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Summary. — The degenerate relativistic Feynman, Metropolis and Teller treat-
ment of compressed atoms is extended to finite temperatures. We present numerical
calculations of the equation of state for dense matter as well as profiles of the elec-
tron density as a function of distance from the atomic nucleus for selected values of
the total matter density and temperature. Marked differences appear especially in
the low-density regimes.

PACS 31.15.bt – Statistical model calculations (including Thomas-Fermi and
Thomas-Fermi-Dirac models).
PACS 71.10.Ca – Electron gas, Fermi gas.

1. – Introduction

In [1] we have generalized to the relativistic regime the classic work of Feynman,
Metropolis and Teller, solving a compressed atom by the Thomas-Fermi equation in a
Wigner-Seitz cell. In this relativistic generalization the equation to be integrated is the
relativistic Thomas-Fermi equation, also called the Vallarta-Rosen equation [2]. The
integration of this equation does not admit any regular solution for a point-like nucleus
and both the nuclear radius and the nuclear composition have necessarily to be taken
into account [3, 4]. This introduces a fundamental difference from the non-relativistic
Thomas-Fermi model where a point-like nucleus was adopted.

The relativistic Feynman-Metropolis-Teller treatment allows to treat globally and in
generality the electrodynamical interaction within the atom and the relativistic correc-
tions. As a result it is then possible to derive a consistent equation of state for compressed
matter which overcomes some of the difficulties of existing treatments often adopted in
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the literature. The equation of state has been applied to the study of the general rela-
tivistic white-dwarf equilibrium configurations [5].

In this paper we extend our previous work [1] on the degenerate relativistic gener-
alization of the Feynman, Metropolis and Teller treatment by including the effects of
temperature.

The paper is organized as follows: first (sect. 2) we describe the classical Thomas-
Fermi model, i.e. the non-relativistic and completely degenerate case and the finite-
temperature formulation of this problem, giving the corresponding exact equation and
its approximated version. Then (sect. 3) we will pass to the relativistic theory in the com-
pletely degenerate case and to the relativistic treatment at finite temperatures. Finally
conclusions are presented in sect. 4.

2. – The Thomas-Fermi model for compressed atoms

2.1. The degenerate case. – The Thomas-Fermi model assumes that the electrons of
an atom constitute a fully degenerate gas of fermions confined in a spherical region by the
Coulomb potential of a point-like nucleus of charge +eNp [6,7]. Feynman, Metropolis and
Teller have shown that this model can be used to derive the equation of state of matter
at high pressures by considering a Thomas-Fermi model confined in a Wigner-Seitz cell
of radius RWS [8].

We recall that the condition of equilibrium of the electrons in an atom, in the non-
relativistic limit, is expressed by

(1)
(PF

e )2

2me
− eV = EF

e ,

where me is the electron mass, V is the electrostatic potential and EF
e is their constant

Fermi energy.
The electrostatic potential fulfills, for r > 0, the Poisson equation

(2) ∇2V = 4πene,

where the electron number density ne is related to the Fermi momentum PF
e by

(3) ne =
(PF

e )3

3π2h̄3 .

For neutral atoms and ions ne vanishes at the boundary so the electron Fermi energy is,
respectively, zero or negative. In the case of compressed atoms ne does not vanish at the
boundary while the Coulomb potential energy eV does. Consequently EF

e is positive.
Defining

(4) eV (r) + EF
e = e2Np

φ(r)
r

,

and introducing the new dimensionless radial coordinate η as

(5) r = bη with b =
(3π)2/3

27/3

1

N
1/3
p

h̄2

mee2
,
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we obtain the following expression for the electron number density:

(6) ne(η) =
Np

4πb3

(
φ(η)

η

)3/2

,

and then eq. (2) can be written in the form

(7)
d2φ(η)

dη2
=

φ(η)3/2

η1/2
,

which is the classic Thomas-Fermi equation [7]. A first boundary condition for this
equation follows from the point-like structure of the nucleus

(8) φ(0) = 1.

A second boundary condition comes from the conservation of the number of electrons
Ne =

∫ RW S

0
4πne(r)r2dr

(9) 1 − Ne

Np
= φ(η0) − η0φ

′(η0),

where η0 = RWS/b defines the radius RWS of the Wigner-Seitz cell. In the case of
compressed atoms Ne = Np so the Coulomb potential energy eV vanishes at the boundary
RWS .

2.2. The non-degenerate case. – We introduce now the finite temperature effects in
the model (see, e.g., [8]).

The density of an electron gas at temperature T can be written as

(10) ne =
√

2m
3/2
e

π2h̄3

∫ ∞

0

√
εdε

1 + e
ε−μe

kT

=
√

2m
3/2
e

π2h̄3 (kT )3/2I1

( μe

kT

)
,

where μe is the electron chemical potential, k is the Boltzmann constant, T is the tem-
perature and

(11) I1(x) =
∫ ∞

0

√
y dy

1 + ey−x
.

Using the same dimensionless variables introduced in the previous sub-section and
introducing the temperature parameter τ as

(12) τ =
b

Npe2
kT,

we can write the electron density as

(13) ne =
√

2m
3/2
e Z3/2e3τ3/2

π2h̄3b3/2
I1

(
φ

τη

)
.
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As a result the Poisson equation can be written in the following dimensionless form:

(14)
d2φ

dη2
=

3
2
τ3/2ηI1

(
φ

τη

)
.

This equation is formally different from the one obtained in the case of complete
degeneracy, nevertheless it can be easily shown that if one develops the integral which
appears in eq. (10) for small temperatures one gets the following formula at the first
order

(15)
d2φ

dη2
=

φ3/2

η1/2

[
1 +

π2

8
τ2η2

φ2
+ . . .

]
,

which in the limit T → 0 gives the classic Thomas-Fermi equation (7).

3. – The relativistic Feynman-Metropolis-Teller treatment for compressed
atoms

3.1. The degenerate case. – In the relativistic generalization of the Thomas-Fermi
equation the point-like approximation of the nucleus must be abandoned [3, 4] since the
relativistic equilibrium condition

(16) EF
e =

√
(PF

e c)2 + m2
ec

4 − mec
2 − eV (r),

which generalizes eq. (1), would lead to a non-integrable expression for the electron
density near the origin. Consequently we adopt an extended nucleus. Traditionally the
radius of an extended nucleus is given by the phenomenological relation Rc = r0A

1/3

where A is the number of nucleons and r0 = 1.2 × 10−13 cm. Further it is possible to
show from the extremization of the semi-empirical Weizsacker mass-formula that the
relation between A and Np is given by (see e.g. Segré [9] and Ferreirinho, Ruffini and
Stella [3])

(17) Np ≈
[

2
A

+
2aC

aa

1
A1/3

]−1

≈
[

2
A

+
3

200
1

A1/3

]−1

,

where aC ≈ 0.71 MeV, aa ≈ 93.15 MeV are the Coulomb and the asymmetry coefficients
respectively. In the limit of small A eq. (17) gives

(18) Np ≈ A

2
.

In [1] we obtain the relation between A and Np imposing explicitly the beta decay
equilibrium between neutron, protons and electrons.
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In particular, following the previous treatments (see, e.g., [10]), we have assumed a
constant distribution of protons confined in a radius Rc defined by

(19) Rc = Δ
h̄

mπc
N1/3

p ,

where mπ is the pion mass and Δ is a parameter such that Δ ≈ 1 (Δ < 1) corresponds
to nuclear (supranuclear) densities when applied to ordinary nuclei. Consequently, the
proton density can be written as

(20) np(r) =
Np

4
3πR3

c

θ(Rc − r) =
3
4π

m3
πc3

h̄3

1
Δ3

θ(Rc − r),

where θ(x) is the Heaviside function which by definition is given by

(21) θ(x) =

{
0, x < 0,

1, x > 0.

The electron density is given by

(22) ne(r) =
(PF

e )3

3π2h̄3 =
1

3π2h̄3c3

[
e2V̂ 2(r) + 2mec

2eV̂ (r)
]3/2

,

where eV̂ = eV + EF
e and V is the Coulomb potential.

The overall Coulomb potential satisfies the Poisson equation

(23) ∇2V (r) = −4πe [np(r) − ne(r)] ,

with the boundary conditions V (RWS) = 0 (due to global charge neutrality) and finite-
ness of V (0).

Using eqs. (4), (5) and replacing the particle densities (20) and (22) into the Poisson
equation (23) we obtain the relativistic Thomas-Fermi equation

(24)
d2φ(η)

dη2
= −3η

η3
c

θ(ηc − η) +
φ3/2

η1/2

[
1 +

(
Np

N crit
p

)4/3
φ

η

]3/2

,

where φ(0) = 0, φ(ηWS) = 0 and ηc = Rc/b, ηWS = RWS/b. The critical number of
protons N crit

p is defined by

(25) N crit
p =

√
3π

4
α−3/2,

where, as usual, α = e2/(h̄c).
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It is interesting that by introducing the new dimensionless variable

(26) x =
r

λπ
=

b

λπ
η,

and the function

(27) χ = αNpφ,

where λπ = h̄/(mπc), eq. (24) assumes a canonical form, the master relativistic Thomas-
Fermi equation (see Ruffini [11])

(28)
1
3x

d2χ(x)
dx2

= − α

Δ3
θ(xc − x) +

4α

9π

[
χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,

where xc = Rc/λπ with the boundary conditions χ(0) = 0, χ(xWS) = xWSχ′(xWS),
xWS = RWS/λπ.

The neutron density nn(r), related to the neutron FermimomentumPF
n =(3π2h̄3nn)1/3,

is determined by imposing the condition of beta equilibrium

EF
n =

√
(PF

n c)2 + m2
nc4 − mnc2(29)

=
√

(PF
p c)2 + m2

pc
4 − mpc

2 + eV (r) + EF
e .

Using this approach, it is then possible to determine the beta equilibrium nuclide as a
function of the density of the system. In fact, electrons and protons can be converted to
neutrons in inverse beta decay p+e− → n+νe if the condition EF

n <
√

(PF
p c)2 + m2

pc
4−

mpc
2+eV (r)+EF

e holds. The condition of equilibrium (29) is crucial, for example, in the
construction of a self-consistent equation of state of high-energy density matter present
in white dwarfs and neutron star crusts [5]. In the case of zero electron Fermi energy the
generalized A − Np relation is obtained (see [1]).

3.2. The non-degenerate case. – We consider now the complete problem of a relativistic
and non-degenerate gas of electrons at temperature T surrounding a degenerate finite
sized and positively charged nucleus. The number density of such a gas is

(30) ne =
1

π2(ch̄)3

∫ ∞

mec2

√
ε2 − m2

ec
4εdε

1 + e
ε−μe

kT

=
(kT )3

π2(ch̄)3
I2

( μ

kT

)
,

where

(31) I2(x) =
∫ ∞

a

y
√

y2 − a2 dy

1 + ey−x
,

and a is the fixed parameter a = mec
2/(kT ). Introducing the dimensionless variables φ

and η given by eqs. (4), (5) and the temperature parameter τ given by eq. (12) we can
write

(32) ne =
1
b3

N3
p

π2

(
e2

ch̄

)3

τ3I2

(
φ

τη

)
,
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and using the definition of N critic
p we obtain

(33) ne =
3Np

4πb3

(
Np

N critic
p

)2

τ3I2

(
φ

τη

)
.

The final and more general expression of the Thomas-Fermi equation is

(34)
d2φ

dη2
= 3τ3η

(
Np

N critic
p

)2

I2

(
φ

τη

)
− 3η

η3
nuc

θ(ηnuc − η).

Using eqs. (26), (27), (34) can be rewritten as

(35)
d2χ

dx2
= 4α

√
t

π
τ3xI2

( χ

τ̂x

)
− t

3x

x3
nuc

θ(xnuc − x),

where

(36) τ̂ =
λπαNp

b
τ, t =

√
3π

16α

λe

λπ

(
N crit

p

Np

)1/3

.

Equation (35) is the generalization to finite temperatures of the master relativistic
Thomas-Fermi equation (28) and has to be integrated with the boundary conditions
χ(0) = 0, χ(xWS) = xWSχ′(xWS), xWS = RWS/λπ.

The results of our numerical integrations, referred to iron, are summarized in fig. 1
and in table I. Specifically fig. 1 shows three examples of how temperature changes
the electron number density inside an iron Wigner-Seitz cell of a given radius. We see
that for a given matter density ρ the electron profiles are in general different for differ-
ent temperatures. Further the positive temperature effects in determining the electron
distribution compete with the compressional effects leading to a decreasing differences
between different profiles to an increasing value of ρ. In particular for densities larger
than 103 g/cm3 the electron profiles for temperatures smaller than 1 keV are practically
overlapped. Finally it is found that, for a fixed matter density ρ, to an increasing value of
the temperature the electron density at the boundary of the Wigner-Seitz cell increases.

In table I instead we give the pressure PFMTrel for iron in the relativistic generaliza-
tion of the Feynman, Metropolis, Teller approach for selected temperatures as a function
of the matter density ρ. It is possible to conclude that:

a) for a given density the pressure, as expected, is an increasing function of the tem-
perature.

b) the gap between the pressures at different temperatures is a decreasing function of
the density.

While in the degenerate case the relativistic generalization of the Feynman, Metropo-
lis, Teller approach exhibits marked differences with respect to the non-relativistic one
especially in the high density regimes (see, e.g., [1]), now the generalization to posi-
tive temperatures exhibits differences which appear relevant especially in the low-density
regimes.
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Fig. 1. – The electron number density ne, in units of the Bohr density n0 = 3/(4πR3
Bohr), is

plotted as a function of the dimensionless radial coordinate η for selected values of the temper-
ature T in the case of iron at densities 30.0 g/cm3 (upper panel), 5 × 103 g/cm3 (middle panel)
and 107 g/cm3 (lower panel) using the relativistic generalization of the Feynman, Metropolis
and Teller treatment where RBohr = h̄2/(mec

2). To an increase of the temperature, the elec-
tron number density at the boundary of the atom increases and becomes almost uniform for
temperatures larger than 1 keV.



THE RELATIVISTIC THOMAS-FERMI TREATMENT FOR COMPRESSED ATOMS ETC. 143

Table I. – Pressure PFMTrel for iron as a function of the density ρ in the relativistic Feynman-
Metropolis-Teller approach for selected values of the temperature T .

ρ PFMTrel PFMTrel PFMTrel

(g/cm3) (bar) (bar) (bar)
(T = 0) (T = 1 keV) (T = 1 MeV)

1.27 × 103 2.25 × 1011 4.01 × 1011 1.36 × 1015

5 × 103 2.79 × 1012 3.57 × 1012 4.97 × 1015

1 × 104 9.62 × 1012 1.08 × 1013 9.57 × 1015

5 × 104 1.57 × 1014 1.62 × 1014 4.36 × 1016

1 × 105 5.10 × 1014 5.20 × 1014 8.35 × 1014

5 × 105 7.25 × 1015 7.37 × 1015 3.75 × 1017

1 × 106 2.20 × 1016 2.24 × 1016 7.16 × 1017

5 × 106 2.53 × 1017 2.57 × 1017 3.14 × 1018

1 × 107 6.90 × 1017 7.01 × 1017 5.90 × 1018

5 × 107 6.24 × 1018 6.34 × 1018 2.48 × 1019

1 × 108 1.54 × 1019 1.56 × 1019 4.51 × 1019

5 × 108 1.12 × 1020 1.13 × 1020 2.32 × 1020

1 × 109 2.49 × 1020 2.53 × 1020 4.39 × 1020

4. – Conclusions

We have generalized the relativistic Feynman-Metropolis-Teller treatment of degen-
erate compressed atoms [1] to the case of finite temperatures. In particular we have
evaluated the equation of state of compressed matter in extreme conditions of high tem-
peratures in a relativistic regime in the case of iron (see, e.g., table I). This work must
be considered as propaedeutical to the evaluation of the equilibrium configurations of
relativistic hot white dwarfs.

The application of this treatment to hot white dwarfs and its extension to nuclear
massive cores of stellar dimensions (see, e.g., [1]) will be considered elsewhere.
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