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Summary. — The evolution of various energy components with dark energy was
examined. Recently many non-standard gravity models were suggested to explain
the current observational data showing an accelerating phase since the recent past.
All suggested models should mimic ΛCDM somehow, especially from the near past
to the current epoch. However, most of them do not try to explain or predict what
happens if their model were extended to the far past and/or the past. In this pa-
per we want to address this point by analyzing the critical points of the evolution
equations and their stability. Standard ΛCDM gives three critical points, radiation
dominated, matter dominated, and cosmological constant dominated. Furthermore,
the radiation-dominated point corresponds to the past stable point, the matter-
dominated point to the saddle point, and the cosmological-constant–dominated
point to the future stable point. This means that this model predicts that the uni-
verse starts from radiation domination then passes through a matter-dominated era
and finally evolves into a cosmological-constant–dominated era, that is, the future
de Sitter phase. We applied these creteria to few f(R) gravity models to determine
viable parameter ranges.

PACS 98.80.-k – Cosmology.
PACS 04.20.-q – Classical general relativity.
PACS 95.36.+x – Dark energy.

1. – Introduction

Various recent observational data indicate that our universe is in an accelerating
phase since the recent past [1-4]. The standard ΛCDM could explain these observational
results within error bounds. However, this model has some critical problems including
the cosmological constant problem. There are many models to overcome these problems
including the f(R) gravity model [5-9]. But most of the modified models concentrated
in explaining the recent past acceleration and the current domination of the dark energy
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(or cosmologcal constant). There is also detailed analysis and classification for future
evolutions [8, 10] and numerical works [11-13].

On the other hand, the statefinder model could explain the acceleration of the universe
and the difference between the cosmological models in order to better fit the observational
data [14]. Furthermore, the mapping of the cosmic expansion of the universe [15] is very
crucial to understand the underlying physics. Hence, it is necessary to have observational
data in the various redshift ranges.

In this paper, we want to make an analysis from the viewpoint of critical points
and their stability [16]. Since we know that there exist at least radiation and (dark)
matter, we concentrate on the behaviour of these components of the energy among others.
The density parameters, which are defined as ΩX = ρX

ρc
, have values between 0 and 1.

Therefore, it is a natural choice to take them as dynamical variables for numerical and
analytical analyses.

In sect. 2, we will describe the relevants equations for the cosmological evolution.
We assume the Friedmann-Lemâıtre-Roberston-Walker (FLRW) model for the metric in
this paper. The critical points and their stability will be explained in sect. 3. Some
applications of our method to some cosmological models including the standard ΛCDM
are presented in sect. 4. Finally, we discuss the implications of our method in sect. 5.

2. – Evolution equations

The standard procedure starting from the action for various gravity models leads to
the following Hubble equation:

(1) H2 =
8πG

3
(ρm + ρr + ρX) ,

where ρm, ρr, and ρX are dust matter densities, including dark matter density, radiation
matter density, and densities of other types, respectively. Here ρX represents any other
type of matter density collectively depending on the cosmological models. We also assume
thre FLRW metric as

(2) ds2 = −dt2 + a2(t)
(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
,

where a(t) is the scale factor. With this metric, the Ricci scalar is given by

(3) R = 6
(
Ḣ + 2H2

)
.

Now we define some useful variables as follows:

ρc =
3H2

8πG
,(4a)

Ωm =
ρm

ρc
=

8πG

3H2
ρ0
me−3x,(4b)

Ωr =
ρr

ρc
=

8πG

3H2
ρ0
re

−4x,(4c)

ΩX =
ρX

ρc
,(4d)

r =
R

12H2
=

1
2H

dH

dx
+ 1,(4e)
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where ρc is the critical density, x = ln a, r is the “reduced Ricci scalar”, and we have
assumed the standard equation of state for dust (dark) matter and radiation matter as
0 and 1/3, respectively.

The Hubble equation (1) can be rewritten as

(5) 1 = Ωm + Ωr + ΩX.

The evolution equations for the density parameters can be obtained by direct derivatives
as

dΩm

dx
= − (4r − 1) Ωm,(6a)

dΩr

dx
= −4rΩr,(6b)

dr

dx
=

1
12H2

dR

dx
− 4r (r − 1) ,(6c)

dH

dx
= 2 (r − 1) H.(6d)

Equation (6c) could be redundant according to the model.
If we assume that any viable cosmological model does not evolve to big rip or any

singularity [16], all density paarmeters should have a finite value during the cosmological
evolution. Also the far-future and far-past state should not change with cosmological
time, that is, it is a critical point of eqs. (6a) and (6b). These critical points might
be also critical points for eqs. (6c) and (6d) depending on the underlying cosmological
model. In the next section we will present a detailed analysis for critical points of eqs. (6)
and their stability.

3. – Critical points and their stability

Mathematically, the critical point for a given function f(x) is defined as a point, x,
such that f(x) is not differentiable or its first derivative is zero, f ′(x) = 0 [17]. We
extend this notion of critical point to apply the cosmological evolution problem. Usually,
the differential equations of the cosmological evolution are implicit in the cosmological
time, t or x = ln a. Hence it is not possible to apply a mathematical definition for the
cosmological evolution problem.

The system of differential equations is given by

(7) h′
i(x) = Hi(h1, h2, . . . ; p1, p2, . . .), i = 1, 2, . . . ,

where hi denote the interesting dynamical variables and pi the parameters of a certain
cosmological model. The number of dynamical variables and model parameters are de-
pendent on a certain cosmological model. We can define the critical points for the system
of differential equations, eq. (7), as a set of dynamical variables h0

i , i = 1, 2, . . ., satisfying

(8) Hi(h0
1, h

0
2, . . . ; p1, p2, . . .) = 0, i = 1, 2, . . . .

These points too are called fixed points. The meaning of such critical points is the
following: To find out the solution of eq. (7), we should supply some initial values for the
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dynamical variables, hi. If we had set the initial values as one of the critical points, then
all the dynamical variables will have the same value as the given initial values. That is, it
does not evolve anymore. However, the initial state could not give the exact critical point,
for some reasons. For this case, the dynamical variables evolve with cosmological time
then finally approach one of the critical points or diverge, depending on the cosmological
model and/or the initial state. In this case, the approaching critical point could be
understood as an attarctor of the model.

In this sense the meaning of the critical point is different from its mathematical one.
In the mathematical definition, the critical points are given as a point of the independent
variable of the cosmological time, t or x, but for our case they are given as a set of specific
dynamical variables. This is viable, since we want to find out a meaningful state of the
universe not at a specific time but far future or far past to see its evolution. The decision
for which one is the final and the initial state could be given by analyzing its stability as
follows.

Substituting the linear perturbations h′
i → h′

i + δh′
i about the critical points into

eq. (7), to the first order of perturbations, we can obtain the eigenvalues λi, i = 1, 2, . . ..
The number of eigenvalues depends on the number of independent equations, which
depends on the cosmological model and the eigenvalues might depend on the model
parameters pj . Stability requires the real part of the eigenvalues to be negative. This
means that a small deviation from the critical points having negative eigenvalues will
disappear as it evolves. Hence the stable critical points are attractors for far-future
evolution. Likewise, the critical points having positive eigenvalues are absolutely unstable
for a small deviation. This means that the unstable critical points are stable if we evlove
to the past instead of the future. Therefore, the positive eigenvalued critical points are
attractors for a far-past evolution. Finally, the critical points having both positive and
negative eigenvalues correspond to saddle points, which are intermediate states of the
cosmological evolution.

In the next section, we will apply this idea to some specific cosmological models to
find their viable parameter ranges to have far-futre and far-past cosmological states.

4. – Applications

In this section we will present the some applications of the previous sections for some
well-known cosmological models.

4.1. ΛCDM case. – For the famous ΛCDM model, the reduced Ricci scalar r is not
an independent variable but is given as

(9) r = 1 − 3
4
Ωm − Ωr,

which can be obtained by defferentiating the Hubble equation with the cosmologcal
constant and substituting it into the definition of the reduced Ricci scalar, eq. (4e).
Then the evolution equation, eqs. (6c) and (6d), can be rewriten as

dr

dx
=

9
4

(
1 − Ωm − 4

3
Ωr

)
Ωm + 4

(
1 − 3

4
Ωm − Ωr

)
Ωr,(10)

dH

dx
= −

(
3
2
Ωm + 2Ωr

)
H,(11)

respectively.
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Table I. – The critical points and their eigenvalues for the ΛCDM case.

Label Ωm Ωr r λ1 λ2 Note

P1CDM 0 1 0 1 4 far-past attarctor
P2CDM 1 0 1

4
−1 3 intermediate state

P3CDM 0 0 1 −4 −3 far-future attractor

In this case, only eqs. (6a) and (6b) are independent. The evolution equations become

dΩm

dx
= − (3 − 3Ωm − 4Ωr) Ωm,(12a)

dΩr

dx
= − (4 − 3Ωm − 4Ωr) Ωr.(12b)

The critical points and eigenvalues are given in table I. Note that all three cirtical points
are also the critical points for (10). However, only the critical point of P3CDM is the
critical point for (11). This means that the final state of ΛCDM is a de Sitter space with
R = 12H2 = constant.

The critical points show that it is natural that the evolution of the universe starts
from the radiation-dominated era (Ωr = 1,Ωm = 0,ΩΛ = 0), passing through the matter-
dominated era (Ωr = 0,Ωm = 1,ΩΛ = 0) then finally approaches the dark-energy–
dominated era (Ωr = 0,Ωm = 0,ΩΛ = 1).

4.2. f(R) gravity . – For this case and the subsequent two cases, we confine ourselves
to the f(R) model. In those cases, r is not a simple dependent varibale but should satisfy
the differential equation (6c). This equation can be rewritten as [18]

(13)
dr

dx
=

F

12H2F ′

(
−1 + 2r +

Ωm + Ωr

F
− 1

6H2

f

F

)
− 4r (r − 1) ,

where F (R) = f ′(R). We can obtain the critical points by solving eqs. (6a), (6b),
and (13). In principle, one can find solutions at least numerically but it is unformidable.
Hence in this paper we only consider to find the condition giving the far-future attractor
as a standard ΛCDM case. Detailed analysis will be done elsewhere.

For the power law f(R) form

(14) f(R) = R + f0R
α,

its derivatives with respect to R are given by

(15) F (R) = 1 + αf0R
α−1, F ′(R) = α(α − 1)f0R

α−2.

The critical points, which mimic ΛCDM, are given in table II. The condition for the case
of P3 to be a far-future attractor as indicated in table II is the following:

(16) f0 =
RdS

Rα
dS(α − 2)

,
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Table II. – The critical points and their eigenvalues for the power law case.

Label Ωm Ωr r λ1 λ2 Note

P1 0 1 0 0 1 indeterminate
P2 1 0 1

4
−1 0 indeterminate

P3 0 0 1 −4 −3 far-future attractor

where RdS = 12H2 is the Ricci scalar for the final de Sitter space. This means that
the power law f(R) model could not choose the parameters arbitrarily to have a stable
far-future cosmological state.

Now we wish to consider an exponential gravity. Exponential gravity was first con-
sidered in [19] and it was regarded as a realistic model which could explain the current
accelerating universe [20]. Introducing

(17) f(R) = R − βRs

(
1 − e−R/Rs

)
,

its derivatives with respect to R are given by

F (R) = 1 − βe−R/Rs , F ′(R) =
β

Rs
e−R/Rs .(18)

In this case the critical points, which mimic ΛCDM, are the same as in table II. But the
condition for the case P3 to be a far-future attractor as indicated in table II is given as

(19) β =
1

e−RdS/Rs − 2 Rs

RdS

(
1 − e−RdS/Rs

) .

The Hu and Sawicki model takes the form

(20) f(R) = R − μRc

[
1 −

(
1 +

R2

R2
c

)−n
]

.

Its derivatives with respect to R are given by

F (R) = 1 − 2μn
R

Rc

(
1 +

R2

R2
c

)−(n+1)

,(21)

F ′(R) = −2μn

Rc

[
1 − (2n + 1)

R2

R2
c

] (
1 +

R2

R2
c

)−(n+2)

.(22)

In this case the critical points, which mimic ΛCDM, are are the same as in table II. But
the condition for the case P3 to be a far-future attractor as indicated in table II is given
as

(23) μ =
RdS/Rs

2
[
1 −

{
1 + (n + 1) R2

dS
R2

c

} (
1 + R2

dS
R2

c

)−(n+1)
] .
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In general, any f(R) model should satisfy the equation

(24)
F

RdSF ′

(
1 − 2

RdS

f

F

)
= 0,

which can be written as

(25)
RdS

2
=

f(RdS)
F (RdS)

,

to give a far-future de Sitter state. Any other model parameters not satisfying eq. (25),
could not give the final attractor state.

5. – Discussions

We have shown that the evolution of various cosmological models can be described
by the first-order differential equations of density parameters. Since the equations are
of first order, they have critical points. The critical points can be far-past or far-future
state of the universe depending on the stability of the critical point. Unfortunately, a
full analysis has not been done with complexity. However, it was shown that all models
could give the future de Sitter space as the final state with some constraints on the model
parameters.

The analysis of the critical points with their stability can be used to find out a
viable cosmological model out of various models. A full discussion for application and
improvement of the method will be presented elsewhere.

∗ ∗ ∗
This research was supported by the International Research & Development Program of

the National Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (MEST) of Korea (Grant number: K2011.00007, FY 2011)

REFERENCES

[1] Perlmutter S. et al., Astrophys. J., 517 (1999) 565; Riess A. G. et al., Astron. J., 116
(1998) 1009.

[2] Spergel D. N. et al., Astrophys. J. Suppl., 170 (2007) 377.
[3] Tegmark M. et al., Phys. Rev. D, 69 (2004) 103501; Eisenstein D. J. et al., Astrophys.

J., 633 (2005) 560.
[4] Jain B. and Taylor A., Phys. Rev. Lett., 91 (2003) 141302.
[5] Nojiri J. and Odintsov S. D., Int. J. Geom. Methods Mod. Phys., 4 (2007) 115.
[6] Copeland E. J., Sami M. and Tsujikawa S., Int. J. Mod. Phys., 15 (2006) 1753.
[7] Sotiriou T. P. and Faranoi V., Rev. Mod. Phys., 82 (2010) 451.
[8] Nojiri S. and Odintsov S. D., Phys. Rep., 505 (2011) 59.
[9] De Felice A. and Tsujikawa S., Living Rev. Relativ., 13 (2010) 3.

[10] Nojiri S., Odintsov S. D. and Tsujikawa S., Phys. Rev. D, 71 (2005) 063004.
[11] Lee H. W., Kim K. Y. and Myung Y. S., Eur. Phys. J. C, 71 (2011) 1585.
[12] Kim H., Lee H. W. and Myung Y. S., Phys. Lett. B, 632 (2006) 605.
[13] Kim K. Y., Lee H. W. and Myung Y. S., Mod. Phys. Lett. A, 22 (2007) 2631.
[14] Sahni V., Saini T. D., Starobinsky A. A. and Alam U., JETP Lett., 77 (2003) 201.
[15] Linder E. V., Rep. Prog. Phys., 71 (2008) 056901.



116 HYUNG WON LEE and KYOUNG YEE KIM

[16] Farajollahi H. and Salehi A., JCAP, 11 (2011) 006.
[17] Adams A. and Essex C., Calculus: A Complete Course (Pearson Prentice Hall) 2009,

pp. 744.
[18] Lee H. W., Kim K. Y. and Myung Y. S., Eur. Phys. J. C, 71 (2011) 1748.
[19] Cognola G., Elizalde E., Nojiri S., Odintsov S. D., Sebastiani L. and Zerbini S.,

Phys. Rev. D, 77 (2008) 046009 [arXiv:0712.4017 [hep-th]].
[20] Elizalde E., Nojiri S., Odintsov S. D., Sebastiani L. and Zerbini S., Phys. Rev. D,

83 (2011) 086006 [arXiv:1012.2280 [hep-th]].


