whether such non-nuclear degrees of freedom are relevant for
the physics of stable compact stars.

One of the examples of meson condensations is the scenario of Bethe and Brown [2,3],
where the onset of kaon condensation [4] inside the neutron star matter at a density
ρ ∼ 3ρ0—where ρ0 is the nuclear matter density—keeps the maximum mass less than
2M�, which seems to be consistent with the observations of well-measured neutron star
masses ∼ 1.5M� [5]. If deconfinement occurs at the core, the strange quark matter
suggested by Witten [6] is a possible candidate.
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Recently an interesting scenario [7] has been developed in which the compact star
has a triple-layered structure, from outside to the core, normal nuclear matter, kaon
condensed matter, and quark matter. Such a triple-layered compact star can be made
compatible with PSR J1614-2230 by adjusting the minimal number of parameters of the
model.

To introduce new degrees of freedom into the system, there should be a mechanism
that makes the matter to relax the neutron-proton asymmetry present, by which the
system will evolve to a matter in a more stable state. Nuclear symmetry energy is a
measure how the relaxation of asymmetry costs.

However the change of neutron and proton fractions of the star matter would require
the isospin to be violated, which can happen via the weak interactions, where the flavor
(isospin or strangeness) can be changed. We assume that the evolution of the system via
weak interactions reaches an equilibrium configuration as a ground state of the matter.
Therefore, the EoS of the star matter in weak equilibrium must be strongly dependent
on the nuclear symmetry energy. New degrees of freedom we are considering involve
electron, muon, kaon, hyperon, and strange-quark matter (SQM).

In sect. 2, the nuclear symmetry energy is introduced with the discussion on the effect
of the presence of strange hadrons in the matter. The basic features of kaon condensation
driving the system into SQM is discussed using a simplified model for kaon condensation
and nucleon-nucleon interaction in sect. 3. The summary is given in sect. 4

2. – Nuclear symmetry energy

2.1. Isospin symmetry [8]. – The (strong) interaction between nucleons is charge sym-
metric and has been formulated in an SU(2) symmetric way, i.e., isospin symmetry. Pro-
ton and neutron are assigned to be members of a doublet and all hadrons are classified
into SU(2) multiplets. The interaction Hamiltonian commutes with SU(2) generators,
�I,

(1) [Ii,Hint] = 0,

and the proton (I3 = 1/2) numbers and neutron (I3 = −1/2) numbers are conserved,
so that we can classify the eigenstate by the definite number of protons and neutrons
(I3 = 1/2(Np − Nn)):

(2) |Np, Nn〉.

The energy of the eigenstate of the Hamiltonian does not depend on I3 but on I2. The
eigenstate eq. (2), can be decomposed into the irreducible representations (multiplets) of
SU(2), Clebsch-Gordan series, as

(3) |Np, Nn〉 = ΣICI |I : Np, Nn〉,

where |�I |2 = I(I + 1). The energy of the state is given by

(4) E(Np, Nn) = 〈Np, Nn|H|Np, Nn〉 = ΣI |CI |2EI ,

where EI is a reduced matrix element of the Hamiltonian, H = H0 + Hint,

(5) EI = 〈I||H||I〉,
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which is independent of I3, and depends on the details of the strong interactions for each
I-channel. Although it may appear that the energy is independent of the compositions
of protons and neutrons for a given total number of nucleons

(6) N = Np + Nn,

different compositions have different decompositions into multipletes, i.e., different sets of
CI . Therefore different compositions of protons and neutrons leads to different energies.
This explains why the nuclear symmetry energy appears in asymmetric nuclear matter.
It is not a result of isospin symmetry breaking of the strong interactions. The strong
interaction is isospin-symmetric, but we are considering the states with different Clebsch-
Gordan decompositions.

For a given number of proton number fraction x(= ρp/ρ), CI and EI are function of
x and density ρ: CI(ρ, x) and EI(ρ, x). Then for nuclear matter in infinite system with
density n the energy per nucleon can be decomposed as

(7) E(ρ, x) = E(ρ, x = 1/2) + Esym(ρ, x),

for a neutral system. Esym measures the iso-spin dependent part of the energy with
respect to the n − p symmetric matter (x = 1/2). Since the interaction itself is iso-
symmetric, naive expectation is that the n − p symmetric system is the lowest configu-
ration, and we can approximate the symmetry energy around x = 1/2 as

(8) Esym(ρ, x) = (1 − 2x)2S(ρ),

where S(ρ) is called symmetry energy factor(or simply symmetry energy). The absence
of linear term in (1 − 2x) is due to the permutation symmetry of n and p.

Whether eq. (8) is also valid up to x = 0 or 1 depends on the details of nuclear
interaction. One simple example where eq. (8) is a very good approximation for all x
ranging from 0 to 1 is free nucleon gas, which are subjected only to Pauli exclusion
principle. A straightforward calculation for the non relativistic nucleon gas shows that
it is a very good approximation for x = 0 − 1 and it gives

(9) Sfree(ρ) =
(
22/3 − 1

) 3
5
E0

F

(
ρ

ρ0

)2/3

,

where E0
F = (3π2ρ0/2)2/3

2m is the Fermi energy at ρ = ρ0/2.
Suppose we can decompose symmetry energy into two parts, E

(kin)
sym and E

(pot)
sym ,

(10) Esym(ρ, x) = E(kin)
sym (ρ, x) + E(pot)

sym (ρ, x).

One can easily guess that kinetic part can be approximated as in free nucleon system

(11) Ekin
sym(ρ, x) = (1 − 2x)2S(kin)(ρ).

S(kin)(ρ) can be very much different from the free case due to the change of fermi gas
structure by nucleon interaction. Recent analysis [9] demonstrates that the correlation
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between higher momentum nucleons reduce the strength of symmetry energy factor to
be much weaker than the potential part even at normal nuclear density.

However it is not well understood how the symmetry energy behaves particularly at
higher density than normal nuclear density, ρ0. There are two issues for E

(pot)
sym .

The first one is whether one can make use of the following form for the full range of
x = 0 − 1,

(12) E(pot)
sym (ρ, x) = (1 − 2x)2S(pot)(ρ)

as a good approximation at least. It should be noted that, in recent analysis [10], it is
demonstrated that it is considered to be a good approximation. However we may not
expect eq. (12) is valid when new degree of freedom, when strange hadrons are present
in the system. The more discussion will be given in later section. The second question is
then how S(pot)(ρ) changes with the density: whether it keeps growing or it is saturated
or its slope changes from positive to negative or it is decreasing even to negative value
at high enough density [11].

2.2. Clebsch-Gordan series with hyperon. – In addition to isospin symmetry, SU(2),
under which the proton (I3 = 1/2) numbers and neutron (I3 = −1/2) numbers are con-
served, there is a hypercharge Y = S + B(or strangeness numbers S) which is conserved
in strong interaction. One can make use of SU(3) for classification of hadrons, although
it is broken explicitly by the heavy strange quark mass. The full symmetry is useful only
when the correction by symmetry breaking is taken into account. In this work, we do
not use the full SU(3) symmetry but SU(2) symmetry with hypercharge conservation.
Now we can classify the eigenstate by the definite number of protons and neutrons and
total number of hypercharge (I3 = 1/2(Np − Nn), Y = ΣiYiN(Yi)):

(13) |Np, Nn, Y 〉.

Since isospin symmetry is not broken, the energy of the eigenstate of the Hamiltonian
depends only on I2 and additionally on Y . However since SU(3) symmetry is broken
explicitly, it is better to have the eigenstate, eq. (13), decomposed into the irreducible
representations (multiplets) of SU(2), as given by

(14) |Np, Nn, Y 〉 = Σ(I,Y )C(I,Y )|I, Y : Np, Nn〉,

where |�I |2 = I(I + 1). The energy of the state is given by

(15) E(Np, Nn, Y ) = 〈Np, Nn, Y |H|Np, Nn, Y 〉 = Σ(I,Y )|C(I,Y )|2E(I,Y ),

where E(I,Y ) is an reduced matrix element of the Hamiltonian, H = H0 + Hint,

(16) E(I,Y ) = 〈I, Y ||H||I, Y 〉,

which is independent of I3, and depends on the details of the strong interactions for each
(I, Y )-channel.

Therefore one can expect the nuclear symmetry energy can be affected by the presence
of hyperon. The simplest parametrization inferred from the pure nuclear matter is

(17) E(ρ, x, yi) = E(ρ, x = 1/2, yi) + (1 − 2x)2Esym(ρN , yi),
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where yi are the density of hyperon i and ρN is the nucleon number density ρN = ρn+ρp.
ρ is the total baryon number density ρ = ρN + y, where y = Σiyi = n − ρN is the total
hyperon number density.

Whether the naive extension of eq. (17) with (1 − 2x)2 dependence is valid or not
should be verified theoretically and tested experimentally. For the physical processes
in which the hyperons are not appearing isosymmetrically due to energy barrier or n-p
asymmetry present in nuclear matter, eq. (17) may not be valid. Another question to be
asked is whether we can make use a symmetry energy determined or calculated in pure
nucleon matter in the presence of hyperon such as

(18) Esym(ρN , yi) ≈ Esym(ρN , yi = 0).

So far it remains an open question, which will be discussed elsewhere. Through out this
work we adopt eq. (18) as an approximation to begin with.

3. – Kaon Condensation and strange-quark matter

The key ingredient for kaon condensation [4] is the decrease of the effective mass
denoted as m∗

K of the negatively charged kaon K− as density increases. The m∗
K is

basically a function of mK , ρn, ρp owing to the kaon-nucleon interactions,

(19) m∗
K = ω(mK , ρn, ρp, . . .).

The density at which a neutron can decay into a proton and K− via the weak process,
n → p + K−,

(20) μn − μp = m∗
K ,

determines the threshold density of kaon condensation. Above the kaon condensation,
where m∗

K can be identified as the kaon chemical potential μK , the chemical equilibrium
is reached as

(21) μn − μp = μe = μμ = μK ≡ μ,

where

(22) μn − μp = 4(1 − 2x)S(ρ) + Θ(K)F (K,μ).

K stands for the kaon amplitude of kaon condensed state, i.e., 〈K〉, and F (K,μ) is
a nontrivial function that depends on the neutron-proton chemical potential difference
which, in turn, depends on kaon-nucleon interactions. The charge neutrality condition
gives

(23) ρp = ρe + ρμ + Θ(K)ρK .

Equations (19), (22), and (23) are the basic equations to be solved to calculate the EoS
of kaon condensed nuclear matter (KNM).
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Strange quark matter can appear as a result of confinement-deconfinement phase
transition. At the phase boundary with critical density, ρc, the chemical equilibrium
reads

(24) μn = 2μd + μu, μp = μd + 2μu.

We suppose the confinement-deconfinement phase transition taking place constrained
by the weak equilibrium in the kaon condensed matter, leading to SQM. When the kaon
chemical potential—equivalently effective mass—μ as well as F (K,μ) approache 0 at the
critical density, the solution x = ρp

ρ = 1/2 for n− p symmetric matter appears naturally
at the phase boundary. Below we demonstrate it can be the case using the simplest form
of an effective chiral Lagrangian [12] given by

(25) L = LKN + LNN ,

where

LKN = ∂μK−∂μK+ − m2
KK+K− +

1
f2

ΣKN (n†n + p†p)K+K−(26)

+
i

4f2
(n†n + 2p†p)(K+∂0K

− − K−∂0K
+),

LNN = n†i∂0n + p†i∂0p − 1
2m

(�∇n† · �∇n + �∇p† · �∇p) − VNN .(27)

Here the fourth term in eq. (26) is the well-known Weinberg-Tomozawa (WT) term which
is constrained by a low-energy theorem with f identified with the pion decay constant
fπ in the matter-free space and ΣKN is the KN sigma term, which we take as one of
parameters.

For s-wave kaon condensation, kaon amplitude, K, and kaon chemical potential, μK =
μ, are defined by the ansatz

(28) K± = Ke±iμt.

Then we get

(29) F (K,μ) =
μ

2f2
K2.

The kaon condensation condition for K 
= 0 is obtained by extremizing the classical
action,

(30) m2
K − μ2 = μ

ρn + 2ρp

2f2
+

ρ

f2
ΣKN ,

which can be solved to get μ or equivalently m∗
K . The density dependence of μ is shown

in fig. 1 for ΣKN = 200, 300, 400 MeV using CKL model [13]. One can see that μ or
equivalently the in-medium effective kaon mass m∗

K vanishes at some high density, which
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Fig. 1. – The density dependence of the chemical potential using a CKL model [13] with η = −1.
The solid, dashed, and dotted lines correspond, respectively, to ΣKN = 200, 300, 400MeV [7].

we refer to as critical density denoted ρc, as a phase boundary for deconfinement. Hence
F (K,μ) in eq. (29) vanishes simultaneously. Then eq. (22) tells us that x = 1/2 is a
natural solution and the system is driven to n − p symmetric matter(x = 1/2) by kaon
condensation.

At the phase boundary, the chemical equilibrium (via confinement-deconfinement)
reads

(31) μn − μp = μd − μu, μK− = μs − μu.

Since μ(= μK) = 0, we have from eq. (31)

(32) μu = μd = μs.

This is the chemical potential relation for the SQM in the masselss limit. In this simple
picture, the KNM leads naturally to a SQM at the critical density ρc defined by the
condition, μK = 0. Equation (32) implies that they have the same number densities,
ρu = ρd = ρs = ρQ. Then the charge neutrality

(33)
2
3
ρu − 1

3
ρd − 1

3
ρs = 0

is automatically satisfied and there is no need for additional leptons. Kaon condensed
nuclear matter will naturally go over to the SQM in SU(3) symmetric phase in the
massless limit.

The EoS of SQM is then given by

εSQM = 4.83a4ρ
4/3 + B,(34)

PSQM = 1.61a4ρ
4/3 − B,(35)
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where B is the bag constant [14]. Here a4 denotes the perturbative QCD correction [15,
16], which takes the value a4 ≤ 1. The equality holds for SQM without QCD corrections.

The energy density and the pressure of the kaon condensed nuclear matter (KNM)
are given by

εKNM = Ṽ (ρ) + ρ(1 − 2x)2S(ρ) + εlepton + Θ(K)εK ,(36)

PKNM = ρ2 ∂V (ρ)/ρ

∂ρ
+ ρ2(1 − 2x)2

∂S(ρ)
∂ρ

+ Plepton + Θ(K)PK .(37)

For V (ρ) and S(ρ), we make use a parametrization suggested by Li et al. [13] with η = −1.
The contributions to the energy density and the pressure from kaon condensation are
given by

εK =
(

m2
K + μ2

K − ρ

f2
ΣKN

)
K2,(38)

PK = −
(
m2

K − μ2
)
K2.(39)

One can see that the kaon condensation gives a negative contribution to the total pressure
for μ < mK .

The pressure matching condition at the boundary,

(40) PKNM (ρc) = PSQM (ρQ
c ),

can be solved to find a set of parameters, a4, B,ΣKN , V (ρ), and S(ρ). Then it is possible
to consider a triple-layered structure consisting of NM, KNM, and SQM from the outer
layer to the core part. The resulting mass-radius relation which is compatible with PSR
has been discussed in [7]. It is worth mentioning that the refined analysis, which will be
discussed elsewhere [17], gives maximum mass of 1.99 M� and radius of 11.12 km with
core density of 11.7 ρ0 for a model of η = −1 with B1/4 � 101 MeV, ΣKN � 260 MeV,
and a4 = 0.624.

4. – Summary

We discussed the basic nature os nuclear symmetry energy and the issues for the
symmetry energy in the presence of strange hadrons, strange mesons and hyperons. The
role of symmetry energy for new degrees of freedom in the nuclear matter is also sketched
in connection to the kaon condensation. We discussed the underlying mechanism for a
scenario in which dense compact-star matter is driven smoothly to an SQM by kaon
condensation at the density at which the kaon chemical potential μK = m∗

K becomes
negligibly small and at which the nuclear matter becomes n-p symmetric, x = 1/2.
It leads to a suggestion of new possible scenario for the compact star with an NM-
KNM-SQM structure, which is found to be consistent with recently observed high mass
neutron star of 1.97M� by using the parameters that are not excluded by theory or
phenomenology.
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