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Summary. — We present a review of the multi-year effort in the formulation of
a self-consistent theory for the description of white dwarfs and neutron stars based
on the general relativistic extension of the Thomas-Fermi model of the atom.

PACS 04.40.Dg – Relativistic stars: structure, stability, and oscillations.
PACS 26.60.Dd – Neutron star core.
PACS 26.60.Gj – Neutron star crust.
PACS 26.60.Kp – Equations of state of neutron-star matter.

1. – Introduction

That the Thomas-Fermi model originates from the realm of Atomic Physics has been
known for a long time [1, 2]. It has been in 1973 that, as a theoretical interest it was
proposed that the Thomas-Fermi model could be useful to give an alternative derivation
of a self-gravitating system of fermions within Newtonian gravity leading to a descrip-
tion of neutron stars and white dwarfs complementary to the traditional derivation in
the perfect fluid approximation [3, 4]. This gravitational treatment needed the special
relativistic generalization of the Thomas-Fermi model, which became also a necessity in
order to describe the physics of heavy nuclei [5-7]. The Thomas-Fermi treatment from
the original realm of Atomic Physics started so to be applied in its special relativistic
extension to gravitational and Nuclear Physics.
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It has been until [8-11] that all these considerations have been extended to a heuristic
simplified Thomas-Fermi model of a neutron star taking into account Nuclear Physics,
Newtonian Physics, and β-equilibrium. The evidence for the possible existence of over-
critical electric fields at the core of neutron stars was there presented [9]. At this stage
a basic theoretical progress in the description of neutron stars with a fully relativistic
Thomas-Fermi model with all interactions became a necessity. Particularly important
has been to use a Wigner Seitz cell: we first solved the relativistic Thomas-Fermi model
for compressed atoms [12], generalizing the classical approach of Feynman, Metropo-
lis and Teller (FMT) [13]. This has given as a byproduct a new equation of state for
white dwarfs duly expressed in general relativity [14]. We then proved the impossibility
of imposing local charge neutrality on chemically equilibrated matter made of neutrons,
protons, and electrons, in the simplified case where strong interactions are neglected [15].
This was a critical issue for neutron star matter calculations, since we demonstrated that
the equations which describe baryonic matter need to be solved simultaneously in com-
bination with the Einstein-Maxwell equations. The general formulation to the case of
strong interactions have been recently achieved in [16]. The present article is the result of
the above multi year effort and summarizes and discusses the relevant equations for the
description of neutron stars, i.e. relativistic mean field theory and the Einstein-Maxwell-
Thomas-Fermi system of general relativistic equations, presenting a self-consistent neu-
tron star model including all fundamental interactions: strong, weak, electromagnetic,
and gravitational.

It is well-known that the classic works of Tolman [17] and of Oppenheimer and
Volkoff [18], for short TOV, address the problem of neutron star equilibrium configura-
tions composed only of neutrons. For the more general case when protons and electrons
are also considered, in all of the scientific literature on neutron stars it is assumed that
the condition of local charge neutrality applies identically to all points of the equilibrium
configuration (see, e.g., [19]). Consequently, the corresponding solutions in this more
general case of a non-rotating neutron star, are systematically obtained also on the base
of the TOV equations.

In general, the formulation of the equilibrium of systems composed by different parti-
cle species must be established within the framework of statistical physics of multicompo-
nent systems; see, e.g., [20]. Thermodynamic equilibrium of these systems is warrantied
by demanding the constancy throughout the configuration of the generalized chemical
potentials, often called “electro-chemical”, of each of the components of the system; see
e.g. [21-23]. Such generalized potentials include not only the contribution due to ki-
netic energy but also the contribution due to the potential fields, e.g. gravitational and
electromagnetic potential energies per particle, and in the case of rotating stars also
the centrifugal potential. For such systems in presence of gravitational and Coulomb
fields, global electric polarization effects at macroscopic scales occur. The balance of the
gravitational and electric forces acting on ions and electrons in ideal electron-ion plasma
leading to the occurrence of gravito-polarization was pointed out in the classic work of
S. Rosseland [24].

If one turns to consider the gravito-polarization effects in neutron stars, the cor-
responding theoretical treatment acquires remarkable conceptual and theoretical com-
plexity, since it must be necessarily formulated consistently within the Einstein-Maxwell
system of equations. O. Klein, in [21], first introduced the constancy of the general rel-
ativistic chemical potential of particles, hereafter “Klein potentials”, in the study of the
thermodynamic equilibrium of a self-gravitating one-component fluid of neutral particles
throughout the configuration within the framework of general relativity. The extension
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of the Klein’s work to the case of neutral multicomponent degenerate fluids can be found
in [22] and to the case of multi-component degenerate fluid of charged particles in [23].

Using the concept of Klein potentials, we have recently proved the impossibility of
imposing the condition of local charge neutrality in the simplest case of a self-gravitating
system of degenerate neutrons, protons and electrons in β-equilibrium [15]: it has been
shown that the consistent treatment of the above system implies the solution of the
general relativistic Thomas-Fermi equations, coupled with the Einstein-Maxwell ones,
being the TOV equations thus superseded.

We have recently formulated the theory of a system of neutrons, protons and electrons
fulfilling strong, electromagnetic, weak and gravitational interactions [16] (see sect. 12
for details). The role of the Klein first integrals has been again evidenced and their
theoretical formulation in the Einstein-Maxwell background and in the most general
case of finite temperature has been there presented, generalizing the previous results
for the “non-interacting” case [15]. The strong interactions, modeled by a relativistic
nuclear mean field theory, are there described by the introduction of the σ, ω and ρ
virtual mesons.

The equilibrium configurations of non-rotating neutron stars following this new ap-
proach (see [15, 16]) have been constructed in [25] where the properties of neutron star
matter and neutron stars treated fully self-consistently with strong, weak, electromag-
netic, and gravitational interactions have been computed. The full set of the Einstein-
Maxwell-Thomas-Fermi equations has been solved numerically for zero temperatures and
for selected parameterizations of the nuclear model (see sect. 13 for details).

In this article we present a brief review of all the above literature that led to what
we can call a general relativistic Thomas-Fermi theory of white dwarfs and neutron stars
which treats in a self-consistent relativistic fashion the strong, weak, electromagnetic, and
gravitational interactions inside these high-density objects. We use CGS units through-
out the article except in sects. 12 and 13 where units with � = c = 1 are employed.

2. – The classical Thomas-Fermi model

Thomas [26] and Fermi [27] published, independently in the 1920s, a simple and
elegant approximation to the Schrödinger theory of a many electron atom (after named
Thomas-Fermi model), which is useful in providing quick numerical estimates and a
physical feel for some atomic phenomena (see, e.g., [1]). This model has been applied
to the analysis both of ions and neutral atoms by many classical papers from the Rome
group and abroad while Feynman, Metropolis and Teller [13] generalized the applicability
of the model to the study of compressed atoms. These results have become of paramount
importance in the analysis of the internal constitutions of the stars at the end point of
thermonuclear evolution. This section is devoted to the semi-classical Thomas-Fermi
theory using the statistics for degenerate fermions. The Thomas-Fermi equation in the
non-relativistic formulation is obtained and discussed in order to describe free neutral
atoms, positive ions and compressed atoms.

The Thomas-Fermi model assumes that the electrons of an atom constitute a fully
degenerate gas of fermions confined in a spherical region by the Coulomb potential of a
point-like nucleus of charge +eNp. The condition of equilibrium of the electrons in the
atom, in the non-relativistic limit, is expressed by

(1) EF
e =

(PF
e )2

2me
− eV = const,
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where me is the electron mass, V is the electrostatic potential and PF
e and EF

e are the
electron Fermi momentum and energy.

The electrostatic potential fulfills, for r > 0, the Poisson equation

(2) ∇2V = 4πene,

where the electron number density ne is related to the Fermi momentum PF
e by

(3) ne =
(PF

e )3

3π2�3
.

Introducing the potential φ(r) through

(4) eV (r) + EF
e = e2Np

φ(r)
r

,

and the dimensionless radial coordinate η as

(5) r = bη, b =
(3π)2/3

27/3

1

N
1/3
p

�
2

e2me
=

σ

N
1/3
p

rBohr,

where σ = (3π)2/3/27/3 and rBohr = �
2/(e2me) is the Bohr radius, we obtain the electron

number density

(6) ne(η) =
Np

4πb3

[
φ(η)

η

]3/2

,

and eq. (2) can be rewritten in the form

(7)
d2φ(η)

dη2
=

φ(η)3/2

η1/2
.

Equation (7) is called the classic Thomas-Fermi equation [27] and it can be solved
once two boundary conditions are given. The Thomas-Fermi equation is independent
on the atomic number Np and therefore its solution can be used to describe any atom
through specific scaling laws.

A first boundary condition for eq. (7) follows from the point-like structure of the
nucleus

(8) φ(0) = 1,

and a second boundary condition comes from the number of electrons of the system

(9) Ne =
∫ R0

0

4πne(r)r2dr = Np[1 − φ(η0) + η0φ
′(η0)],

where R0 = bη0 is the radius of the atom, which constrains the value of the first derivative
of the Thomas-Fermi function at the origin φ′(0) depending on the kind of atom we
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Fig. 1. – Physically relevant solutions of the Thomas-Fermi differential equation (7) with the
boundary conditions (8) and (9). The curve 1 refers to a neutral compressed atom. The curve
2 refers to a neutral free atom. The curve 3 refers to a positive ion. The dotted straight line
is the tangent to the curve 1 at the point (η0, φ(η0)) corresponding to overall charge neutrality
(see eq. (9)).

consider: ionized (Ne < Np, ne(R0) = 0, V (R0) > 0), free (Ne = Np, ne(R0) = 0,
V (R0) = 0) or compressed (Ne = Np, ne(R0) > 0, V (R0) = 0), as can be seen in fig. 1.
The electron Fermi energy is, respectively, negative, zero or positive.

It is worth to mention that in the case of free neutral atoms η0 → ∞ and φ(η0) → 0
(see fig. 1).

For compressed atoms, using eqs. (1) and (3), the Fermi energy of electrons satisfies
the universal relation (see fig. 2)
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Fig. 2. – The electron Fermi energy EF
e , in units of e2N

4/3
p /(σrBohr) is plotted as a function of

the atom radius R0, in units of σrBohrN
−1/3
p (see eqs. (10), (11)). Points refer to the numerical

integrations of the Thomas-Fermi equation (7) performed originally by Feynman, Metropolis
and Teller in [13].
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while the atom radius R0 satisfies the universal relation

(11)
R0

σrBohrN
−1/3
p

= η0,

An analogous Thomas-Fermi approach as the one summarized above in the case of
atoms can be used to describe a system of self-gravitating fermions. The relevance of a
gravitational Thomas-Fermi model for the understanding of the equilibrium configura-
tions of self-gravitating collapsed objects has been known for a long time (see e.g. [3]).
We briefly review such a theory in the following Section.

3. – The gravitational non-relativistic Thomas-Fermi model

Let us assume a system of N degenerate fermions of mass m, so the particle number
density n is given by

(12) n =
(PF )3

3π2�3
,

where PF is the Fermi momentum of the fermions.
The equilibrium condition of the configuration in the non-relativistic case is given by

(13) EF =
(PF )2

2m
− mΦ = −mΦ0 = constant,

where Φ is the gravitational potential which fulfills in this case the Poisson equation

(14) ∇2Φ = −4πGmn,

G is Newton’s gravitational constant, and Φ0 is the gravitational potential at the radius
R of the system, so

(15) Φ0 =
GM

R
,

being M the total mass of the configuration.
Introducing the potential χ(r) through

(16) Φ − Φ0 = GmN
χ(r)

r
,

and the dimensionless radial coordinate ξ as

(17) r = bgξ, bg =
(3π)2/3

27/3

1
N1/3

�
2

Gm3
,

we obtain the electron number density

(18) n(η) =
N

4πb3
g

[
χ(ξ)

ξ

]3/2

,
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and eq. (14) can be rewritten in the form

(19)
d2χ(ξ)

dξ2
= −χ(ξ)3/2

ξ1/2
.

Equation (19) differs from eq. (7) only in the minus sign on the right-hand side and
corresponds to the well-known Lane-Emden equation [28]

(20)
d2χ(ξ)

dξ2
= −χ(ξ)n

ξn−1
,

for the specific case n = 3/2. This gravitational Thomas-Fermi equation must be solved
with the boundary conditions

(21) χ(0) = χ(R) = 0,

as required from eq. (16) and the first derivative of the Thomas-Fermi function at the
origin χ(0) is constrained in order to fulfill the normalization condition

(22) N =
∫ R

0

4πr2ndr = N

∫ ξ0

0

χ3/2ξ1/2dξ,

from which we obtain

(23)
∫ ξ0

0

χ3/2ξ1/2dξ = −ξ0χ
′(ξ0) = 1,

where ξ0 = R/bg and we have used eqs. (20) and (21).
It is appropriate to discuss the homothetic property of the Lane-Emden equation (20)

with particular attention to the gravitational Thomas-Fermi equation (19). Introducing
the transformations

(24) ξ̂ = Aξ, χ̂ = Bχ,

eq. (20) becomes

(25)
d2χ̂(ξ̂)

dξ̂2
= −An−3

Bn−1

χ̂(ξ̂)n

ξ̂n−1
,

and thus we obtain from the invariance condition

(26) B = A(n−3)/(n−1),

which in the specific case n = 3/2 of eq. (19) reads

(27) B =
1

A3
.
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Fig. 3. – Generic solutions of the gravitational Thomas-Fermi differential equation (19) with the
boundary condition (21), but not the normalization (23). In order to satisfy the normalization
condition (23), these specific solutions must be rescaled using the transformations (24) and the
relations (27) and (31) with A = 0.968679, A = 0.901458 and A = 0.783765 for the solid, dashed
and dot-dashed curves, respectively.

These transformations are useful to obtain solutions of the gravitational Thomas-
Fermi equation (19) that satisfy the normalization condition (23) as follows. For given
initial conditions χ̂(0) and χ̂′(0) > 0 we can solve numerically eq. (23) until the boundary
χ̂(ξ̂0) = 0, as shown in fig. 3.

The solution satisfies at the boundary ξ̂0

(28)
∫ ξ̂0

0

χ̂3/2ξ̂1/2dξ̂ = −ξ̂0χ̂
′(ξ̂0) = D,

which by applying the homothetic transformation becomes

(29) A3/2B3/2

∫ ξ0

0

χ3/2ξ1/2dξ = D,

or equivalently

(30)
∫ ξ0

0

χ3/2ξ1/2dξ = DA3,

where we have used eq. (27). Thus, in order to satisfy the normalization condition (23)
we find the condition

(31) A =
1

D1/3
.

3.1. Application to neutron stars and white dwarfs. – For the case of neutron stars
we assume first, as a zeroth approximation, a neutron star made only of free neutrons.
It is clear that this configuration is unstable with respect to the β-decay of neutrons
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and therefore in a realistic configuration both protons and electrons must be necessarily
present. In such a case the electromagnetic interactions between the charged particles
and the strong interactions between nucleons must be taken properly into account. We
shall discuss this general case later on.

In the simplified case of a self-gravitating system of non-relativistic degenerate neu-
trons, the configurations of equilibrium can be simply constructed using the gravitational
Thomas-Fermi model by changing m → mn where mn is the neutron mass. Instead, the
application of the above equations to the case of white dwarfs is less straightforward and
it must be done as follows.

Both Chandrasekhar [29] and Landau [30] neglected the electromagnetic interactions
in the white-dwarf interior. The contribution of the electrons to the density and the one
of the nuclei to the pressure are neglected as well, namely

(32) ρ ≈ ρN , P ≈ Pe.

The Thomas-Fermi equilibrium condition in the gravitational case given by eq. (13)
can be regarded as the condition for the thermodynamic equilibrium of the system.
Neglecting the contribution of the nuclei to the kinetic energy and the contribution of
the electrons to the mass, eq. (13) becomes

(33) EF =
(PF

e )2

2me
− μmNΦ = −μmNΦ0 = const,

where mN ≈ mn is the nucleon mass, PF
e is the Fermi momentum of electrons and

μ = A/Z ≈ 2 is the average molecular weight of the nuclei.
We note here the hybrid character of eq. (33) describing an effective one-component

electron-nucleon fluid approach where the kinetic pressure is given by electrons of mass
me and their gravitational contribution is given by an effective mass μMN attached to
each electron (see, e.g., [31] for details).

In this case the gravitational Poisson equation (14) becomes

(34) ∇2Φ = −4πGμmNne,

where ne is the electron number density given by

(35) ne =
(PF

e )3

3π2�3
.

Introducing the potential χ(r) through

(36) Φ − Φ0 = GμmNN
χ(r)

r
,

and the dimensionless radial coordinate ξ as

(37) r = bgξ, bg =
(3π)2/3

27/3

1
N1/3

�
2

Gme

1
(μmN )2

,
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eq. (34) can be rewritten in the form

(38)
d2χ(ξ)

dξ2
= −χ(ξ)3/2

ξ1/2
,

which is the gravitational Thomas-Fermi equation that must be solved with the boundary
conditions (21) and (23).

We have so far assumed that the particles inside the stars are non-relativistic. How-
ever, it can be seen that such an approximation is in fact not suitable for the interior
white dwarfs and neutron stars. Neglecting the contribution of electrons to the density,
the Fermi momentum of the electrons in a white dwarf is approximately given by

(39) PF
e =

(3π)1/3

(μmN )1/3
�ρ1/3,

where we have used eq. (35). From this expression we can check that at densities ρ ∼
106 g/cm3 PF

e ∼ mec and thus the non-relativistic approximation breaks down. The
same situation occurs for the neutrons in neutron stars at densities ρ ∼ 1015 g/cm3. It
is therefore necessary to reformulate the gravitational Thomas-Fermi model in order to
include the effects of special relativity.

4. – Gravitational special relativistic Thomas-Fermi model

In analogy with the Thomas-Fermi atom [26, 27], the equilibrium condition of this
configuration in the relativistic case can be expressed as

(40) EF =
√

(cPF )2 + m2c4 − mc2 − mΦ = const = −mΦ(R),

where Φ is the gravitational potential and R is the radius of the configuration at which
the Fermi momentum of the fermions vanishes, namely PF (R) = 0. The gravitational
potential satisfies the Poisson equation

(41) ∇2Φ = −4π Gρ0,

where ρ0 = mn is the rest-mass density.
Introducing the dimensionless radial coordinate

(42) r = b ξ, b =
(3π)2/3

27/3

1
N1/3

�
2

Gm3
,

and a new potential χ(r) defined by

(43) Φ(r) − Φ(R) = GmN
χ(r)

r
,

with N the total number of fermions in the system, eq. (41) becomes

(44)
d2χ(ξ)

dξ2
= −χ(ξ)3/2

ξ1/2

[
1 +

(
N

N∗

)4/3
χ(ξ)

ξ

]3/2

,
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where N∗ is given by

(45) N∗ =
√

3π

2

(mPlanck

m

)3

,

with mPlanck =
√

�c/G the Planck’s mass.
The relativistic Thomas-Fermi equation (44) must be solved subjected to the bound-

ary conditions

(46) χ(0) = χ(ξ0) = 0,
(

dχ

dξ

)
ξ=0

> 0,

where ξ0 = R/b.
The first derivative of χ at the origin is, at the same time, subjected to the condition

that at the radius of the configuration the total number of particles must be equal to N .
Mathematically, such a condition can be written as

(47)
∫ ξ0

0

χ3/2ξ1/2dξ = −ξ0

(
dχ

dξ

)
ξ=ξ0

= 1.

In the extreme relativistic approximation PF 	 mc, the equilibrium condition (40)
becomes

(48) EF = cPF − mΦ = const = −mΦ(R),

and the relativistic Thomas-Fermi equation (44) reads simply

(49)
d2χ(ξ)

dξ2
= −

(
N

N∗

)2
χ(ξ)3

ξ2
.

with the following boundary conditions:

(50) χ(0) = 0, χ(ξ0) = 0, 1 = −ξ0

(
dχ

dξ

)
ξ=ξ0

.

Considering now the transformation χ = Aχ̂, x = Bx̂ with A2(N/N∗)2 = 1, eq. (49)
becomes

(51)
d2χ̂

dx̂2
= − χ̂3

x̂2
,

that is the Lane-Emden polytropic equation of index n = 3. The boundary conditions
are

(52) χ̂(0) = 0, χ̂(x̂0) = 0,
N

N∗ = −x̂0

(
dχ̂

dx̂

)
x̂=x̂0

.

As we have seen, the eq. (51) is obtained for any value of the factor B, and therefore
it is invariant under the scaling x̂ = ax̃ with a any constant. Thus, from a given solution
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a whole class of solutions can be derived by a simple change of the scale. Consequently
the quantity x̂0(dχ̂

dx̂ )x̂=x̂0 is a constant. This constant has the value 2.015 (see, e.g., [28])
and gives the following upper limit for the mass of the configuration:

(53) Mcrit = mN = 2.015N∗ = 2.015
√

3π

2
m3

Planck

m2
.

4.1. Application to white dwarfs and neutron stars . – Considering that in a white dwarf
the electrons of mass me are mostly responsible for the pressure (kinetic energy) while
the nuclei of molecular weight μ = A/Z provide the density of the system (gravitational
energy), the equilibrium condition (40) can be written as

(54) c
√

(cPF
e )2 + m2

ec
2 − mec

2 − μmNΦ = −μmNΦ(R),

where PF
e is the electron Fermi momentum and mN is the nucleon rest-mass. We note

therefore that all the above gravitational Thomas-Fermi model can be applied to white
dwarfs by assuming

(55) b =
(3π)2/3

27/3

1
N1/3

�
2

Gme

1
(μmN )2

and

(56) N∗ =
√

3π

2

(
mPlanck

μmN

)3

.

The critical mass given by eq. (53) can be then written for white dwarfs as

(57) Mcrit = mn N = 2.015N∗ =
√

3π

2
m3

Planck

μ2m2
N

≈ 1.44M�.

where for simplicity we have set the average molecular weight μ = 2.
It is interesting at this point to compare this result with the pioneering work of E. C.

Stoner [32] who introduced the effect of special relativity into the concept of degenerate
stars first introduced by R. H. Fowler [33] in the non-relativistic case. Stoner was indeed
the first to discover a critical mass of white dwarfs

(58) MStoner
crit =

15
16

√
5π

m3
Planck

μ2m2
N

,

assuming a white dwarf of constant density.
Following Stoner’s work, Chandrasekhar [29] pointed out the relevance of describing

white dwarfs by using an approach, initiated by E. A. Milne [34], of using the mathemat-
ical method of the solutions of the Lane-Emden polytropic equations [28]. The same idea
of using the Lane-Emden equations taking into account the special relativistic effects to
the equilibrium of stellar matter for a degenerate system of fermions, came independently
to L. D. Landau [30]. Both the Chandrasekhar and Landau treatments were explicit in
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Fig. 4. – Mass versus central density of white dwarfs with average molecular weight μ = 2 and
of neutron stars in the relativistic case.

pointing out the existence of the critical mass given by the above eq. (57), which is quan-
titatively smaller than the one obtained first by Stoner due to the inhomogeneity of the
density distribution.

For neutron stars, it is enough to change m → mn where mn is the neutron mass. In
such a case, the critical mass is given by

(59) Mcrit = mN = 2.015N∗ =
√

3π

2
m3

Planck

m2
n

≈ 5.76M�.

It is well known however that special relativistic effects in the determination of the
density of the system are important for neutron stars as well as the effects of general
relativity. As a result of these additional effects, the critical mass given by eq. (59) is
lowered to the a value ∼ 0.7M� for a self-gravitating non-interacting degenerate neutron
gas in general relativity (see [18] and sect. 5 below for details).

In fig. 4 we show the mass of the equilibrium configurations of both white dwarfs and
neutron stars as a function of the central density in the non-relativistic and relativistic
cases.

5. – The TOV equilibrium equations of neutron stars

The importance of special relativity in the description of matter in a compact star
such as white dwarfs and neutron stars has been shown in the previous results leading to
the concept of critical mass of a self-gravitating object. On the other-hand, the relative
importance of general relativistic effects can be estimated from the ratio GM/(c2R)
which gives us the strength of the gravitational field in units of c2. A roughly estimate
of the radii of white dwarfs and neutron stars gives ∼ (mPlanck/mn)(�/(mec)) and ∼
(mPlanck/mn)(�/(mπc)), respectively, where mπ is the pion mass. We have here assumed
a neutron star with an average density of the order of the nuclear one ∼ (�/(mπc))−3.
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Thus, we have

(60)
GM

c2R
∼

⎧⎪⎨
⎪⎩

mπ

mn
∼ 0.15, for neutron stars,

me

mn
∼ 5 × 10−4, for white dwarfs.

We can therefore expect the effects of general relativity to be much more important
in the description of neutron stars that in the one of white dwarfs. It is however worth
mentioning that, as we will show later on, also in the latter case general relativistic effects
play an important role.

The earliest general relativistic description of a neutron star date back to 1939 with
the seminal work of Oppenheimer & Volkoff [18]. The matter inside a neutron star is
considered to be composed only by a gas of degenerate neutrons and the equations of
equilibrium are derived for non-rotating neutron stars, i.e. in the spherically symmetric
case.

The spacetime metric is given by

(61) ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2,

and the Einstein equations can be reduced to the hydrostatic equilibrium equation (here-
after TOV equation) [18]

(62)
dP (r)

dr
= −G[ρ(r) + P (r)/c2][4πr3P (r)/c2 + M(r)]

r2[1 − 2GM(r)/(c2r)]
,

and the equation for the mass function M(r)

(63)
dM(r)

dr
= 4πr2ρ(r),

where ρ(r) = E(r)/c2 is the mass-density and the mass M(r) is related to the metric
function eλ thorough e−λ(r) = 1 − 2GM(r)/(c2r).

In fig. 5 we show the mass-radius relation of neutron stars obtained by Oppenheimer
& Volkoff [18] and compare it with the results obtained by the non-relativistic Thomas-
Fermi theory of sect. 11.

As we will show later on, such a classic gravitational Thomas-Fermi theory can be
duly generalized to general relativistic regimes both in the case of white dwarfs (see
sects. 8–13) and neutron stars (see sect. 10). It is worthy mentioning that the TOV
approach needs as well a proper generalization to account for the strong interactions
between the nuclear constituents of the neutron star matter (see sects. 12 and 13 for
details).

6. – The relativistic Thomas-Fermi atom

In the relativistic generalization of the Thomas-Fermi equation the point-like approx-
imation of the nucleus must be abandoned [6, 7] since the relativistic Thomas-Fermi
equilibrium condition

(64) EF
e =

√
(PF

e c)2 + m2
ec

4 − mec
2 − eV (r),
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Fig. 5. – Left panel: Mass-Radius relation of neutron stars as given by the gravitational non-
relativistic Thomas-Fermi treatment (see sect. 11), by the gravitational relativistic Thomas-
Fermi treatment (see sect. 15) and by the general relativistic treatment of Oppenheimer &
Volkoff [18]. In the right panel it is shown in more detail the Oppenheimer & Volkoff solution.

would lead to a non-integrable expression for the electron density near the origin. Conse-
quently we adopt an extended nucleus. Traditionally the radius of an extended nucleus is
given by the phenomenological relation Rc = r0A

1/3, where A is the number of nucleons
and r0 = 1.2 × 10−13 cm. Further it is possible to show from the extremization of the
semi-empirical Weizsacker mass-formula that the relation between A and Np is given by

(65) Np ≈
[

2
A

+
2aC

aA

1
A1/3

]−1

≈
[

2
A

+
3

200
1

A1/3

]−1

,

where aC ≈ 0.71 MeV, aA ≈ 93.15 MeV are the Coulomb and the asymmetry coefficients
respectively. In the limit of small A eq. (65) gives

(66) Np ≈ A

2
.

In [11] we have relaxed the condition Np ≈ A/2 adopted, e.g., in [5] as well as the
condition Np ≈ [2/A + 3/(200A1/3)]−1 adopted e.g. in [6, 7] by imposing explicitly the
β-decay equilibrium between neutrons, protons and electrons.

In particular, following the previous treatments (see, e.g., [11]), we have assumed a
constant distribution of protons confined in a radius Rc defined by

(67) Rc = Δ
�

mπc
N1/3

p ,

where mπ is the pion mass and Δ is a parameter such that Δ ≈ 1 (Δ < 1) corresponds
to nuclear (supranuclear) densities when applied to ordinary nuclei. Consequently, the
proton density can be written as

(68) np(r) =
Np

4
3πR3

c

θ(Rc − r) =
3
4π

m3
πc3

�3

1
Δ3

θ(Rc − r),
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where θ(x) is the Heaviside function which by definition is given by

(69) θ(x) =

{
0, x < 0,

1, x > 0.

The electron density is given by

(70) ne(r) =
(PF

e )3

3π2�3
=

1
3π2�3c3

[
e2V 2(r) + 2mec

2eV (r)
]3/2

,

where V is the Coulomb potential.
The overall Coulomb potential satisfies the Poisson equation

(71) ∇2V (r) = −4πe [np(r) − ne(r)] ,

with the boundary conditions V (∞) = 0 (due to global charge neutrality) and finiteness
of V (0).

Using eqs. (4), (5) and replacing the particle densities (68) and (70) into the Poisson
equation (71) we obtain the relativistic Thomas-Fermi equation

(72)
d2φ(η)

dη2
= −3η

η3
c

θ(ηc − η) +
φ3/2

η1/2

[
1 +

(
Np

N crit
p

)4/3
φ

η

]3/2

,

where φ(0) = 0, φ(∞) = 0 and ηc = Rc/b. The critical number of protons N crit
p is defined

by

(73) N crit
p =

√
3π

4
α−3/2,

where, as usual, α = e2/(�c).
It is interesting that by introducing the new dimensionless variable

(74) x =
r

λπ
=

b

λπ
η,

and the function

(75) χ = αNpφ,

where λπ = �/(mπc), eq. (72) assumes a canonical form, the master relativistic Thomas-
Fermi equation (see [9])

(76)
1
3x

d2χ(x)
dx2

= − α

Δ3
θ(xc − x) +

4α

9π

[
χ2(x)

x2
+ 2

me

mπ

χ

x

]3/2

,
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Fig. 6. – The A-Np relation at nuclear density (solid line) obtained from first principles compared
with the phenomenological expressions given by Np ≈ A/2 (dashed line) and eq. (65) (dotted

line). The asymptotic value, for A → (mPlanck/mn)3, is Np ≈ 0.0046A.

where xc = Rc/λπ with the boundary conditions χ(0) = 0, χ(∞) = 0. The neutron den-
sity nn(r), related to the neutron Fermi momentum PF

n = (3π2
�

3nn)1/3, is determined,
as in the previous case [11], by imposing the condition of β-equilibrium

EF
n =

√
(PF

n c)2 + m2
nc4 − mnc2(77)

=
√

(PF
p c)2 + m2

pc
4 − mpc

2 + eV (r),

which in turn is related to the proton density np and the electron density by eqs. (70),
(71). Integrating numerically these equations we have obtained a new generalized relation
between A and Np for any value of A. In the limit of small A this result agrees with the
phenomenological relations given by eqs. (65), (66), as is clearly shown in fig. 6.

7. – The relativistic Feynman-Metropolis-Teller treatment

Some of the basic assumptions adopted by Chandrasekhar [29] and Landau [30] in
their idealized approach of white dwarfs such as the treatment of the electron as a free-gas
without taking into due account the electromagnetic interactions, as well as the stability
of the distribution of the nuclei against the gravitational interaction led to some criticisms
by Eddington [35]. We will show here how the solution of the conceptual problems of
the white dwarf models, left open for years, can be duly addressed by considering the
relativistic Thomas-Fermi model of the compressed atom.

One of the earliest alternative approaches to the Chandrasekhar-Landau work was
proposed by E. E. Salpeter in 1961 [36]. He followed an idea originally proposed by Y. I.
Frenkel [37]: to adopt in the study of white dwarfs the concept of a Wigner-Seitz cell.
Salpeter introduced to the lattice model of a point-like nucleus surrounded by a uniform
cloud of electrons, corrections due to the non-uniformity of the electron distribution (see
subsect. 7.3 for details). In this way Salpeter [36] obtained an analytic formula for the
total energy in a Wigner-Seitz cell and derived the corresponding equation of state of
matter composed by such cells, pointing out explicitly the relevance of the Coulomb
interaction.
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There are different approaches to model the equation of state of nuclei surrounded
by electrons, each one characterized by a different way of treating or neglecting the
Coulomb interactions, which we will briefly review here. Particular attention is given
to the calculation of the self-consistent chemical potential of the Wigner-Seitz cell μws,
which plays a crucial role in the determination of the equilibrium condition governing
white dwarfs.

7.1. The uniform approximation. – In the uniform approximation used, e.g., by Chan-
drasekhar [29], the electron distribution as well as the nucleons are assumed to be locally
constant and therefore the condition of local charge neutrality

(78) ne =
Z

Ar
nN ,

where Ar is the average atomic weight of the nucleus, is applied. Here nN denotes the
nucleon number density and Z is the number of protons of the nucleus. The electrons are
considered as a fully degenerate free-gas and then described by Fermi-Dirac statistics.
Thus, their number density ne is related to the electron Fermi-momentum PF

e by

(79) ne =
(PF

e )3

3π2�3
,

and the total electron energy-density and electron pressure are given by

Ee =
2

(2π�)3

∫ P F
e

0

√
c2p2 + m2

ec
44πp2dp(80)

=
m4

ec
5

8π2�3

[
xe

√
1 + x2

e(1 + 2x2
e) − arcsinh(xe)

]
,

Pe =
1
3

2
(2π�)3

∫ P F
e

0

c2p2√
c2p2 + m2

ec
4
4πp2dp(81)

=
m4

ec
5

8π2�3

[
xe

√
1 + x2

e

(
2
3
x2

e − 1
)

+ arcsinh(xe)
]

,

where we have introduced the dimensionless Fermi momentum xe = PF
e /(mec), often

called relativistic parameter, being me the electron rest-mass.
The kinetic energy of nucleons is neglected and therefore the pressure is assumed to

be only due to electrons. Thus the equation of state can be written as

Eunif = EN + Ee ≈ Ar

Z
Muc2ne + Ee,(82)

Punif ≈ Pe,(83)

where Mu = 1.6604 × 10−24 g is the unified atomic mass and Ee and Pe are given by
eqs. (80)–(81).

Within this approximation, the total self-consistent chemical potential is given by

(84) μunif = ArMuc2 + Zμe,
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where

(85) μe =
Ee + Pe

ne
=

√
c2(PF

e )2 + m2
ec

4,

is the electron free-chemical potential.
As a consequence of this effective approach which does not take into any account the

Coulomb interaction, it is obtained an effective one-component electron-nucleon fluid
approach where the kinetic pressure is given by electrons of mass me and their gravita-
tional contribution is given by an effective mass (Ar/Z)Mu attached to each electron (see
e.g. [31]). This is even more evident when the electron contribution to the energy-density
in eq. (82) is neglected and therefore the energy-density is attributed only to the nuclei.
In this approach followed by Chandrasekhar [29], the equation of state reduces to

ECh =
Ar

Z
Muc2ne,(86)

PCh = Pe.(87)

It is worth to note that, in this simple case, no thermodynamically self-consistent
chemical potential can be constructed since the chemical potential of electrons must
satisfy eq. (85) which needs the presence of the electron contribution to the energy of
the system.

7.2. The lattice model . – The first correction to the above uniform model, corresponds
to abandon the assumption of the electron-nucleon fluid through the “lattice” model
which introduces the concept of Wigner-Seitz cell: each cell contains a point-like nucleus
of charge +eZ with A nucleons surrounded by a uniformly distributed cloud of Z fully
degenerate electrons. The global neutrality of the cell is guaranteed by the condition

(88) Z = Vwsne =
ne

nws
,

where nws = 1/Vws is the Wigner-Seitz cell density and Vws = 4πR3
ws/3 is the cell volume.

The total energy of the Wigner-Seitz cell is modified by the inclusion of the Coulomb
energy, i.e.

(89) EL
ws = EunifVws + EC ,

being

(90) EC = Ee-N + Ee-e = − 9
10

Z2e2

Rws
,

where Eunif is given by eq. (82) and Ee-N and Ee-e are the electron-nucleus and the
electron-electron Coulomb energies

Ee-N = −
∫ Rws

0

4πr2

(
Ze

r

)
enedr = −3

2
Z2e2

Rws
,(91)

Ee-e =
3
5

Z2e2

Rws
,(92)

being the latter simply the energy of a uniform distribution of charge.
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The self-consistent pressure of the Wigner-Seitz cell is then given by

(93) PL
ws = −∂EL

ws

∂Vws
= Punif +

1
3

EC

Vws
,

where Punif is given by eq. (83). It is worth to recall that the point-like assumption
of the nucleus is incompatible with a relativistic treatment of the degenerate electron
fluid (see [6, 7] for details). Such an inconsistency has been traditionally ignored by
applying, within a point-like nucleus model, the relativistic formulas (80) and (81) and
their corresponding ultrarelativistic limits (see, e.g., [36]).

The Wigner-Seitz cell chemical potential is in this case

(94) μL
ws = EL

ws + PL
wsVws = μunif +

4
3
EC ,

where μunif is given by eq. (84).
By comparing eqs. (83) and (93) we can see that the inclusion of the Coulomb inter-

action results in a decreasing of the pressure of the cell due to the negative lattice energy
EC . The same conclusion is achieved for the chemical potential from eqs. (84) and (94).

7.3. Salpeter approach. – A further development to the lattice model came from
Salpeter [36] who studied the corrections due to the non-uniformity of the electron dis-
tribution inside a Wigner-Seitz cell.

Following the Chandrasekhar [29] approximation, Salpeter also neglects the electron
contribution to the energy-density. Thus, the first term in the Salpeter formula for the
energy of the cell comes from the nuclei energy (86). The second contribution is given
by the Coulomb energy of the lattice model (90). The third contribution is obtained as
follows: the electron density is assumed as ne[1 + ε(r)], where ne = 3Z/(4πR3

ws) is the
average electron density as given by eq. (88), and ε(r) is considered infinitesimal. The
Coulomb potential energy is assumed to be the one of the point-like nucleus surrounded
by a uniform distribution of electrons, so the correction given by ε(r) on the Coulomb
potential is neglected. The electron distribution is then calculated at first-order by
expanding the relativistic electron kinetic energy

εk =
√

[cPF
e (r)]2 + m2

ec
4 − mec

2(95)

=
√

�2c2(3π2ne)2/3[1 + ε(r)]2/3 + m2
ec

4 − mec
2,

about its value in the uniform approximation

(96) εunif
k =

√
�2c2(3π2ne)2/3 + m2

ec
4 − mec

2,

considering as infinitesimal the ratio eV/EF
e between the Coulomb potential energy eV

and the electron Fermi energy

(97) EF
e =

√
[cPF

e (r)]2 + m2
ec

4 − mec
2 − eV.

The influence of the Dirac electron-exchange correction [38] on the equation of state
was also considered by Salpeter [36]. However, adopting the general approach of Migdal
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et al. [5], it has been shown that these effects are negligible in the relativistic regime [12].
We will then consider here only the major correction of the Salpeter treatment.

The total energy of the Wigner-Seitz cell is then given by (see [36] for details)

(98) ES
ws = ECh + EC + ETF

S ,

being

(99) ETF
S = −162

175

(
4
9π

)2/3

α2Z7/3μe,

where ECh = EChVws, EC is given by eq. (90), μe is given by eq. (85), and α = e2/(�c)
is the fine structure constant. It is appropriate to note that in eq. (98) we use ECh +
EC instead of the lattice energy EL

ws given by eq. (89). This is due to the fact that
Salpeter [36] followed the Chandrasekhar approximation of neglecting the contribution
of the electrons to the energy density, which we keep in the description of the lattice
model.

The self-consistent pressure of the Wigner-Seitz cell is

(100) P S
ws = PL

ws + PS
TF ,

where PL
ws is the pressure of the lattice model (93) and

(101) PS
TF =

1
3

(
PF

e

μe

)2
ETF

S

Vws
.

In Salpeter’s approximation, as in the Chandrasekhar one, no thermodynamically
self-consistent chemical potential can be constructed for the Wigner-Seitz cells due to
the neglect of the contribution of the electron component to the energy of the cells. If
the electron energy were not neglected, the self-consistent Wigner-Seitz cell chemical
potential can be computed as

(102) μS
ws = μL

ws + ES
TF

[
1 +

1
3

(
PF

e

μe

)2
]

,

where μL
ws is the chemical potential of the cell (94) within the lattice model.

It is clear from eqs. (100) and (102), that the inclusion of each additional Coulomb
correction results in a further decreasing of the pressure and of the chemical potential
of the cell. The Salpeter approach is very interesting in identifying the piecewise contri-
bution of the Coulomb interactions to the total energy, to the total pressure and, to the
chemical potential of the Wigner-Seitz cells. However, it does not have the full consis-
tency of the global solutions obtained with the FMT approach [13] and its generalization
to relativistic regimes [12] which we will discuss in detail below.
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7.4. The Feynman-Metropolis-Teller treatment . – Feynman, Metropolis and Teller [13]
showed how to derive the equation of state of matter at high pressures by considering a
Thomas-Fermi model confined in a Wigner-Seitz cell of radius Rws.

The Thomas-Fermi equilibrium condition for degenerate non-relativistic electrons in
the cell is expressed by

(103) EF
e =

(PF
e )2

2me
− eV = constant > 0,

where V denotes the Coulomb potential and EF
e denotes the Fermi energy of electrons,

which is positive for configurations subjected to external pressure, namely, for compressed
cells.

Defining the function φ(r) by eV (r) + EF
e = e2Zφ(r)/r, and introducing the di-

mensionless radial coordinate η by r = bη, where b = (3π)2/3(λe/α)2−7/3Z−1/3, being
λe = �/(mec) the electron Compton wavelength; the Poisson equation from which the
Coulomb potential V is calculated self-consistently becomes

(104)
d2φ(η)

dη2
=

φ(η)3/2

η1/2
.

The boundary conditions for eq. (104) follow from the point-like structure of the nucleus
φ(0) = 1 and, from the global neutrality of the Wigner-Seitz cell φ(η0) = η0dφ/dη|η=η0 ,
where η0 defines the dimensionless radius of the Wigner-Seitz cell by η0 = Rws/b.

For each value of the compression, e.g. η0, it corresponds a value of the electron Fermi
energy EF

e and a different solution of eq. (104), which determines the self-consistent
Coulomb potential energy eV as well as the self-consistent electron distribution inside
the cell through

(105) ne(η) =
Z

4πb3

[
φ(η)

η

]3/2

.

In the non-relativistic Thomas-Fermi model, the total energy of the Wigner-Seitz cell
is given by

(106) EFMT
ws = EN + E

(e)
k + EC ,

being

EN = MN (Z,A)c2,(107)

E
(e)
k =

∫ Rws

0

4πr2Ee[ne(r)]dr =
3
7

Z2e2

b

[
4
5
η
1/2
0 φ5/2(η0) − φ′(0)

]
,(108)

EC = Ee-N + Ee-e = −6
7

Z2e2

b

[
1
3
η
1/2
0 φ5/2(η0) − φ′(0)

]
,(109)

where MN (Z,A) is the nucleus mass, Ee[ne(r)] is given by eq. (80) and Ee-N and Ee-e are
the electron-nucleus Coulomb energy and the electron-electron Coulomb energy, which
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are given by

Ee-N = −
∫ Rws

0

4πr2

(
Ze

r

)
ene(r)dr,(110)

Ee-e =
1
2

∫ Rws

0

4πr2ene(�r)dr ×
∫ Rws

0

4πr′2
ene(�r ′)
|�r − �r ′|dr′.(111)

From eqs. (108) and (109) we recover the well-known relation between the total kinetic
energy and the total Coulomb energy in the Thomas-Fermi model [13]

(112) E
(e)
k = Eunif

k [ne(Rws)] −
1
2
EC ,

where Eunif
k [ne(Rws)] is the non-relativistic kinetic energy of a uniform electron distribu-

tion of density ne(Rws), i.e.

(113) Eunif
k [ne(Rws)] =

3
5
Z∗μe(Rws),

with Z∗ defined by

(114) Z∗ = Vwsne(Rws),

and μe(Rws) = �
2[3π2ne(Rws)]2/3/(2me).

The self-consistent pressure of the Wigner-Seitz cell given by the non-relativistic
Thomas-Fermi model is (see [13] for details)

(115) PFMT
ws =

∂EFMT
ws

∂Vws
=

2
3

Eunif
k [ne(Rws)]

Vws
.

The pressure of the Thomas-Fermi model (115) is equal to the pressure of a free-
electron distribution of density ne(Rws). Being the electron density inside the cell a
decreasing function of the distance from the nucleus, the electron density at the cell
boundary, ne(Rws), is smaller than the average electron distribution 3Z/(4πR3

ws). Then,
the pressure given by (115) is smaller than the one given by the non-relativistic version of
eq. (81) of the uniform model of subsect. 7.1. Such a smaller pressure, although faintfully
given by the expression of a free-electron gas, contains in a self-consistent fashion all the
Coulomb interaction effects inside the Wigner-Seitz cell.

The chemical potential of the Wigner-Seitz cell of the non-relativistic Thomas-Fermi
model can be then written as

(116) μFMT
ws = MN (Z,A)c2 + Z∗μe(Rws) +

1
2
EC ,

where we have used eqs. (112)–(114).
Integrating by parts the total number of electrons

(117) Z =
∫ Rws

0

4πr2ne(r)dr = Z∗ + I(Rws),
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where

(118) I(Rws) =
∫ Rws

0

4π

3
r3 ∂ne(r)

∂r
dr,

we can rewrite finally the following semi-analytical expression of the chemical poten-
tial (116) of the cell

μFMT
ws = MN (Z,A)c2 + Zμunif

e

[
1 +

I(Rws)
Z

]2/3

(119)

+μunif
e I(Rws)

[
1 +

I(Rws)
Z

]2/3

+
1
2
EC ,

where μunif
e is the electron free-chemical potential (85) calculated with the average elec-

tron density, namely, the electron chemical potential of the uniform approximation. The
function I(Rws) depends explicitly on the gradient of the electron density, i.e. on the
non-uniformity of the electron distribution.

In the limit of absence of Coulomb interaction both the last term and the function
I(Rws) in eq. (119) vanish and therefore in this limit μTF reduces to

(120) μFMT
ws → μunif ,

where μunif is the chemical potential in the uniform approximation (84).

7.5. The relativistic Feynman-Metropolis-Teller treatment . – We recall now how the
above classic FMT treatment of compressed atoms has been recently generalized to rel-
ativistic regimes (see [12] for details). One of the main differences in the relativistic
generalization of the Thomas-Fermi equation is that, the point-like approximation of the
nucleus, must be abandoned since the relativistic equilibrium condition of compressed
atoms

(121) EF
e =

√
c2(PF

e )2 + m2
ec

4 − mec
2 − eV (r) = const > 0,

would lead to a non-integrable expression for the electron density near the origin (see,
e.g., [6, 7]).

It is then assumed a constant distribution of protons confined in a radius Rc defined
by

(122) Rc = ΔλπZ1/3,

where λπ = �/(mπc) is the pion Compton wavelength. If the system is at nuclear density
Δ ≈ (r0/λπ)(A/Z)1/3 with r0 ≈ 1.2 fm. Thus, in the case of ordinary nuclei (i.e., for
A/Z ≈ 2) we have Δ ≈ 1. Consequently, the proton density can be written as

(123) np(r) =
Z

4
3πR3

c

θ(r − Rc) =
3
4π

(
1

Δλπ

)3

θ(r − Rc),
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where θ(r−Rc) denotes the Heaviside function centered at Rc. The electron density can
be written as

(124) ne(r) =
(PF

e )3

3π2�3
=

1
3π2�3c3

[
V̂ 2(r) + 2mec

2V̂ (r)
]3/2

,

where V̂ = eV + EF
e and we have used eq. (121).

The overall Coulomb potential satisfies the Poisson equation

(125) ∇2V (r) = −4πe [np(r) − ne(r)] ,

with the boundary conditions dV/dr|r=Rws = 0 and V (Rws) = 0 due to the global charge
neutrality of the cell.

By introducing the dimensionless quantities x = r/λπ, xc = Rc/λπ, χ/r = V̂ (r)/(�c)
and replacing the particle densities (123) and (124) into the Poisson equation (125), it is
obtained the relativistic Thomas-Fermi equation [9]

(126)
1
3x

d2χ(x)
dx2

= − α

Δ3
θ(xc − x) +

4α

9π

[
χ2(x)

x2
+ 2

me

mπ

χ(x)
x

]3/2

,

which must be integrated subjected to the boundary conditions

(127) χ(0) = 0, χ(xws) ≥ 0 ,
dχ

dx

∣∣∣∣
x=xws

=
χ(xws)

xws
,

where xws = Rws/λπ.
The neutron densitynn(r), related to the neutron Fermi momentumPF

n =(3π2
�

3nn)1/3,
is determined by imposing the condition of β-equilibrium

(128) EF
n =

√
c2(PF

n )2 + m2
nc4 − mnc2 =

√
c2(PF

p )2 + m2
pc

4 − mpc
2 + eV (r) + EF

e ,

subjected to the baryon number conservation equation

(129) A =
∫ Rc

0

4πr2[np(r) + nn(r)]dr.

In fig. 7 we see how the relativistic generalization of the FMT treatment leads to
electron density distributions markedly different from the constant electron density ap-
proximation. The electron distribution is far from being uniform as a result of the
solution of eq. (126), which takes into account the electromagnetic interaction between
electrons and between the electrons and the finite sized nucleus. Additional details are
given in [12].

V. S. Popov et al. [11,10] have shown how the solution of the relativistic Thomas-Fermi
equation (126) together with the self-consistent implementation of the β-equilibrium
condition (128) leads, in the case of zero electron Fermi energy (EF

e = 0), to a theoretical
prediction of the β-equilibrium line, namely a theoretical Z-A relation. Within this
model the mass to charge ratio A/Z of nuclei is overestimated, e.g. in the case of 4He
the overestimate is ∼ 3.8%, for 12C ∼ 7.9%, for 16O ∼ 9.52%, and for 56Fe ∼ 13.2%.
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Fig. 7. – The electron number density ne in units of the average electron number density n0 =
3Z/(4πR3

ws) inside a Wigner-Seitz cell of 12C. The dimensionless radial coordinate is x =

r/λπ and Wigner-Seitz cell radius is xws ≈ 255 corresponding to a density of ∼ 108 g/cm3.
The solid curve corresponds to the relativistic FMT treatment and the dashed curve to the
uniform approximation. The electron distribution for different levels of compression as well as
for different nuclear compositions can be found in [12].

These discrepancies are corrected when the model of the nucleus considered above is
improved by explicitly including the effects of strong interactions. This model, however,
illustrates how a self-consistent calculation of compressed nuclear matter can be done
including electromagnetic, weak, strong as well as special relativistic effects without any
approximation. This approach promises to be useful when theoretical predictions are
essential, for example in the description of nuclear matter at very high densities, e.g.,
nuclei close and beyond the neutron drip line.

The densities in white dwarf interiors are not highly enough to require such theoretical
predictions. Therefore, in order to ensure the accuracy of our results we use for (Z,A),
needed to solve the relativistic Thomas-Fermi equation (126), as well as for the nucleus
mass MN (Z,A), their known experimental values. In this way we take into account all
the effects of the nuclear interaction.

Thus, the total energy of the Wigner-Seitz cell in the present case can be written as

(130) ErelFMT
ws = EN + E

(e)
k + EC ,

being

EN = MN (Z,A)c2,(131)

E
(e)
k =

∫ Rws

0

4πr2(Ee − mene)dr,(132)

EC =
1
2

∫ Rws

Rc

4πr2e[np(r) − ne(r)]V (r)dr,(133)
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Fig. 8. – Ratio of the pressures in the different treatments as a function of the density for 12C
white dwarfs (see table I). The solid curve corresponds to the ratio between the relativistic FMT
pressure P relFMT

ws given by eq. (134) and the Chandrasekhar pressure PCh given by eq. (81). The
dashed curve corresponds to the ratio between the relativistic FMT pressure P relFMT

ws given by
eq. (134) and the Salpeter pressure P S

ws given by eq. (100).

where MN (Z,A) = ArMu is the experimental nucleus mass, e.g. for 4He, 12C, 16O
and 56Fe we have Ar = 4.003, 12.01, 16.00 and 55.84, respectively. In eq. (133) the
integral is evaluated only outside the nucleus (i.e. for r > Rc) in order to avoid a double
counting with the Coulomb energy of the nucleus already taken into account in the
nucleus mass (131). In order to avoid another double counting we subtract to the electron
energy-density Ee in eq. (132) the rest-energy density mec

2ne which is also taken into
account in the nucleus mass (131).

The total pressure of the Wigner-Seitz cell is given by

(134) P relFMT
ws = Pe[ne(Rws)],

where Pe[ne(Rws)] is the relativistic pressure (81) computed with the value of the electron
density at the boundary of the cell.

The electron density at the boundary Rws in the relativistic FMT treatment is smaller
with respect to the one given by the uniform density approximation (see fig. 7). Thus, the
relativistic pressure (134) gives systematically smaller values with respect to the uniform
approximation pressure (81) as well as with respect to the Salpeter pressure (100).

In fig. 8 we show the ratio between the relativistic FMT pressure P relFMT
ws (134) and

the Chandrasekhar pressure PCh (81) and the Salpeter pressure P S
ws (100) in the case of

12C. It can be seen how P relFMT
ws is smaller than PCh for all densities as a consequence

of the Coulomb interaction. With respect to the Salpeter case, we have that the ratio
P relFMT

ws /P S
ws approaches unity from below at large densities as one should expect.

However, at low densities � 104–105 g/cm3, the ratio becomes larger than unity due
to the defect of the Salpeter treatment which, in the low-density non-relativistic regime,
leads to a drastic decrease of the pressure and even to negative pressures at densities
� 102 g/cm3 or higher for heavier nuclear compositions, e.g., 56Fe (see [36,12] and table I).
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Table I. – Equation of state for 12C within the different treatments. The pressure in the uniform
approximation for μ = 2 is PCh, the Salpeter pressure is P S

ws and the relativistic FMT pressure
is P relFMT

ws . The units for the density are g/cm3 and for the pressure dyn/cm2.

ρ PCh P S
ws P relFMT

ws

10 1.46731 × 1014 −1.35282 × 1013 4.54920 × 1014

40 1.47872 × 1015 4.60243 × 1014 7.09818 × 1014

70 3.75748 × 1015 1.60860 × 1015 2.05197 × 1015

102 6.80802 × 1015 3.34940 × 1015 3.90006 × 1015

103 3.15435 × 1017 2.40646 × 1017 2.44206 × 1017

104 1.45213 × 1019 1.28976 × 1019 1.28965 × 1019

105 6.50010 × 1020 6.14494 × 1020 6.13369 × 1020

106 2.62761 × 1022 2.54932 × 1022 2.54431 × 1022

107 8.46101 × 1023 8.28899 × 1023 8.27285 × 1023

108 2.15111 × 1025 2.11375 × 1025 2.10896 × 1025

109 4.86236 × 1026 4.78170 × 1026 4.76613 × 1026

1010 1.05977 × 1028 1.04239 × 1028 1.03668 × 1028

This is in contrast with the relativistic FMT treatment which matches smoothly the
classic FMT equation of state in that regime (see [12] for details).

No analytic expression of the Wigner-Seitz cell chemical potential can be given in this
case, so we only write its general expression

(135) μrelFMT
ws = ErelFMT

ws + P relFMT
ws Vws,

where ErelFMT
ws and P relFMT

ws are given by eqs. (130) and (134), respectively. The above
equation, contrary to the non-relativistic formula (116), in no way can be simplified
in terms of its uniform counterparts. However, it is easy to check that, in the limit
of no Coulomb interaction ne(Rws) → 3Z/(4πR3

ws), EC → 0, and Ek → EChVws and,
neglecting the nuclear binding and the proton-neutron mass difference, we finally obtain

(136) μrelFMT
ws → μunif ,

as it should be expected.
Now we summarize how the equation of state of compressed nuclear matter can be

computed in the Salpeter case and in the relativistic FMT case, parameterized by the
total density of the system:

i) For a given radius Rws of the Wigner-Seitz cell the relativistic Thomas-Fermi equa-
tion (126) is integrated numerically and the density of the configuration is computed as
ρ = ErelFMT

ws /(c2Vws) where ErelFMT
ws is the energy of the cell given by eq. (130).
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Fig. 9. – The electron Fermi energies in units of mπc2N
4/3
p for 4He, 12C and 56Fe are plotted

as a function of the ratio RWS/(λπN
−1/3
p ) respectively in the non-relativistic and in the rela-

tivistic FMT treatment. The dimensionless quantities have been chosen in order to obtain the
universal curve in the non relativistic treatment following eqs. (10) and (11). The relativistic
treatment leads to results of the electron Fermi energy dependent on the nuclear composition
and systematically smaller than the non-relativistic ones. The electron Fermi energy can attain
arbitrary large values, in the non-relativistic treatment, as the point-like nucleus is approached.

ii) For that value of the density, the radius of the Wigner-Seitz cell in the Salpeter
treatment is

(137) Rws =
(

3ArMu

4πρ

)1/3

,

where eq. (86) has been used. On the contrary, in the relativistic FMT treatment no
analytic expression relating Wigner-Seitz cell radius and density can be written.

iii) From this Wigner-Seitz cell radius, or equivalently using the value of the density,
the electron density in the Salpeter model is computed from the assumption of uniform
electron distribution and the charge neutrality condition, i.e. eq. (86). In the relativistic
FMT treatment, the electron number density at the boundary of the Wigner-Seitz cell
is, following eq. (124), given by

(138) nrelFMT
e =

1
3π2λ3

π

[
χ2(xws)

x2
ws

+ 2
me

mπ

χ(xws)
xws

]3/2

,

where the function χ(x) is the solution of the relativistic Thomas-Fermi equation (126).
iv) Finally, with the knowledge of the electron density at Rws, the pressure can be

calculated. In the Salpeter approach it is given by eq. (100) while in the relativistic FMT
case it is given by eq. (134).

7.6. Relativistic FMT treatment vs. non-relativistic FMT treatment . – In fig. 9 we com-
pare and contrast the electron Fermi energy in a compressed atom in the non-relativistic
FMT case (103) and in the relativistic one (121).
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There are major differences:
1) The electron Fermi energy in the relativistic treatment is strongly dependent on the

nuclear composition, while the non-relativistic treatment presents a universal behavior
in the units of fig. 9. In the limit of low densities the relativistic curves approach the uni-
versal non-relativistic curve. In the non relativistic treatment the ratio EF

e /(mπc2N
4/3
p )

does not depend on the number of protons Np if the Wigner-Seitz cell radius RWS is
multiplied by N

1/3
p (see eqs. (10), (11)). This universality is lost in the relativistic treat-

ment since there is no way to eliminate the dependence of the electron Fermi energy on
the nuclear composition.

2) The relativistic treatment leads to values of the electron Fermi energy consistently
smaller than the ones of the non-relativistic treatment.

3) While in the non-relativistic treatment the electron Fermi energy can reach, by
compression, infinite values as RWS → 0, in the relativistic treatment it reaches a per-
fectly finite value attained when RWS coincides with the nuclear radius Rc.

It is clear then, from above considerations, the relativistic treatment of the Thomas-
Fermi equation introduces significant differences from current approximations in the lit-
erature: a) the uniform electron distribution (e.g. [29]); b) the approximate perturbative
solutions departing from the uniform distribution [36]; and c) the non-relativistic treat-
ment [13].

8. – The relativistic Feynman-Metropolis-Teller theory for white dwarfs in
general relativity

Outside each Wigner-Seitz cell the system is electrically neutral, thus no overall elec-
tric field exists. Therefore, the relativistic FMT equation of state can be used to calculate
the structure of the star through the Einstein equations. Introducing the spherically sym-
metric metric (61), the Einstein equations can be written in the Tolman-Oppenheimer-
Volkoff form [17,18]

dν(r)
dr

=
2G

c2

4πr3P (r)/c2 + M(r)

r2
[
1 − 2GM(r)

c2r

] ,(139)

dM(r)
dr

= 4πr2 E(r)
c2

,(140)

dP (r)
dr

= −1
2

dν(r)
dr

[E(r) + P (r)],(141)

where we have introduced the mass enclosed at the distance r through eλ(r) = 1 −
2GM(r)/(c2r), E(r) is the energy-density and P (r) is the total pressure.

We turn now to find, from eq. (141), the general relativistic equation of equilibrium for
the self-consistent chemical potential μws of the Wigner-Seitz cells inside a white dwarf.
The first law of thermodynamics for a zero temperature fluid of N particles, total energy
E, total volume V , total pressure P = −∂E/∂V , and chemical potential μ = ∂E/∂N
reads

(142) dE = −PdV + μdN,

where the differentials denote arbitrary but simultaneous changes in the variables. Since
for a system whose surface energy can be neglected with respect to volume energy, the
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total energy per particle E/N depends only on the particle density n = N/V , we can
assume E/N as a homogeneous function of first-order in the variables N and V and
hence, the well-known thermodynamic relation follows:

(143) E = −PV + μN.

In the case of the Wigner-Seitz cells, eq. (143) reads

(144) Ews = −PwsVws + μws,

where we have introduced the fact that the Wigner-Seitz cells are the building blocks
of the configuration and therefore we must put in eq. (143) Nws = 1. Through the
entire article we have used eq. (144) to obtain from the knowns energy and pressure,
the Wigner-Seitz cell chemical potential (see, e.g., eqs. (84) and (94)). From eqs. (142)
and (143) we obtain the so-called Gibbs-Duhem relation

(145) dP = ndμ.

In a white dwarf the pressure P and the chemical potential μ are decreasing functions
of the distance from the origin. Thus, the differentials in the above equations can be
assumed as the gradients of the variables which, in the present spherically symmetric
case, become just derivatives with respect to the radial coordinate r. From eq. (145) it
follows the relation

(146)
dPws

dr
= nws

dμws

dr
.

From eqs. (141), (144) and (146) we obtain

(147) nws(r)
dμws(r)

dr
= −1

2
dν(r)

dr
nws(r)μws(r),

which can be straightforwardly integrated to obtain the first integral

(148) eν(r)/2μws(r) = const.

The above equilibrium condition is general and it also applies for non-zero temperature
configurations (see [21] for details). In such a case, it can be shown that, in addition
to the equilibrium condition (148), the temperature of the system satisfies the general
relativistic Tolman isothermality condition [39]

(149) eν(r)/2T (r) = const.

8.1. The weak-field non-relativistic limit . – In the weak-field limit we have eν/2 ≈
1 + Φ/c2, where Φ denotes the Newtonian gravitational potential. In the non-relativistic
mechanics limit c → ∞, the chemical potential μws → μ̃ws + Mwsc

2, where μ̃ws denotes
the non-relativistic free-chemical potential of the Wigner-Seitz cell and Mws is the rest-
mass of the Wigner-Seitz cell, namely, the rest-mass of the nucleus plus the rest-mass of
the electrons. Applying these considerations to eq. (148) we obtain

(150) eν/2μws ≈ Mwsc
2 + μ̃ws + MwsΦ = const.
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Absorbing the Wigner-Seitz rest-mass energy Mwsc
2 in the constant on the right-hand-

side we obtain

(151) μ̃ws + MwsΦ = const.

In the weak-field non-relativistic limit, the Einstein equations (139)–(141) reduce to

dΦ(r)
dr

=
GM(r)

r2
,(152)

dM(r)
dr

= 4πr2ρ(r),(153)

dP (r)
dr

= −GM(r)
r2

ρ(r),(154)

where ρ(r) denotes the rest-mass density. Equations (152)–(153) can be combined to
obtain the gravitational Poisson equation

(155)
d2Φ(r)

dr2
+

2
r

dΦ(r)
dr

= 4πGρ(r).

In the uniform approximation (see subsect. 7.1), the equilibrium condition given by
eq. (151) reads

(156) μ̃e +
Ar

Z
MuΦ = const,

where we have neglected the electron rest-mass with respect to the nucleus rest-mass and
we have divided the equation by the total number of electrons Z. This equilibrium equa-
tion is the classical condition of thermodynamic equilibrium assumed for non-relativistic
white dwarf models (see, e.g., [31] for details).

Introducing the above equilibrium condition (156) into eq. (155), and using the re-
lation between the non-relativistic electron chemical potential and the particle density
ne = (2me)3/2μ̃

3/2
e /(3π2

�
3), we obtain

(157)
d2μ̃e(r)

dr2
+

2
r

dμ̃e(r)
dr

= −27/3m
3/2
e (Ar/Z)2m2

NG

3π�3
μ̃3/2

e (r),

which is the correct equation governing the equilibrium of white dwarfs within Newtonian
gravitational theory [31]. It is remarkable that the equation of equilibrium (157), obtained
from the correct application of the Newtonian limit, does not coincide with the equation
given by [29,40], which, as correctly pointed out by [35], is a mixture of both relativistic
and non-relativistic approaches. Indeed, the consistent relativistic equations should be
eq. (148). Therefore a dual relativistic and non-relativistic equation of state was used by
Chandrasekhar. The pressure on the left-hand-side of eq. (154) is taken to be given by
relativistic electrons while, the term on the right-hand-side of eq. (153) and (154) (or the
source of eq. (155)), is taken to be the rest-mass density of the system instead of the total
relativistic energy-density. Such a hybrid approach is also present in the gravitational
special relativistic Thomas-Fermi theory summarized in sect. 4. This is equivalent to
assume the chemical potential in eq. (151) as a relativistic quantity. As we have seen,
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this is inconsistent with the weak-field non-relativistic limit of the general relativistic
equations.

8.2. The Post-Newtonian limit . – Indeed, if one were to treat the problem of white
dwarfs approximately without going to the sophistications of general relativity, but in-
cluding the effects of relativistic mechanics, one should use at least the equations in the
post-Newtonian limit. The first-order post-Newtonian expansion of the Einstein equa-
tions (139)–(141) in powers of P/E and GM/(c2r) leads to the equilibrium equations [41]

dΦ(r)
dr

= − 1
E(r)

[
1 − P (r)

E(r)

]
dP (r)

dr
,(158)

dM(r)
dr

= 4πr2 E(r)
c2

,(159)

dP (r)
dr

= −GM(r)
r2

E(r)
c2

[
1 +

P (r)
E(r)

+
4πr3P (r)
M(r)c2

+
2GM(r)

c2r

]
,(160)

where eq. (160) is the post-Newtonian version of the Tolman-Oppenheimer-Volkoff equa-
tion (141).

Replacing eq. (146) into eq. (158) we obtain

(161)
[
1 − P (r)

E(r)

]
dμws(r)

dr
+

E(r)/c2

nws(r)
dΦ(r)

dr
= 0.

It is convenient to split the energy-density as E = c2ρ + U , where ρ = Mwsnws is the
rest-energy density and U the internal energy-density. Thus, eq. (161) becomes

(162)
dμws(r)

dr
+ Mws

dΦ(r)
dr

− P (r)
E(r)

dμws(r)
dr

+
U/c2

nws(r)
dΦ(r)

dr
= 0,

which is the differential post-Newtonian version of the equilibrium equation (148) and
where the post-Newtonian corrections of equilibrium can be clearly seen. Applying the
non-relativistic limit c → ∞ to eq. (162): P/E → 0, U/c2 → 0, and μws → Mwsc

2 + μ̃ws,
we recover the Newtonian equation of equilibrium (151).

8.3. Mass and radius of general relativistic stable white dwarfs

8.3.1. Inverse β-decay instability. It is known that white dwarfs may become unstable
against the inverse β-decay process (Z,A) → (Z − 1, A) through the capture of energetic
electrons (see, e.g., [42-45]). In order to trigger such a process, the electron Fermi energy
must be larger than the mass difference between the initial nucleus (Z,A) and the final
nucleus (Z−1, A). We denote this threshold energy as εβ

Z . Usually it is satisfied εβ
Z−1 < εβ

Z

and therefore the initial nucleus undergoes two successive decays, i.e. (Z,A) → (Z −
1, A) → (Z − 2, A) (see, e.g., [36, 48]). Some of the possible decay channels in white
dwarfs with the corresponding known experimental threshold energies εβ

Z are listed in
table II. The electrons in the white dwarf may eventually reach the threshold energy to
trigger a given decay at some critical density ρβ

crit. Configurations with ρ > ρβ
crit become

unstable (see [36] for details).
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Table II. – Onset of inverse beta decay instability for 4He, 12C, 16O and 56Fe. The experimental
inverse β-decay energies εβ

Z are given in MeV and they have been taken from table 1 of [46]. The

corresponding critical density for the uniform electron density model, ρβ,unif
crit given by eq. (163),

is given in g/cm3 as well as the critical density ρβ,relFMT
crit for the relativistic FMT case. The

numerical values of εβ
Z are taken from [47], see also [48].

Decay εβ
Z ρβ,relFMT

crit ρβ,unif
crit

4He →3 H + n → 4n 20.596 1.39 × 1011 1.37 × 1011

12C →12 B → 12Be 13.370 3.97 × 1010 3.88 × 1010

16O → 16N → 16C 10.419 1.94 × 1010 1.89 × 1010

56Fe → 56Mn → 56Cr 3.695 1.18 × 109 1.14 × 109

Within the uniform approximation, e.g. in the case of the Salpeter equation of
state [36], the critical density for the onset of inverse β-decay is given by

(163) ρβ,unif
crit =

Ar

Z

Mu

3π2�3c3

[
(εβ

Z)2 + 2mec
2εβ

Z

]3/2

,

where eq. (86) has been used.
Because the computation of the electron Fermi energy within the relativistic FMT

approach [12] involves the numerical integration of the relativistic Thomas-Fermi equa-
tion (126), no analytic expression for ρβ

crit can be found in this case. The critical density
ρβ,relFMT
crit is then obtained numerically by looking for the density at which the electron

Fermi energy (121) equals εβ
Z .

In table II we show, correspondingly to each threshold energy εβ
Z , the critical density

both in the Salpeter case ρβ,unif
crit given by eq. (163) and in the relativistic FMT case

ρβ,relFMT
crit . It can be seen that ρβ,relFMT

crit > ρβ,unif
crit as one should expect from the fact

that, for a given density, the electron density at the Wigner-Seitz cell boundary satisfies
nrelFMT

e < nunif
e . This means that, in order to reach a given energy, the electrons within

the relativistic FMT approach must be subjected to a larger density with respect to the
one given by the approximated Salpeter analytic formula (163).

8.3.2. General relativistic instability. The concept of the critical mass has played a
major role in the theory of stellar evolution. For Newtonian white dwarfs the critical
mass is reached asymptotically at infinite central densities of the object. One of the most
important general relativistic effects is to shift this critical point to some finite density
ρGR
crit.

This general relativistic effect is an additional source of instability with respect to
the already discussed instability due to the onset of inverse β-decay which, contrary to
the present general relativistic one, applies also in the Newtonian case by shifting the
maximum mass of Newtonian white dwarfs to finite densities.

8.3.3. Numerical results. In figs. 10–17 we have plotted the mass-central density re-
lation and the mass-radius relation of general relativistic 4He, 12C, 16O and 56Fe white
dwarfs. In particular, we show the results for the Newtonian white dwarfs of Hamada
and Salpeter [49], for the Newtonian white dwarfs of Chandrasekhar [29] and the general
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Fig. 10. – Mass in solar masses as a function of the central density in the range (left panel)
105–108 g/cm3 and in the range (right panel) 108–5×1011 g/cm3 for 4He white dwarfs. The solid
curve corresponds to the present work, the dotted curves are the Newtonian configurations of
Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

relativistic configurations obtained in this work based on the relativistic FMT equation
of state [12].

Since our approach takes into account self-consistently both β-decay equilibrium and
general relativity, we can determine if the critical mass is reached due either to inverse
β-decay instability or to the general relativistic instability.

A comparison of the numerical value of the critical mass as given by Stoner [32],
eq. (58), by Chandrasekhar [29] and Landau [30], eq. (57), by Hamada and Salpeter [49]
and, by the treatment presented here can be found in table III.

From the numerical integrations we have obtained:

1. 4He and 12C white dwarfs satisfy ρGR
crit < ρβ

crit (see figs. 10–13 and tables II and III),
so they are unstable with respect to general relativistic effects. The critical density
of 12C white dwarfs is ∼ 2.12 × 1010 g/cm3, to be compared with the value 2.65 ×
1010 g/cm3 obtained from calculations based on general relativistic corrections to
the theory of polytropes (see, e.g., [48]).

Fig. 11. – Mass in solar masses as a function of the radius in units of 104 km for 4He white
dwarfs. The left and right panels show the configurations for the same range of central densities
of the corresponding panels of fig. 10. The solid curve corresponds to the present work, the
dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve
are the Newtonian configurations of Chandrasekhar.
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Fig. 12. – Mass in solar masses as a function of the central density in the range (left panel)
105–108 g/cm3 and in the range (right panel) 108–1011 g/cm3 for 12C white dwarfs. The solid
curve corresponds to the present work, the dotted curves are the Newtonian configurations of
Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

2. White dwarfs composed of heavier material than 12C, e.g. 16O and 56Fe are unstable
due to inverse β-decay of the nuclei (see figs. 14–17 and tables II and III). It is
worth to notice that the correct evaluation of general relativistic effects and of
the combined contribution of the electrons to the energy-density of the system
introduce, for 12C white dwarfs, a critical mass not due to the inverse beta decay.
When the contribution of the electrons to the energy-density is neglected (e.g.
Chandrasekhar [29] and Hamada and Salpeter [49], see eq. (86)) the critical density
for Carbon white dwarfs is determined by inverse beta decay irrespective of the
effects of general relativity.

3. It can be seen from figs. 10–17 that the drastic decrease of the Salpeter pressure at
low densities (see [36,12] and table I for details) produces an underestimate of the
mass and the radius of low density (low mass) white dwarfs.

Fig. 13. – Mass in solar masses as a function of the radius in units of 104 km for 12C white
dwarfs. The left and right panels show the configurations for the same range of central densities
of the corresponding panels of fig. 12. The solid curve corresponds to the present work, the
dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve
are the Newtonian configurations of Chandrasekhar.
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Fig. 14. – Mass in solar masses as a function of the central density in the range (left panel)
105–108 g/cm3 and in the range (right panel) 108–1011 g/cm3 for 16O white dwarfs. The solid
curve corresponds to the present work, the dotted curves are the Newtonian configurations of
Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

4. The Coulomb effects are much more pronounced in the case of white dwarfs with
heavy nuclear compositions, e.g., 56Fe (see figs. 16 and 17).

We have addressed the theoretical physics aspects of the white dwarf configurations of
equilibrium, quite apart from the astrophysical application. The recently accomplished
description of a compressed atom within the global approach of the relativistic FMT
treatment [12] has been here solved within the Wigner-Seitz cell and applied to the
construction of white dwarfs in the framework of general relativity. From a theoretical
physics point of view, this is the first unified approach of white dwarfs taking into account
consistently the gravitational, the weak, the strong and the electromagnetic interactions,
and it answers open theoretical physics issues in this matter. No analytic formula for the
critical mass of white dwarfs can be derived and, on the contrary, the critical mass can
obtained only through the numerical integration of the general relativistic equations of
equilibrium together with the relativistic FMT equation of state.

Fig. 15. – Mass in solar masses as a function of the radius in units of 104 km for 16O white
dwarfs. The left and right panels show the configurations for the same range of central densities
of the corresponding panels of fig. 14. The solid curve corresponds to the present work, the
dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve
are the Newtonian configurations of Chandrasekhar.
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Fig. 16. – Mass in solar masses as a function of the central density in the range (left panel) 105–
108 g/cm3 and in the range (right panel) 108–3 × 109 g/cm3 for 56Fe white dwarfs. The solid
curve corresponds to the present work, the dotted curves are the Newtonian configurations of
Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

The value of the critical mass and the radius of white dwarfs in our treatment and in
the Hamada and Salpeter [49] treatment becomes a function of the composition of the
star. Specific examples have been given in the case of white dwarfs composed of 4He,
12C, 16O and 56Fe. The results of Chandrasekhar, of Hamada and Salpeter and ours
have been compared and contrasted (see table III and figs. 10–17).

The critical mass is a decreasing function of Z and Coulomb effects are more impor-
tant for heavy nuclear compositions. The validity of the Salpeter approximate formulas
increases also with Z, namely for heavy nuclear compositions the numerical values of the
masses as well as of the radii of white dwarfs obtained using the Salpeter equation of
state are closer to the ones obtained from the full numerical integration of the general
relativistic treatment presented here.

Turning now to astrophysics, the critical mass of white dwarfs is today acquiring a
renewed interest in view of its central role in the explanation of the supernova phenom-
ena [50-53]. The central role of the critical mass of white dwarfs as related to supernova

Fig. 17. – Mass in solar masses as a function of the radius in units of 104 km for 56Fe white
dwarfs. The left and right panels show the configurations for the same range of central densities
of the corresponding panels of fig. 16. The solid curve corresponds to the present work, the
dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve
are the Newtonian configurations of Chandrasekhar.
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Table III. – Critical density and corresponding critical mass for the onset of gravitational col-
lapse of the Newtonian 4He, 12C, 16O and 56Fe white dwarfs of Hamada [49], based on the
Salpeter equation of state [36], and of the corresponding general relativistic configurations ob-
tained in this work based on the relativistic FMT equation of state [12]. Densities are in g/cm3

and masses in solar masses. For the sake of comparison, the critical mass of Stoner (58) and of
the one of Chandrasekhar-Landau (57) are MStoner

crit ∼ 1.72M� and MCh−L
crit ∼ 1.45M�, for the

average molecular weight μ = Ar/Z = 2.

ρH&S
crit MH&S

crit /M� ρFMTrel
crit MFMTrel

crit /M�

4He 1.37 × 1011 1.44064 1.56 × 1010 1.40906
12C 3.88 × 1010 1.41745 2.12 × 1010 1.38603
16O 1.89 × 1010 1.40696 1.94 × 1010 1.38024
56Fe 1.14 × 109 1.11765 1.18 × 109 1.10618

was presented by F. Hoyle and W. A. Fowler [54] explaining the difference between type-I
and type-II Supernova. This field has developed in the intervening years to a topic of
high precision research in astrophysics and, very likely, both the relativistic and the
Coulomb effects outlined in this article will become topic of active confrontation between
theory and observation. For instance, the underestimate of the mass and the radius of
low density white dwarfs within the Hamada and Salpeter treatment [49] (see figs. 10–17)
leads to the possibility of a direct confrontation with observations in the case of low mass
white dwarfs, e.g. the companion of the Pulsar J1141-6545.

We have finally obtained a general formula in eq. (148) as a “first integral” of the
general relativistic equations of equilibrium. This formula relates the chemical potential
of the Wigner-Seitz cells, duly obtained from the relativistic FMT model [12] taking
into account weak, nuclear and electromagnetic interactions, to the general relativistic
gravitational potential at each point of the configuration. Besides its esthetic value, this
is an important tool to examine the radial dependence of the white dwarf properties and
it can be also applied to the crust of a neutron star as it approaches to the physical
important regime of neutron star cores.

The formalism we have introduced allows in principle to evaluate subtle effects of a
nuclear density distribution as a function of the radius and of the Fermi energy of the
electrons and of the varying depth of the general relativistic gravitational potential. The
theoretical base presented in this article establishes also the correct framework for the
formulation of the more general case when finite temperatures and magnetic fields are
present. This treatment naturally opens the way to a more precise description of the
crust of neutron stars, which will certainly become an active topic of research in view
of the recent results by S. Goriely et al. [55] and by J. M. Pearson et al. [56] on the
importance of the Coulomb effects in the r-process nucleosynthesis of the crust material
during its post-ejection evolution in the process of gravitational collapse and/or in the
merging of neutron star binaries.

9. – The ultra-relativistic Thomas-Fermi equation and nuclear matter cores
of stellar dimensions

We have generalized the FMT treatment of compressed atoms to the relativistic
regimes (see [12] and sect. 7). The application of this approach to general relativis-
tic white dwarfs has been presented in sect. 8. Thanks to the existence of scaling laws of
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the ultrarelativistic Thomas-Fermi equation [9-12] this treatment can be extrapolated to
what can be called compressed nuclear matter cores of stellar dimensions: objects with
mass numbers A � (mPlanck/mn)3 ∼ 1057 or Mcore ∼ M�. As we will show below, such
configurations fulfill global but not local charge neutrality and have electric fields on
their core surfaces reaching values much larger than the critical value Ec = m2

ec
3/(e�).

A constant distribution of protons at nuclear densities is assumed to simulate the con-
finement due to the strong interactions in the case of nuclei and heavy nuclei and due
to both the gravitational field and the strong interactions in the case of nuclear matter
cores of stellar sizes.

In the ultrarelativistic limit, the relativistic Thomas-Fermi equation admits an ana-
lytic solution. Introducing the new function φ defined by φ = 41/3

(9π)1/3 Δχ
x and the new

variables x̂ = (12/π)1/6
√

αΔ−1x, ξ = x̂ − x̂c, where x̂c = (12/π)1/6
√

αΔ−1xc, then
eq. (126) becomes

(164)
d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3,

where φ̂(ξ) = φ(ξ + x̂c). The boundary conditions on φ̂ are: φ̂(ξ) → 1 as ξ → −x̂c � 0
(at the massive nuclear density core center) and φ̂(ξ) → 0 as ξ → ∞. The function φ̂

and its first derivative φ̂′ must be continuous at the surface ξ = 0 of the massive nuclear
density core. Equation (164) admits an exact solution

(165) φ̂(ξ) =

⎧⎪⎨
⎪⎩

1 − 3
[
1 + 2−1/2 sinh(a −

√
3ξ)

]−1
, ξ < 0,

√
2

(ξ + b)
, ξ > 0,

where the integration constants a and b have the values a = arcsinh(11
√

2) ≈ 3.439,
b = (4/3)

√
2 ≈ 1.886. Next we evaluate the Coulomb potential energy function

(166) eV (ξ) =
(

9π

4

)1/3 1
Δ

mπc2φ̂(ξ),

and by differentiation, the electric field

(167) E(ξ) = −
(

35π

4

)1/6 √
α

Δ2

m2
πc3

e�
φ̂′(ξ).

Details are given in figs. 18 and 19.
We now estimate three crucial quantities: 1) the Coulomb potential at the center of

the configuration,

(168) eV (0) ≈
(

9π

4

)1/3 1
Δ

mπc2,
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Fig. 18. – The electron Coulomb potential energy −eV , in units of pion mass mπ is plotted as
a function of the radial coordinate ξ = x̂ − x̂c, for selected values of the density parameter Δ.

2) the electric field at the surface of the core

(169) Emax ≈ 0.95
√

α
1

Δ2

m2
πc3

e�
= 0.95

√
α

Δ2

(
mπ

me

)2

Ec,

3) the Coulomb electrostatic energy of the core

(170) Eem =
∫

E2

8π
d3r ≈ 0.15

3�c(3π)1/2

4Δ
√

α
A2/3 mπc

�

(
Np

A

)2/3

.

These three quantities are functions only of the pion mass mπ, the density parameter
Δ and of the fine structure constant α. Their formulas apply over the entire range
from superheavy nuclei with Np ∼ 103 all the way up to massive cores with Np ≈
(mPlanck/mn)3.
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Fig. 19. – The electric field is plotted in units of the critical field Ec as a function of the radial
coordinate ξ for Δ = 2, showing a sharp peak at the core radius.
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Starting from the analytic solutions of the previous section we obtain the following
new results:

a) Using the solution (165), we have obtained a new generalized relation between
A and Np for any value of A. In the limit of small A this result agrees well with
the phenomenological relations given by eqs. (65) and (66). It seems that the explicit
evaluation of the β-equilibrium, in contrast with the previously adopted equations, leads
to an effect comparable in magnitude and qualitatively similar to the asymmetry energy
in the phenomenological liquid drop model.

b) The charge-to-mass ratio of the effective charge Q at the core surface to the core
mass M is given by

(171)
Q√
GM

≈ EmaxR
2
c√

GmnA
≈ mPlanck

mn

(
1

Np

)1/3
Np

A
.

For superheavy nuclei with Np ≈ 103, the charge-to-mass ratio for the nucleus is

(172)
Q√
GM

>
1
20

mPlanck

mn
∼ 1018.

Gravitation obviously plays no role in the stabilization of these nuclei.
Instead for massive nuclear density cores where Np ≈ (mPlanck/mn)3, the ratio

Q/
√

GM given by eq. (171) is simply

(173)
Q√
GM

≈ Np

A
,

which is approximatively 0.0046. It is well-known that the charge-to-mass-ratio (173)
smaller than 1 evidences the equilibrium of self-gravitating mass-charge system both in
Newtonian gravity and general relativity.

c) For a massive core at nuclear density the criterion of stability against fission (Eem <
2Es) is satisfied:

(174)
Eem

2Es
≈ 0.15

3
8

√
3π

α

1
Δ

(
Np

A

)2/3
mπc2

17.5MeV
∼ 0.1 < 1.

9.1. Estimates of gravitational effects in a Newtonian approximation. – In order to
investigate the possible effects of gravitation on these massive nuclear density cores we
proceed to some qualitative and quantitative estimates based on the Newtonian approx-
imation.

a) The maximum Coulomb energy per proton is given by eq. (168) where the potential
is evaluated at the center of the core. The Newtonian gravitational potential energy per
proton (of mass mp) in the field of a massive nuclear density core with A ≈ (mPlanck/mn)3

is given by

(175) Eg = −G
Mmp

Rc
= − 1

Δ
mPlanck

mn

mπc2

N
1/3
p

� −mπc2

Δ

(
A

Np

)1/3

.
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Since A/Np ∼ 0.0046 for any value of Δ, the gravitational energy is larger in magni-
tude than and opposite in sign to the Coulomb potential energy per proton of eq. (168)
so the system should be gravitationally stable.

b) There is yet a more accurate derivation of the gravitational stability based on the
analytic solution of the Thomas-Fermi equation eq. (164). The Coulomb energy Eem

given by (170) is mainly distributed within a thin shell of width δRc ≈ �Δ/(
√

αmπc)
and proton number δNp = np4πR2

cδRc at the surface. To ensure the stability of the
system, the attractive gravitational energy of the thin proton shell

(176) Egr ≈ −3
G

Δ
A4/3

√
α

(
Np

A

)1/3

m2
n

mπc

�

has to be larger than the repulsive Coulomb energy (170). For small A, the gravitational
energy is always negligible. However, since the gravitational energy increases propor-
tionally to A4/3 while the Coulomb energy only increases proportionally to A2/3, the two
must eventually cross, which occurs at

(177) AR = 0.039
(

Np

A

)1/2 (
mPlanck

mn

)3

.

This establishes a lower limit for the mass number AR necessary for the existence of
an island of stability for massive nuclear density cores. The upper limit of the island of
stability will be determined by general relativistic effects.

c) Having established the role of gravity in stabilizing the Coulomb interaction of
the massive nuclear density core, we outline the importance of the strong interactions in
determining its surface. We find for the neutron pressure at the surface:

(178) Pn =
9
40

(
3
2π

)1/3 (
mπ

mn

)
mπc2

(�/mπc)3

(
A

Np

)5/3 1
Δ5

,

and for the surface tension, as extrapolated from nuclear scattering experiments,

(179) Ps = −
(

0.13
4π

)
mπc2

(�/mπc)3

(
A

Np

)2/3 1
Δ2

.

We then obtain

(180)
|Ps|
Pn

= 0.39 · Δ3

(
Np

A

)
= 0.24 · ρnucl

ρsurf
,

where ρnucl = 3mnA/4πR3
c . The relative importance of the nuclear pressure and nuclear

tension is a very sensitive function of the density ρsurf at the surface.
It is important to emphasize a major difference between nuclei and the massive nuclear

density cores treated here: the gravitational binding energy in these massive nuclear
density cores is instead Egr ≈ GM�mn/Rc ≈ 0.1mnc2 ≈ 93.8 MeV. Namely, it is much
bigger than the nuclear energy in ordinary nuclei Enuclear ≈ �

2/mnr2
0 ≈ 28.8 MeV.
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9.2. Compressed nuclear matter cores of stellar dimensions. – Following the above
treatment, we use the existence of scaling laws and proceed to the ultra-relativistic limit
of the above equations for positive values of the electron Fermi energy EF

e . We then
introduce the new function φ = 41/3(9π)−1/3χΔ/x and the new variable x̂ = kx where
k = (12/π)1/6

√
αΔ−1, as well as the variable ξ = x̂ − x̂c in order to describe better the

region around the core radius.
Thus, eq. (126) becomes

(181)
d2φ̂(ξ)

dξ2
= −θ(−ξ) + φ̂(ξ)3,

where φ̂(ξ) = φ(ξ + x̂c) and the curvature term 2φ̂′(ξ)/(ξ + x̂c) has been neglected.
The Coulomb potential energy is given by

(182) eV (ξ) =
(

9π

4

)1/3 1
Δ

mπc2φ̂(ξ) − EF
e ,

corresponding to the electric field

(183) E(ξ) = −
(

35π

4

)1/6 √
α

Δ2

m2
πc3

e�
φ̂′(ξ),

and the electron number-density

(184) ne(ξ) =
1

3π2�3c3

(
9π

4

)
1

Δ3
(mπc2)3φ̂3(ξ).

In the core center we must have ne = np. From eqs. (68) and (184) we than have that,
for ξ = −x̂c, φ̂(−x̂c) = 1.

In order to consider a compressed nuclear density core of stellar dimensions, we then
introduce a Wigner-Seitz cell determining the outer boundary of the electron distribution
which, in the new radial coordinate ξ is characterized by ξWS . In view of the global charge
neutrality of the system the electric field goes to zero at ξ = ξWS . This implies, from
eq. (183), φ̂′(ξWS) = 0.

We turn now to the determination of the Fermi energy of the electrons in this com-
pressed core. The function φ̂ and its first derivative φ̂′ must be continuous at the surface
ξ = 0 of the nuclear density core.

This boundary-value problem can be solved analytically and indeed eq. (181) has the
first integral,

(185) 2[φ̂′(ξ)]2 =

⎧⎨
⎩

φ̂4(ξ) − 4φ̂(ξ) + 3, ξ < 0,

φ̂4(ξ) − φ4(ξWS), ξ > 0,

with boundary conditions at ξ = 0:

φ̂(0) =
φ̂4(ξWS) + 3

4
,(186)

φ̂′(0) = −

√
φ̂4(0) − φ̂4(ξWS)

2
.
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Fig. 20. – The electron Coulomb potential energies in units of the pion rest energy in a nuclear
matter core of stellar dimensions with A � 1057 or Mcore ∼ M� and Rc ≈ 106 cm, are plotted
as a function of the dimensionless variable ξ, for different values of the electron Fermi energy
also in units of the pion rest energy. The solid line corresponds to the case of null electron Fermi
energy. By increasing the value of the electron Fermi energy the electron Coulomb potential
energy depth is reduced.

Having fullfilled the continuity condition we integrate eq. (185) obtaining for ξ ≤ 0

(187) φ̂(ξ) = 1 − 3
[
1 + 2−1/2 sinh(a −

√
3ξ)

]−1

,

where the integration constant a has the value

(188) sinh(a) =
√

2

(
11 + φ̂4(ξWS)

1 − φ̂4(ξWS)

)
.

In the interval 0 ≤ ξ ≤ ξWS , the field φ̂(ξ) is implicitly given by

(189) F

(
arccos

φ̂(ξWS)

φ̂(ξ)
,

1√
2

)
= φ̂(ξWS)(ξ − ξWS),

where F (ϕ, k) is the elliptic function of the first kind, and F (0, k) ≡ 0. For F (ϕ, k) = u,
the inverse function ϕ = F−1(u, k) = am(u, k) is the well known Jacobi amplitude. In
terms of it, we can express the solution (189) for ξ > 0 as,

(190) φ̂(ξ) = φ̂(ξWS)
{

cos
[
am

(
φ̂(ξWS)(ξ − ξWS),

1√
2

)]}−1

.

In the present case of EF
e > 0 the ultra-relativistic approximation is indeed always

valid up to ξ = ξWS for high compression factors, i.e. for RWS � Rc. In the case EF
e = 0,

ξWS → ∞, there is a breakdown of the ultra-relativistic approximation when ξ → ξWS .
Details are given in figs. 20, 21, 22.
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Fig. 21. – Solutions of the ultra-relativistic Thomas-Fermi equation (181) for different values of
the Wigner-Seitz cell radius RWS and correspondingly of the electron Fermi energy in units of
the pion rest energy as in fig. 20, near the core surface. The solid line corresponds to the case
of null electron Fermi energy.

We can now estimate two crucial quantities of the solutions: the Coulomb potential
at the center of the configuration and the electric field at the surface of the core

eV (0) �
(

9π

4

)1/3 1
Δ

mπc2 − EF
e ,(191)

Emax � 2.4
√

α

Δ2

(
mπ

me

)2

Ec|φ̂′(0)|,(192)
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Fig. 22. – The electric field in units of the critical field for vacuum polarization Ec = m2
ec

3/(e�)
is plotted as a function of the coordinate ξ, for different values of the electron Fermi energy
in units of the pion rest energy. The solid line corresponds to the case of null electron Fermi
energy. To an increase of the value of the electron Fermi energy it is found a reduction of the
peak of the electric field.
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where Ec = m2
ec

3/(e�) is the critical electric field for vacuum polarization. These func-
tions depend on the value φ̂(ξWS) via eqs. (185)–(189). At the boundary ξ = ξWS , due
to the global charge neutrality, both the electric field E(ξWS) and the Coulomb potential
eV (ξWS) vanish. From eq. (182), we determine the value of φ̂(ξ) at ξ = ξWS

(193) φ̂(ξWS) = Δ
(

4
9π

)1/3
EF

e

mπc2
,

as a function of the electron Fermi energies EF
e . From the above eq. (193), one can see

that there exists a solution, characterized by the value of electron Fermi energy

(194)
(EF

e )max

mπc2
=

1
Δ

(
9π

4

)1/3

,

such that φ̂(ξWS) = 1. From eq. (189) and ξ = 0, we also have

(195) ξWS(φ̂(ξWS)) =

{
1

φ̂(0)
F

[
arccos

(
4 − 3

φ̂(0)

)
,

1√
2

]}
.

For φ̂(ξWS) = 1, from eq. (186) there follows φ̂(0) = 1, hence eq. (195) becomes

(196) ξWS(φ̂(0)) = F

[
0,

1√
2

]
.

It is well known that if the inverse Jacobi amplitude F [0, 1/
√

2] is zero, then

(197) ξWS(φ̂(ξWS) = φ̂(0) = 1) = 0.

Indeed from φ̂(ξWS) = 1 follows φ̂(0) = 1 and ξWS = 0. When ξWS = 0 from
eq. (186) follows φ̂′(0) = 0 and, using eq. (192), Emax = 0. In other words for the value
of EF

e fulfilling eq. (193) no electric field exists on the boundary of the core and from
eq. (184) and eqs. (67), (68) it follows that indeed this is the solution fulfilling both global
Ne = Np and local ne = np charge neutrality. In this special case we obtain

(198) (EF
e )3/2

max =
9π
4 (�c)3 A

R3
c
− (EF

e )3max

23/2

[(
9π
4 (�c)3 A

R3
c
− (EF

e )3max

)2/3

+ m2
nc4

]3/4
.

In the ultra-relativistic approximation (EF
e )3max/ 9π

4 (�c)3 A
R3

c
� 1 so eq. (198) can be ap-

proximated to

(199) (EF
e )max = 21/3 mn

mπ
γ

[
−1 +

√
1 +

β

2γ3

]2/3

mπc2,
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where A = Np + Nn and

(200) β =
9π

4

(
�

mnc

)3
A

R3
c

, γ =
√

1 + β2/3.

The corresponding limiting value to the Np/A ratio is

(201)
Np

A
=

2γ3

β

[
−1 +

√
1 +

β

2γ3

]2

.

The Np-independence in the limiting case of maximum electron Fermi energy attained
when RWS = Rc, in which the ultra-relativistic treatment approaches the uniform one,
and the Np-dependence for smaller compressions RWS > Rc can be understood as follows.
Let see the solution to the ultra-relativistic equation (181) for small ξ > 0. Analogously
to the FMT approach to the non-relativistic Thomas-Fermi equation, we solve the ultra-
relativistic equation (181) for small ξ. Expanding φ̂(ξ) about ξ = 0 in a semiconvergent
power series,

(202)
φ̂(ξ)

φ̂(0)
= 1 +

∞∑
n=2

anξn/2

and substituting it into the ultra-relativistic equation (181), we have

(203)
∞∑

k=3

ak
k(k − 2)

4
ξ(k−4)/2 = φ2(0) exp

[
3 ln(1 +

∞∑
n=2

anξn/2)

]
.

This leads to a recursive determination of the coefficients:

a3 = 0, a4 = φ2(0)/2, a5 = 0, a6 = φ2(0)a2/2,(204)
a7 = 0, a8 = φ2(0)(1 − a2

2)/8, . . . ,

with a2 = φ̂′(0)/φ̂(0) determined by the initial slope, namely, the boundary condition
φ̂′(0) and φ̂(0) in eq. (186):

(205) φ̂(0) =
φ̂4(ξWS) + 3

4
, φ̂′(0) = −

√
φ̂4(0) − φ̂4(ξWS)

2

Thus the series solution (202) is uniquely determined by the boundary value φ̂(ξWS)
at the Wigner-Seitz cell radius.

Now we consider the solution up to the leading orders

(206) φ̂(ξ) = φ̂(0) + φ̂′(0)ξ +
1
2
φ̂3(0)ξ2 +

1
2
φ̂3(0)a2ξ

3 +
1
8
φ̂3(0)(1 − a2

2)ξ
4 + . . . .



ON THE GENERAL RELATIVISTIC THOMAS-FERMI THEORY ETC. 193

 0.01

 0.1

 1

 0.1  1  10  100

E
eF

/m
πc

2

 ξWS

Fig. 23. – The Fermi energy of electrons in units of the pion rest energy is plotted for different
Wigner-Seitz cell dimensions (i.e. for different compressions) ξWS in the ultra-relativistic ap-
proximation. In the limit ξWS → 0 the electron Fermi energy approaches asymptotically the
value (EF

e )max given by eq. (199).

Using eq. (206), the electron Fermi energy (193) becomes

EF
e = (EF

e )max

[
1 + a2ξ

WS +
1
2
φ̂2(0)(ξWS)2 +

1
2
φ̂2(0)a2(ξWS)3(207)

+
1
8
φ̂2(0)(1 − a2

2)(ξ
WS)4 + · · ·

]
φ̂(0),

where (EF
e )max = (9π/4)1/3Δ−1 is the maximum Fermi energy which is attained when

the Wigner-Seitz cell radius equals the nucleus radius Rc (see eq. 194). For φ̂(ξWS) < 1,
we approximately have φ̂(0) = 3/4, φ̂′(0) = −(3/4)2/

√
2 and the initial slope a2 =

φ̂′(0)/φ̂(0) = −(3/4)/
√

2. Therefore eq. (207) becomes

EF
e ≈ (EF

e )max

[
1 − 3

4
√

2
ξWS +

1
2

(
3
4

)2

(ξWS)2 − 1
23/2

(
3
4

)3

(ξWS)3(208)

+
1
8

(
3
4

)2 (41
32

)
(ξWS)4 + · · ·

]
.

By the definition of the coordinate ξ, we know all terms except the first term in the
square bracket depend on the values of Np. In the limit of maximum compression when
the electron Fermi energy acquires its maximum value, namely when ξWS = 0, the elec-
tron Fermi energy (208) is the same as the one obtained from the uniform approximation
which is independent of Np. For smaller compressions, namely for ξWS > 0 the elec-
tron Fermi energy deviates from the one given by the uniform approximation becoming
Np-dependent.

In fig. 23 we plot the Fermi energy of electrons, in units of the pion rest energy, as a
function of the dimensionless parameter ξWS and, as ξWS → 0, the limiting value given
by eq. (199) is clearly displayed.
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In Alcock, Farhi and Olinto [57], in order to study the electrodynamical properties
of strange stars, the ultra-relativistic Thomas-Fermi equation was numerically solved in
the case of bare strange stars as well as in the case of strange stars with a crust (see e.g.
curves (a) and (b) in fig. 6 of [57]). In fig. 6 of [57] was plotted what they called the
Coulomb potential energy, which we will denote as VAlcock. The potential VAlcock was
plotted for different values of the electron Fermi momentum at the edge of the crust.
Actually, such potential VAlcock is not the Coulomb potential eV but it coincides with
our function eV̂ = eV + EF

e . Namely, the potential VAlcock corresponds to the Coulomb
potential shifted by the Fermi energy of the electrons. We then have from eq. (182)

(209) eV̂ (ξ) =
(

9π

4

)1/3 1
Δ

mπc2φ̂(ξ) = VAlcock.

This explains why in [57], for different values of the Fermi momentum at the crust
the depth of the potential VAlcock remains unchanged. Instead, the correct behaviour of
the Coulomb potential is quite different and, indeed, its depth decreases with increasing
of compression as can be seen in fig. 20.

9.2.1. Compressional energy of nuclear matter cores of stellar dimensions. We turn now
to the compressional energy of these family of compressed nuclear matter cores of stellar
dimensions each characterized by a different Fermi energy of the electrons. The kinematic
energy-spectra of complete degenerate electrons, protons and neutrons are

(210) εi(p) =
√

(pc)2 + m2
i c

4, p ≤ PF
i , i = e, p, n.

So the compressional energy of the system is given by

E = EB + Ee + Eem, EB = Ep + En,(211)

Ei = 2
∫

i

d3rd3p

(2π�)3
εi(p), i = e, p, n, Eem =

∫
E2

8π
d3r.(212)

Using the analytic solution (190) we calculate the energy difference between two
systems, I and II,

(213) ΔE = E(EF
e (II)) − E(EF

e (I)),

with EF
e (II) > EF

e (I) ≥ 0, at fixed A and Rc.
We first consider the infinitesimal variation of the total energy δEtot with respect to

the infinitesimal variation of the electron Fermi energy δEF
e

(214) δE =
[

∂E
∂Np

]
V W S

[
∂Np

∂EF
e

]
δEF

e +
[

∂E
∂V WS

]
Np

[
∂V WS

∂EF
e

]
δEF

e .

For the first term of this relation we have[
∂E
∂Np

]
V W S

=
[

∂Ep

∂Np
+

∂En

∂Np
+

∂Ee

∂Np
+

∂Eem

∂Np

]
V W S

(215)

�
[
EF

p − EF
n + EF

e +
∂Eem

∂Np

]
V W S

,
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where the general definition of chemical potential ∂εi/∂ni = ∂Ei/∂Ni is used (i = e,
p, n) neglecting the mass defect mn − mp − me. Further using the condition of the
β-equilibrium between neutrons, protons, and electrons we have

(216)
[

∂E
∂Np

]
V W S

=
[
∂Eem

∂Np

]
V W S

.

For the second term of eq. (214) we have

[
∂E

∂V WS

]
Np

=
[

∂Ep

∂V WS
+

∂En

∂V WS
+

∂Ee

∂V WS
+

∂Eem

∂V WS

]
Np

(217)

=
[

∂Ee

∂V WS

]
Np

+
[

∂Eem

∂V WS

]
Np

,

since in the process of increasing the electron Fermi energy namely, by decreasing the
radius of the Wigner-Seitz cell, the system by definition maintains the same number of
baryons A and the same core radius Rc.

Now δE reads

(218) δE =

{[
∂Ee

∂V WS

]
Np

∂V WS

∂EF
e

+
[

∂Eem

∂V WS

]
Np

∂V WS

∂EF
e

+
[
∂Eem

∂Np

]
V W S

∂Np

∂EF
e

}
δEF

e ,

so only the electromagnetic energy and the electron energy give non-null contributions.
From this equation it follows that

(219) ΔE = ΔEem + ΔEe,

where ΔEem = Eem(EF
e (II)) − Eem(EF

e (I)) and ΔEe = Ee(EF
e (II)) − Ee(EF

e (I)).

In the particular case in which EF
e (II) = (EF

e )max and EF
e (I) = 0 we obtain

(220) ΔE � 0.75
35/3

2

(π

4

)1/3 1
Δ
√

α

( π

12

)1/6

N2/3
p mπc2,

which is positive.
The compressional energy of a nuclear matter core of stellar dimensions increases with

its electron Fermi energy as expected.

10. – The self-gravitating system of degenerate neutrons, protons and elec-
trons in β-equilibrium

In the earliest description of neutron stars in the work of Oppenheimer and Volkoff
in 1939 [18] only a gas of neutrons was considered and the equation of equilibrium was
written in the Schwarzschild metric (see sect. 5 for details). They considered the model
of a degenerate gas of neutrons to hold from the center to the border, with the density
monotonically decreasing away from the center. In the intervening years a more realistic
model has been presented challenging the original considerations of [17,18]. Their TOV
equations considered the existence of neutrons all the way to the surface of the star. The
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presence of neutrons, protons and electrons in β equilibrium were instead introduced
in [45]. Still more important the neutron stars have been shown to be composed of two
sharply different components: the core at nuclear and/or supra-nuclear density consisting
of neutrons, protons and electrons and a crust of white dwarf like material, namely of
degenerate electrons in a nuclei lattice [45, 58]. The pressure and the density of the
core are mainly due to the baryons while the pressure of the crust is mainly due to the
electrons with the density due to the nuclei and possibly with some free neutrons due to
neutron drip (see e.g. [58]). Further works describing the nuclear interactions where later
introduced (see e.g. [59]). Clearly all these considerations departed profoundly from the
TOV approximation. The matching between the core component and the crust is the
major unsolved problem. To this issue the model studied here introduce some preliminary
results in a simplified way which has the advantage to present explicit analytic solutions.

In nearly all the scientific literature on neutron stars, in order to close the system of
equations, the condition of local charge neutrality ne = np was adopted without a proof.
The considerations of massive neutron density cores presented before offer an alternative
to the local charge neutrality condition. In a specific example which can be solved also
analytically such condition is substituted by the Thomas-Fermi relativistic equations
implying ne �= np and an overall charge neutral system, Ne = Np. The condition of
global charge neutrality as opposed to the local one, leads to the existence of overcritical
electric fields at the core surface which may be relevant in the description of neutron
stars.

Both the relativistic extension of the FMT treatment and its application to general
relativistic white dwarfs and to nuclear matter cores of stellar sizes open the way to a
new general relativistic theory of neutron stars. The first steps towards such a theory
have been accomplished in [15]. The previous considerations for nuclear matter cores
have been made for an isolated massive core at constant proton density whose boundary
has been sharply defined by a step function. Both the free case and the compressed
one have been duly considered. In [15] the effects of the gravitational field have been
considered explicitly in the most simplified nontrivial but rigorous treatment of a general
relativistic system of degenerate neutrons, protons and electrons in β-equilibrium.

10.1. The impossibility of a solution with local charge neutrality. – We consider the
equilibrium configurations of a degenerate gas of neutrons, protons and electrons with
total matter energy density and total matter pressure

E =
∑

i=n,p,e

2
(2π�)3

∫ P F
i

0

εi(p) 4πp2dp,(221)

P =
∑

i=n,p,e

1
3

2
(2π�)3

∫ P F
i

0

p2

εi(p)
4πp2dp,(222)

where εi(p) =
√

c2p2 + m2
i c

4 is the relativistic single particle energy. In addition, we
require the condition of β-equilibrium between neutrons, protons and electrons

(223) μn = μp + μe,

where PF
i denotes the Fermi momentum and μi = ∂E/∂ni =

√
c2(PF

i )2 + m2
i c

4 is the

free-chemical potential of particle-species with number density ni = (PF
i )3/(3π2

�
3).
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We now introduce the extension to general relativity of the Thomas-Fermi equilibrium
condition on the generalized Fermi energy EF

e of the electron component

(224) EF
e = eν/2μe − mec

2 − eV = const,

where e is the fundamental charge, V is the Coulomb potential of the configuration and
we have introduced the metric given by (61) for a spherically symmetric non-rotating
neutron star. The metric function λ is related to the mass M(r) and the electric field
E(r) = −e−(ν+λ)/2V ′ (a prime stands for radial derivative) through

(225) e−λ = 1 − 2GM(r)
c2r

+
G

c4
r2E2(r).

Thus the equations for the neutron star equilibrium configuration consist of the following
Einstein-Maxwell equations and general relativistic Thomas-Fermi equation:

M ′ = 4πr2 E
c2

− 4πr3

c2
e−ν/2V̂ ′(np − ne),(226)

ν′ =
2G

c2

4πr3P/c2 + M − r3E2/c2

r2
(
1 − 2GM

c2r + Gr2

c4 E2
) ,(227)

P ′ +
ν′

2
(E + P ) = −(P em)′ − 4P em

r
,(228)

V̂ ′′ + V̂ ′
[
2
r
− (ν′ + λ′)

2

]
=(229)

− 4πα�c eν/2eλ

{
np − [V̂ 2 + 2mec

2V̂ − m2
ec

4(eν − 1)]3/2

3π2e3ν/2

}
,

where α denotes the fine structure constant, V̂ = EF
e + eV , P em = −E2/(8π) and we

have used eq. (224) to obtain eq. (229).
It can be demonstrated that the assumption of the equilibrium condition (224) to-

gether with the β-equilibrium condition (223) and the hydrostatic equilibrium (228) is
enough to guarantee the constancy of the generalized Fermi energy

(230) EF
i = eν/2μi − mic

2 + qiV, i = n, p, e,

for all particle species separately. Here qi denotes the particle unit charge of the i-species.
Indeed, as shown by Olson and Bailyn [23,60], when the fermion nature of the constituents
and their degeneracy is taken into account, in the configuration of minimum energy
the generalized Fermi energies EF

i defined by (230) must be constant over the entire
configuration. These minimum energy conditions generalize the equilibrium conditions
of Klein [21] and of Kodama and Yamada [22] to the case of degenerate multicomponent
fluids with particle species with non-zero unit charge.

If one were to assume, as often done in literature, the local charge neutrality condition
ne(r) = np(r) instead of assuming the equilibrium condition (224), this would lead to
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Fig. 24. – Fermi energies for neutrons, protons and electrons in units of the pion rest-energy for a
locally neutral configuration with central density ρ(0) = 3.94ρnuc, where ρnuc = 2.7×1014 g cm−3

denotes the nuclear density.

V = 0 identically (since there will be no electric fields generated by the neutral matter
distribution) implying via eqs. (223) and (228)

EF
e + EF

p = eν/2(μe + μp) − (me + mp)c2(231)

= EF
n + (mn − me − mp)c2 = const.

Thus the neutron Fermi energy would be constant throughout the configuration as well as
the sum of the proton and electron Fermi energies but not the individual Fermi energies
of each component. In fig. 24 we show the results of the Einstein equations for a selected
value of the central density of a system of degenerate neutrons, protons, and electrons
in β-equilibrium under the constraint of local charge neutrality. In particular, we have
plotted the Fermi energy of the particle species in units of the pion rest-energy. It can
be seen that indeed the Fermi energies of the protons and electrons are not constant
throughout the configuration which would lead to microscopic instability. This proves
the impossibility of having a self-consistent configuration fulfilling the condition of local
charge neutrality for our system. This result is complementary to the conclusion of
eq. (4.6) of [23] who found that, at zero temperature, only a dust solution with zero
particle kinetic energy can satisfy the condition of local charge neutrality and such a
configuration is clearly unacceptable for an equilibrium state of a self-gravitating system.

10.2. The solution with global charge neutrality . – We turn now to describe the equi-
librium configurations fulfilling only global charge neutrality. We solve self-consistently
eqs. (226) and (227) for the metric, eq. (228) for the hydrostatic equilibrium of the three
degenerate fermions and, in addition, we impose eq. (223) for the β-equilibrium. The
crucial equation relating the proton and the electron distributions is then given by the
general relativistic Thomas-Fermi equation (229). The boundary conditions are: for
eq. (226) the regularity at the origin: M(0) = 0, for eq. (228) a given value of the cen-
tral density, and for eq. (229) the regularity at the origin ne(0) = np(0), and a second
condition at infinity which results in an eigenvalue problem determined by imposing the
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Fig. 25. – Left panel: particle number density of neutrons, protons, and electrons approaching
the boundary of the configuration in units of the nuclear density nnuc � 1.6× 1038 cm−3. Right
panel: proton and electron Coulomb potentials in units of the pion rest-energy eV/(mπc2)
and −eV/(mπc2) respectively and the proton gravitational potential in units of the pion mass

mpΦ/mπ where Φ = (eν/2 − 1).

global charge neutrality conditions

(232) V̂ (Re) = EF
e , V̂ ′(Re) = 0,

at the radius Re of the electron distribution defined by

(233) PF
e (Re) = 0,

from which there follows:

(234) EF
e = mec

2eν(Re)/2 − mec
2 = mec

2

√
1 − 2GM(Re)

c2Re
− mec

2.

Then the eigenvalue problem consists in determining the gravitational potential and the
Coulomb potential at the center of the configuration that satisfy the conditions (232)–
(234) at the boundary.

10.3. Numerical integration of the equilibrium equations. – The solution for the par-
ticle densities, the gravitational potential, the Coulomb potential and the electric field
are shown in fig. 25 for a configuration with central density ρ(0) = 3.94ρnuc. In order
to compare our results with those obtained in the case of nuclear matter cores of stellar
dimensions [12] as well as to analyze the gravito-electrodynamical stability of the con-
figuration we have plotted the electric potential in units of the pion rest-energy and the
gravitational potential in units of the pion-to-proton mass ratio. One particular interest-
ing new feature is the approach to the boundary of the configuration: three different radii
are present corresponding to distinct radii at which the individual particle Fermi pressure
vanishes. The radius Re for the electron component corresponding to PF

e (Re) = 0, the
radius Rp for the proton component corresponding to PF

p (Rp) = 0 and the radius Rn for
the neutron component corresponding to PF

n (Rn) = 0.
The smallest radius Rn is due to the threshold energy for β-decay which occurs at

a density ∼ 107 g cm−3. The radius Rp is larger than Rn because the proton mass is
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Fig. 26. – Left panel: electron number density for r ≥ Rp normalized to its value at r = Rp.
Right panel: electric field for r ≥ Rp normalized to its value at r = Rp. We have shown also the
behavior of the solution of the general relativistic Thomas-Fermi equation (229) for two different
eigenvalues close to the one which gives the globally neutral configuration.

slightly smaller than the neutron mass. Instead, Re > Rp due to a combined effect of the
difference between the proton and electron masses and the implementation of the global
charge neutrality condition through the Thomas-Fermi equilibrium conditions.

For the configuration of fig. 25 we found Rn � 12.735 km, Rp � 12.863 km and
Re � Rp + 103λe where λe = �/(mec) denotes the electron Compton wavelength. We
find that the electron component follows closely the proton component up to the radius
Rp and neutralizes the configuration at Re without having a net charge (see fig. 26),
contrary to the results, e.g., in [60].

It can be seen from fig. 25 that the negative proton gravitational potential energy
is indeed always larger than the positive proton electric potential energy. Therefore
the configuration is stable against Coulomb repulsion. This confirms the results in the
simplified case analyzed by M. Rotondo et al. in [12].

From eq. (230) and the relation between Fermi momentum and the particle density
PF

i = (3π2
�

3ni)1/3, we obtain the proton-to-electron and proton-to-neutron ratio for any
value of the radial coordinate

(235)
np(r)
ne(r)

=

[
f2(r)μ2

e(r) − m2
pc

4

μ2
e(r) − m2

ec
4

]3/2

,
np(r)
nn(r)

=

[
g2(r)μ2

n(r) − m2
pc

4

μ2
n(r) − m2

nc4

]3/2

,

where f(r) = (EF
p +mpc

2−eV )/(EF
e +mec

2+eV ), g(r) = (EF
p +mpc

2−eV )/(EF
n +mnc2)

and the constant values of the generalized Fermi energies are given by

EF
n = mnc2eν(Rn)/2 − mnc2,(236)

EF
p = mpc

2eν(Rp)/2 − mpc
2 + eV (Rp),(237)

EF
e = mec

2eν(Re)/2 − mec
2.(238)

A novel situation occurs: the determination of the quantities given in eqs. (235)
and (236) necessarily require the prior knowledge of the global electrodynamical and
gravitational potential from the center of the configuration all the way out to the bound-
ary defined by the radii Re, Rp and Rn. This necessity is an outcome of the solution for
the eigenfunction of the general relativistic Thomas-Fermi equation (229).
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Fig. 27. – Electric field and electron Coulomb potential energy of the configuration of neutrons,
protons, and electrons in β-equilibrium studied here and in [15].

From the regularity condition at the center of the star ne(0) = np(0) together with
eq. (235) we obtain the Coulomb potential at the center of the configuration

(239) eV (0) =
(mp − me)c2

2

[
1 +

EF
p − EF

e

(mp − me)c2
− (mp + me)c2

EF
n + mnc2

eν(0)

]
,

which after some algebraic manipulation and defining the central density in units of the
nuclear density η = ρ(0)/ρnuc can be estimated as

eV (0) � 1
2

[
mpc

2eν(Rp)/2 − mec
2eν(Re)/2 − mnc2eν(Rn)/2

1 + [PF
n (0)/(mnc)]2

]
(240)

� 1
2

[
(3π2η/2)2/3mp

(3π2η/2)2/3mπ + m2
n/mπ

]
mπc2,

where we have approximated the gravitational potential at the boundary as eν(Re)/2 �
eν(Rp)/2 � eν(Rn)/2 � 1. Then for configurations with central densities larger than the
nuclear density we necessarily have eV (0) � 0.35mπc2. In particular, for the configu-
ration we have exemplified with η = 3.94 in fig. 25, from the above expression (240)
we obtain eV (0) � 0.85mπc2. This value of the central potential agrees with the one
obtained in the simplified case of nuclear matter cores with constant proton density [12].

It can be seen from fig. 25 that the depth of the Coulomb potential is of the order of
� mπc2. In fig. 27 we have plotted the Coulomb potential and the corresponding electric
field of the configuration studied here. A Coulomb potential ∼ mπc2/e decreasing in
a typical macroscopic neutron star radius R ∼ λπ(mPlanck/mp) creates an electric field
∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec, being Ec = m2

ec
3/(e�) the critical electric field

for vacuum polarization.
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11. – Newtonian limit

Despite the fact that the strong gravitational field of neutron stars requires a general
relativistic treatment, it is interesting to explore the Newtonian limit of all the above
considerations. This can help to elucidate if the gravito-electromagnetic effects we have
found are of general relativistic nature or to prove their validity in a Newtonian regime.

The Newtonian limit of the equilibrium equations can be obtained by the weak-
field non-relativistic limit. We expand the gravitational potential at first-order eν/2 ≈
1 + Φ/c2, where Φ is the Newtonian gravitational potential. In the non-relativistic
mechanics limit c → ∞, the particle chemical potential becomes μi → μ̃i + mic

2, where
μ̃i = (PF

i )2/(2mi) denotes the non-relativistic free-chemical potential. Applying these
considerations, the electron and proton equilibrium law (224) becomes

EF,Newt
p = μ̃p + mpΦ + eV = const,(241)

EF,Newt
e = μ̃e + meΦ − eV = const,(242)

which is the classical condition of thermodynamic equilibrium of a fluid of charged par-
ticles in presence of external gravitational an electrostatic fields.

The condition of β-equilibrium is, in this case, given by

(243) EF,Newt
n = EF,Newt

p + EF,Newt
e ,

which links the constants EF,Newt
p and EF,Newt

e to the constant neutron Fermi energy
EF,Newt

n .
From the constancy of the proton and electron Fermi energies it follows the relation

(244) μ̃p − μ̃e + (mp − me)Φ + 2eV = constant,

which in the case of an ideal electron-ion gas becomes the Rosseland relation of equilib-
rium (see eq. (7) in [24]). It is interesting to obtain from the above equation an estimate
of the Coulomb potential well inside the configuration. Evaluating eq. (244) at the radius
of the configuration where the particle free chemical potentials go to zero, we obtain an
estimate of the ratio of the Coulomb potential energy and the gravitational energy close
to the surface of the configuration

(245)
eV (R)
Φ(R)

∼ −mp − me

2
.

Assuming that the system is at nuclear density, ρ ∼ mp/λ3
π where λπ = �/(mπc) is the

pion Compton wavelength, the mass and the radius of the configuration are roughly given
by M ∼ m3

Planck/m2
p and R ∼ λπ(mPlanck/mp) and therefore the gravitational potential

will be Φ(R) = −GM/R ∼ (mπ/mp)c2. Consequently, the Coulomb potential energy
close to the border is approximately eV (R) ∼ mπc2/2. Assuming a constant charge
density approximation, the Coulomb potential energy at the center of the configuration
is 3/2 times its value at the surface, thus we obtain approximately

(246) eV (0) ∼ 3
4
mπc2,
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Fig. 28. – Electric field (multiplied by 1014) in units of the critical field Ec = m2
ec

3/(e�) ∼
1016 Volt/cm in the region r < Rn both for the Newtonian and the general relativistic configu-
rations. The central density of both systems is ρ(0) = 3.94ρnuc where ρnuc = 2.7 × 1014 g cm−3

is the nuclear density.

which is in full agreement with both with the numerical results and with the general
relativistic formulas given by eqs. (21) and (22) of [15]. This numerical value is also in
line with the Coulomb potential well obtained from the idealized treatment presented
in [10-12].

In the weak-field non-relativistic limit, the Einstein-Maxwell equations (226)–(229)
become

M ′ = 4πr2ρ(r),(247)

Φ′ =
GM

r2
,(248)

P ′ = −GM

r2
ρ −

[
np − (2me)3/2

3π2�3
(V̂ − meΦ)3/2

]
V̂ ′,(249)

V̂ ′′ +
2
r
V̂ ′ = −4πe2

[
np − (2me)3/2

3π2�3
(V̂ − meΦ)3/2

]
,(250)

where ρ in this case is the rest-mass density

(251) ρ =
∑

i=n,p,e

mini.

The solution of eqs. (241), (247)–(250) together with the β-equilibrium condition (243)
leads to qualitatively similar electrodynamical properties as the one obtained in the
general relativistic case. In fig. 28 we show the electric field in the region r < Rn (RNewt

n <
RGR

n ) both for the Newtonian as well as for the General Relativistic configuration for
the given central density ρ(0) = 3.94ρnuc. From the quantitative point of view, the
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electric field of the Newtonian configuration is larger than the electric field of the general
relativistic configuration.

12. – Introducing the strong interactions

It is clear now that if one considers a fluid of only neutrons, protons, and electrons
in β equilibrium neglecting the effects of strong interactions and the presence of a crust,
then the electromagnetic structure is the one shown in figs. 27 and 28. The effect of
having different radii Rn, Rp, and Re needs to be also studied in the more general
case when strong interactions and the presence of the crust of the neutron star are
included. The complete study of such a problem must to be necessarily done within
a fully relativistic approach taking into account the strong, weak, electromagnetic, and
gravitational interactions. Indeed, an essential step forward in this direction has been
given in [16] by formulating such a treatment.

Since neutron stars cores may reach densities of order ∼ 1016–1017 g/cm3, much larger
than the nuclear density ρnuc ∼ 2.7 × 1014 g/cm3, approaches for nuclear interactions
based on phenomenological potentials and non-relativistic many-body theories become
inapplicable (see [61, 62], for instance). Based on the pioneering work of Johnson and
Teller [63], Duerr [64] and later on Miller and Green [65] formulated the basis of what is
now known as Relativistic Mean-Field Theory of nuclear matter. They constructed the
simplest relativistic model that accounts for the binding of symmetric nuclear matter at
saturation density by introducing the interaction of one scalar field and one vector field
with nucleons through Yukawa couplings. A nuclear model with only the scalar field with
a self-interacting potential up to quartic order based on the sigma-model was considered
in [66, 67]. The repulsive contribution of nuclear force was there introduced by hand
through a hard-sphere model that artificially increases the nucleon Fermi momentum
emulating the effect of a massive vector field coupled to nucleons. The relevance of such
interactions as well as relativistic effects in the determination of the equation of state
and in the nuclear matter properties such as compressibility and the nucleon effective
mass was clearly pointed out in [65, 68, 69]. The importance of allowing scalar meson
self-interactions (cubic and quartic terms in the scalar field potential) as adjustable pa-
rameters to reproduce physical nuclear properties and not due to renormalization (see
e.g. [70]) was stressed in [69, 71-73]. The necessity of introducing additional isovector
fields to match the empirical symmetry energy of nuclear matter at saturation density
was recognized in [69].

Assuming that the nucleons interact with σ, ω and ρ meson fields through Yukawa-
like couplings and assuming flat spacetime the equation of state of nuclear matter can
be determined. However, it has been clearly stated in [15,16] that, when we turn into a
neutron star configuration at nuclear and supranuclear densities, the global description of
the Einstein-Maxwell-Thomas-Fermi equations is mandatory. Associated to this system
of equations there is a sophisticated eigenvalue problem, especially the one for the general
relativistic Thomas-Fermi equation is necessary in order to fulfill the global charge neu-
trality of the system and to consistently describe the confinement of the ultrarelativistic
electrons.

We here adopt the phenomenological relativistic mean field nuclear model of Boguta
and Bodmer [69] by assuming nucleons interacting in minimal coupling approximation
with a σ isoscalar meson field that provides the attractive long-range part of the nuclear
force and a massive vector field ω that models the repulsive short range. The self-
interacting scalar field potential U(σ) is assumed as a quartic polynom with adjustable
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coefficients. In addition, a massive isovector field ρ is introduced to accounts for surface
as well as isospin effects of nuclei.

The total Lagrangian density of the system is given by

(252) L = Lg + Lf + Lσ + Lω + Lρ + Lγ + Lint,

where the Lagrangian densities for the free-fields are

Lg = − R

16πG
,(253)

Lγ = − 1
16π

FμνFμν ,(254)

Lσ =
1
2
∇μσ∇μσ − U(σ),(255)

Lω = −1
4
ΩμνΩμν +

1
2
m2

ωωμωμ,(256)

Lρ = −1
4
RμνRμν +

1
2
m2

ρρμρμ,(257)

where Ωμν ≡ ∂μων −∂νωμ, Rμν ≡ ∂μρν −∂νρμ, Fμν ≡ ∂μAν −∂νAμ are the field strength
tensors for the ωμ, ρ and Aμ fields respectively, ∇μ stands for covariant derivative and
R is the Ricci scalar. We adopt the Lorenz gauge for the fields Aμ, ωμ, and ρμ.

The Lagrangian density for the three fermion species is

(258) Lf =
∑

i=e,N

ψ̄i (iγμDμ − mi) ψi,

where ψN is the nucleon isospin doublet, ψe is the electronic singlet, mi states for the
mass of each particle species and Dμ = ∂μ + Γμ, being Γμ the Dirac spin connections.

The interacting part of the Lagrangian density is, in the minimal coupling assumption,
given by

(259) Lint = −gσσψ̄NψN − gωωμJμ
ω − gρρμJμ

ρ + eAμJμ
γ,e − eAμJμ

γ,N ,

where the conserved currents are

Jμ
ω = ψ̄NγμψN ,(260)

Jμ
ρ = ψ̄Nτ3γ

μψN ,(261)

Jμ
γ,e = ψ̄eγ

μψe,(262)

Jμ
γ,N = ψ̄N

(
1 + τ3

2

)
γμψN .(263)

The coupling constants of the σ, ω and ρ-fields are gσ, gω and gρ, and e is the
fundamental electric charge. The Dirac matrices γμ and the isospin Pauli matrices satisfy
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the Dirac algebra in curved spacetime (see, e.g., [3, 74] for details)

{γμ, γν} = 2gμν ,(264)

{γμ, γν} = 2gμν ,(265)

{γμ, γν} = 2δμ
ν ,(266)

[τi, τj ] = 2ıεijkτk.(267)

The equations of the motion of the above Lagrangians lead to the Einstein-Maxwell-
Dirac system of equations

Gμν + 8πGTμν = 0,(268)

∇μFμν − eJν
ch = 0,(269)

∇μΩμν + m2
ωων − gωJν

ω = 0,(270)

∇μRμν + m2
ρρ

ν − gρJ
ν
ρ = 0,(271)

∇μ∇μσ + ∂σU(σ) + gsns = 0,(272)

[γμ (iDμ − V μ
N ) − m̃N ] ψN = 0,(273)

[γμ (iDμ + eAμ) − me] ψe = 0,(274)

where the scalar density ns = ψ̄NψN , the nucleon effective mass m̃N ≡ mN + gσσ, and

(275) V μ
N ≡ gωωμ + gρτρμ + e

(
1 + τ3

2

)
Aμ,

is the effective four potential of nucleons. The energy-momentum tensor of free-fields
and free-fermions Tμν of the system (254)–(257) is

(276) Tμν = Tμν
f + Tμν

γ + Tμν
σ + Tμν

ω + Tμν
ρ ,

where

Tμν
γ = Fμ

αFαν +
1
4
gμνFαβFαβ ,(277)

Tμν
σ = ∇μσ∇νσ − gμν

[
1
2
∇σσ∇σσ − U(σ)

]
,(278)

Tμν
ω = Ωμ

αΩαν +
1
4
gμνΩαβΩαβ + m2

ω

(
ωμων − 1

2
gμνωαωα

)
,(279)

Tμν
ρ = Rμ

αRαν +
1
4
gμνRαβRαβ + m2

ρ

(
RμRν − 1

2
gμνRαωα

)
,(280)

are the contribution of free-fields and Tμν
f is the contribution of free-fermions which we

discuss below.
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12.1. The thermodynamic laws and the field equations in the spherically symmetric
case. – We first introduce the non-rotating spherically symmetric spacetime metric

(281) ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2,

where the ν(r) and λ(r) are only functions of the radial coordinate r.
For very large number of fermions, we can adopt the mean-field approximation in

which fermion-field operators are replaced by their expectation values (see e.g. [3] for
details).

We write the nucleon doublet and the electronic spinor as ψi = ψi(k)e−ikμxμ

in
the phase-space. Suppose that neutrons, protons and electrons, and the corresponding
antiparticles, are in thermodynamic equilibrium with a finite temperature T . The occu-
pation fermion-number operators of the “k”-state, Ni(k) = ψ†

i (k)ψi(k) with i = e, p, n,
are replaced by their Fermi-distributions

(282) f±
i (k) = 〈ψ±

i (k)†ψ±
i (k)〉 =

[
exp

(
εi(k) ∓ μi

kBT

)
+ 1

]−1

,

where kB is the Boltzmann constant, μi and εi(k) =
√

k2 + m̃2
i denote the single-particle

chemical potential and energy-spectrum (we recall that for electrons m̃e = me). The sign
“+” correspond to particles and “−” to antiparticles. We do not consider “real” bosons to
be present in the system; the only distribution functions involved in the computation are
due to fermions and antifermions and therefore phenomena as Bose-Einstein condensation
does not occur within this theory (see, e.g., [61] for details).

It is worth to recall that all the thermodynamic quantities, e.g., k, ε, T . . ., are written
here in the local frame which is related to the coordinate frame by the Lorentz “boost”

(283) Λ(a)
α = (uα, χα,Θα,Φα),

where uα = eν/2δ0
α, χα = eλ/2δ1

α, Θα = rδ2
α, and Φα = r sin θδ3

α, being δα
β the usual

Kronecker delta symbol.
The number-density ni of the i-specie, taking into account the antiparticle contribu-

tion is, within the mean-field approximation, given by

(284) ni =
2

(2π)3

∫
d3k[f+

i (k) − f−
i (k)].

The contribution of free-fermions and antifermions to the energy-momentum tensor can
be then written in the perfect fluid form (see, e.g., [3])

(285) Tμν
f = (E + P)uμuν − Pgμν ,

where uμ is the four-velocity of the fluid which satisfies uμuμ = 1, and the energy-density
E and the pressure P are given by

(286) E =
∑

i=n,p,e

Ei, P =
∑

i=n,p,e

Pi,
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being Ei and Pi the single fermion-antifermion fluid contributions

Ei =
2

(2π)3

∫
d3kεi(k)[f+

i (k) + f−
i (k)],(287)

Pi =
1
3

2
(2π)3

∫
d3k

k2

εi(k)
[f+

i (k) + f−
i (k)].(288)

The equation of state (286)–(288) satisfies the thermodynamic law

(289) E + P − TS =
∑

i=n,p,e

niμi,

where S = S/V is the entropy per unit volume (entropy density) and μi = ∂E/∂ni is the

free-chemical potential of the i-species. At zero-temperature T = 0, μi =
√

(PF
i )2 + m̃2

i

and ni = (PF
i )3/(3π2), where PF

i denotes the Fermi momentum of the i-species.

The scalar density ns, within the mean-field approximation, is given by the following
expectation value:

(290) ns = 〈ψ̄NψN 〉 =
2

(2π)3
∑

i=n,p

∫
d3k

m̃N

εi(k)
[f+

i (k) + f−
i (k)].

In the static case, only the temporal components of the covariant currents survive,
i.e. 〈ψ̄(x)γiψ(x)〉 = 0. Thus, by taking the expectation values of eqs. (260)–(263), we
obtain the non-vanishing components of the currents

Jch
0 = nchu0 = (np − ne)u0,(291)

Jω
0 = nbu0 = (nn + np)u0,(292)

Jρ
0 = n3u0 = (np − nn)u0,(293)

where nb, np, nn and ne are the baryon, proton, neutron and electron number densities
which are functions only of the spatial coordinates, and u0 =

√
g00 = eν/2.

Making a variation of eq. (289) and using eqs. (286)–(288) and (290), we obtain the
generalized Gibbs-Duhem relation

(294) dP =
∑

i=n,p,e

nidμi − gσnsdσ + SdT,

which can be rewritten as

(295) dP =
∑

i=n,p,e

nidμi − gσnsdσ +

⎛
⎝E + P −

∑
i=n,p,e

niμi

⎞
⎠ dT

T
,
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where we have used eq. (289) to eliminate S, and we have used the relation between the
scalar density and the fluid energy-density

(296) ns = 〈ψ̄NψN 〉 =
2

(2π)3
∑

i=n,p

∫
d3k

m̃N

εi(p)
=

∂E
∂m̃N

,

which follows from eqs. (286)–(288) and (290).
Therefore, the Einstein-Maxwell equations (268)–(272), within the mean-field approx-

imation, become

e−λ(r)

(
1
r2

− λ′

r

)
− 1

r2
= −8πGT 0

0 ,(297)

e−λ(r)

(
1
r2

+
1
r

dν

dr

)
− 1

r2
= −8πGT 1

1 ,(298)

e−λ(r)

[
1
2

(
dν

dr
− dλ

dr

)(
1
r

+
1
2

dν

dr

)
+

1
2

d2ν

dr2

]
= −8πGT 3

3 ,(299)

d2V

dr2
+

dV

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −eλeJch

0 ,(300)

d2σ

dr2
+

dσ

dr

[
2
r

+
1
2

(
dν

dr
− dλ

dr

)]
= eλ [∂σU(σ) + gsns] ,(301)

d2ω

dr2
+

dω

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −eλ

[
gωJω

0 − m2
ωω

]
,(302)

d2ρ

dr2
+

dρ

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −eλ

[
gρJ

ρ
0 − m2

ρρ
]
,(303)

where we have introduced the notation ω0 = ω, ρ0 = ρ, and A0 = V . The metric function
λ is related to the mass M(r) and the electric field E(r) = −e−(ν+λ)/2V ′ through

(304) e−λ(r) = 1 − 2GM(r)
r

+ Gr2E2(r) = 1 − 2GM(r)
r

+
GQ2(r)

r2
,

where we have introduced also the conserved charge Q(r) = r2E(r).
An important equation, although not independent of the Einstein-Maxwell equa-

tions (297)–(303), is given the energy-momentum conservation law

(305) ∇μTμν = gωJω
μ Ωμν + gρJ

ρ
μRμν + eJch

μ Fμν ,

from which we have

(306)
dP
dr

= − (E + P)
2

dν

dr
− gσns

dσ

dr
− gωJ0

ω

dω

dr
− gρJ

0
ρ

dρ

dr
− eJ0

ch

dV

dr
,

where we have used the energy-momentum tensor Tμν given by eq. (276).
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12.2. Constancy of the Klein potentials and β-equilibrium. – Introducing the nucleon
doublet and the electronic spinor in the waveform ψi = ψi(k)e−ikμxμ

in phase-space, the
Dirac equations (274) become

(307) (γμKμ
i − m̃i)ψi(k) = 0,

where

(308) Kμ
i ≡ kμ − V μ

i , V μ
e = −eAμ.

In the mean-field approximation, making the quadrature of Dirac operators in eq. (307)
and averaging over all states “k”, we obtain the generalized chemical potentials or, for
short Klein potentials for electrons Ee, neutrons En and protons Ep

Ee =
√

g00μe − eV = eν/2μe − eV,(309)

Ep =
√

g00μp + gωω + gρρ + eV = eν/2μp + gωω + gρρ + eV,(310)

En =
√

g00μn + gωω − gρρ = eν/2μn + gωω − gρρ,(311)

where we have used eqs. (264)–(267) and eqs. (282), (284), (286)–(288). In the zero-
temperature case, they are generalized Fermi energies for electrons Ee = EF

e , neutrons
En = EF

n and protons Ep = EF
p .

Using the equations of motion for the fields ρ, ω and σ, and using the generalized
Gibbs-Duhem relation (295), the energy-momentum conservation equation (306) can be
rewritten as

eν/2
∑

i=n,p,e

ni

(
dμi −

dT

T
μi

)
+ (E + P)eν/2

(
dT

T
+

1
2
dν

)
(312)

+ gωnbdω + gρn3dρ + enchdV = 0.

The isothermal Tolman condition [39] (see also [21]) demands the constancy of the grav-
itationally red-shifted temperature

(313)
dT

T
+

1
2
dν = 0, or eν/2T = const.

Such a condition can be used into eq. (312) to obtain

(314)
∑

i=n,p,e

nid(eν/2μi) + gωnbdω + gρn3dρ + enchdV = 0.

Moreover, using the expressions (309)–(310) of the generalized chemical potentials,
eq. (314) can be rewritten as

(315)
∑

i=n,p,e

nidEi = 0,
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which leads for independent and non-zero particle number densities ni �= 0 to the con-
stancy of the Klein potentials (309)–(311) for each particle species, i.e.

Ee = eν/2μe − eV = const,(316)

Ep = eν/2μp + Vp = const,(317)

En = eν/2μn + Vn = const,(318)

where

Vp = gωω + gρρ + eV,(319)

Vn = gωω − gρρ.(320)

In the case of nuclear matter in β-equilibrium (assuming not trapped neutrinos),
the values of the constant Klein potentials (316)–(318) are linked by the condition (see
e.g. [75])

(321) En = Ep + Ee.

We have presented the self-consistent equations of equilibrium at finite temperatures
for a system of neutrons, protons and electrons in β-equilibrium within the framework of
general relativity including quantum statistics, electro-weak, and strong interactions. In
the mean-field approximation, we obtained the generalized particle chemical potentials
from the Dirac equations for nucleons and electrons.

From the Einstein-Maxwell equations, the thermodynamic laws and energy-
momentum conservation, we obtain the constancy of the Klein potential of each particle-
specie and of the gravitationally red-shifted temperature throughout the configuration,
i.e. the first Klein integrals and the Tolman isothermal condition respectively. In the non-
interacting degenerate case, following a minimization energy procedure, it was demon-
strated that the thermodynamic equilibrium condition of constancy of the generalized
particle Fermi energy of all particle species holds (see E. Olson and M. Bailyn [23]). Such
a procedure can be straightforwardly applied to the present case, being the final result
given by the equilibrium conditions (316) and (317).

The precise values of such constants are linked, in the case of nuclear matter in β-
equilibrium, by eq. (321), and their full determination needs the inclusion of additional
constraints to the system, e.g. global charge neutrality (see e.g. [15]).

The correct implementation of such generalized Thomas-Fermi equilibrium conditions
needs the self-consistent solution of the global problem of equilibrium of the configuration
following from the solution of the Einstein-Maxwell equations (297), (298), (300)–(304),
the general relativistic thermodynamic equilibrium conditions (313), (316) and (317),
together with the constraints, e.g. β-equilibrium and global charge neutrality.

Thus, the full system of Einstein-Maxwell-Thomas-Fermi equations can be rewritten
in the form

e−λ(r)

(
1
r2

− 1
r

dλ

dr

)
− 1

r2
= −8πGT 0

0 ,(322)

e−λ(r)

(
1
r2

+
1
r

dν

dr

)
− 1

r2
= −8πGT 1

1 ,(323)
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d2V

dr2
+

dV

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −e eν/2eλ(np − ne),(324)

d2σ

dr2
+

dσ

dr

[
2
r

+
1
2

(
dν

dr
− dλ

dr

)]
= eλ [∂σU(σ) + gsns] ,(325)

d2ω

dr2
+

dω

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −eλ

[
gωJω

0 − m2
ωω

]
,(326)

d2ρ

dr2
+

dρ

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −eλ

[
gρJ

ρ
0 − m2

ρρ
]
,(327)

Ee = eν/2μe − eV = const,(328)

Ep = eν/2μp + Vp = const,(329)

En = eν/2μn + Vn = const,(330)

eν/2T = const,(331)

where the constants En, Ep and Ee are linked by eq. (321) and Vp,n is given by eq. (319).
In particular, in the degenerate case T = 0, eq. (324) becomes

d2V̂

dr2
+

dV̂

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
=(332)

− 4πα eν/2eλ

{
np − e−3ν/2

3π2
[V̂ 2 + 2meV̂ − m2

e(e
ν − 1)]3/2

}
,

where V̂ ≡ eV +Ee and we have used eq. (328) into eq. (324). This equation is the general
relativistic extension of the relativistic Thomas-Fermi equation recently introduced in [12]
for the study of compressed atoms. In addition, eq. (332) has been recently used to obtain
the globally neutral configurations in the simpler case of degenerate neutrons, protons
and electrons in β-equilibrium (see [15] and sect. 10 for details).

13. – Neutron stars with strong, weak, electromagnetic, and gravitational
interactions within general relativity

We have formulated the theory of a system of neutrons, protons and electrons fulfilling
strong, electromagnetic, weak and gravitational interactions [16] (see sect. 12 for details).
The role of the Klein first integrals (Klein potentials) has been evidenced and their
theoretical formulation in the Einstein-Maxwell background and in the most general
case of finite temperatures has been presented. Such a treatment generalizes the previous
results for the “non-interacting” case [15] (see sect. 10). In this section we construct for
the first time the equilibrium configurations of non-rotating neutron stars following the
new approach, [15, 16], including the presence of a crust at subnuclear densities. The
full set of the Einstein-Maxwell-Thomas-Fermi equations is solved numerically for zero
temperatures and for selected parameterizations of the nuclear model.

13.1. The constitutive relativistic equations

13.1.1. Core equations. The parameters of the nuclear model, namely the coupling
constants gs, gω and gρ, and the meson masses mσ, mω and mρ are usually fixed by
fitting experimental properties of nuclei such as saturation density, binding energy per
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Table IV. – Selected parameter sets of the σ-ω-ρ model.

NL3 NL-SH TM1 TM2

mσ (MeV) 508.194 526.059 511.198 526.443

mω (MeV) 782.501 783.000 783.000 783.000

mρ (MeV) 763.000 763.000 770.000 770.000

gs 10.2170 10.4440 10.0289 11.4694

gω 12.8680 12.9450 12.6139 14.6377

gρ 4.4740 4.3830 4.6322 4.6783

g2 (fm−1) −10.4310 −6.9099 −7.2325 −4.4440

g3 −28.8850 −15.8337 0.6183 4.6076

c3 0.0000 0.0000 71.3075 84.5318

nucleon (or experimental masses), symmetry energy, surface energy, and nuclear incom-
pressibility. In table IV we present selected fits of the nuclear parameters: NL3 [76],
NL-SH [77], TM1 [78], and TM2 [79].

The constants g2 and g3 are the third- and fourth-order constants of the self-scalar
interaction as given by the scalar self-interaction potential

(333) U(σ) =
1
2
m2

σσ2 +
1
3
g2σ

3 +
1
4
g3σ

4.

The non-zero constant c3 that appears in the TM1 and TM2 models corresponds to the
self-coupling constant of the non-linear vector self-coupling 1

4c3(ωμωμ)2. We have not
include such a self-coupling vector interaction in the general formulation presented in
sect. 12. However, we will also show the results of the integration when such a self-
interaction is taken into account and we refer to [78,79] for details about the motivations
of including such a coupling.

Inside the core of the star we can safely apply the mean-field approximation by re-
placing the massive meson fields by their expectation values and considering them as
microscopically homogeneous. In such a case, eqs. (322)-(330) reduce to

e−λ(r)

(
1
r2

− 1
r

dλ

dr

)
− 1

r2
= −8πGT 0

0 ,(334)

e−λ(r)

(
1
r2

+
1
r

dν

dr

)
− 1

r2
= −8πGT 1

1 ,(335)

d2V

dr2
+

dV

dr

[
2
r
− 1

2

(
dν

dr
+

dλ

dr

)]
= −e eν/2eλ(np − ne),(336)

∂σU(σ) + gsns = 0,(337)
gωJω

0 − m2
ωω = 0,(338)

gρJ
ρ
0 − m2

ρρ = 0,(339)

Ee = eν/2μe − eV = const,(340)

Ep = eν/2μp + Vp = const,(341)

En = eν/2μn + Vn = const.(342)
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The numerical integration of the core equations can be started given a central density
and the regularity conditions at the origin. At nuclear density the phase-transition to the
“solid” crust takes place. Thus, the radius of the core Rcore is given by E(r = Rcore)/c2 =
ρnuc ∼ 2.7 × 1014 g/cm3. These equations must be solved with the boundary conditions
given by the fulfillment of the condition of global charge neutrality and the continuity of
the Klein potentials of particles between the core and the crust.

13.2. Core-crust transition layer equations. – In the core-crust interface, the mean-
field approximation for the meson-fields is not valid any longer and thus a full numerical
integration of the meson-field equations of motion, taking into account all gradient terms,
must be performed. We expect the core-crust transition boundary-layer to be a region
with characteristic length scale of the order of the electron Compton wavelength ∼ λe =
�/(mec) ∼ 100 fm corresponding to the electron screening scale. Then, in the core-crust
transition layer, the system of equations is reduced to

d2V

dr2
+

2
r

dV

dr
= −eλcoreeJch

0 ,(343)

d2σ

dr2
+

2
r

dσ

dr
= eλcore [∂σU(σ) + gsns] ,(344)

d2ω

dr2
+

2
r

dω

dr
= −eλcore

[
gωJω

0 − m2
ωω

]
,(345)

d2ρ

dr2
+

2
r

dρ

dr
= −eλcore

[
gρJ

ρ
0 − m2

ρρ
]
,(346)

Ee = eνcore/2μe − eV = const,(347)

Ep = eνcore/2μp + eV + gωω + gρρ = const,(348)
En = Ep + Ee,(349)

where we have used the fact that the metric functions are with high level of accuracy
constant throughout the core-crust transition layer and thus we can take their values at
the core radius eνcore ≡ eν(Rcore) and eλcore ≡ eλ(Rcore).

The system of equations of the transition layer has a stiff nature due to the existence
of two different scale lengths. The first one is associated with the nuclear interactions
∼ λπ = �/(mπc) ∼ 1.5 fm and the second one is due to the aforementioned screening
length ∼ λe = �/(mec) ∼ 100 fm. Thus, the numerical integration of eqs. (343)–(349)
has been performed subdividing the core-crust transition layer in the following three
regions: (I) a mean-field–like region where all the fields vary slowly with length scale
∼ λe, (II) a strongly interacting region of scale ∼ λπ where the surface tension due
to nuclear interactions dominate producing a sudden decrease of the proton and the
neutron densities and, (III) a Thomas-Fermi–like region of scale ∼ λe where only a
layer of opposite charge made of electrons is present producing the total screening of
the positively charged core. The results of the numerical integration of the equilibrium
equations are shown in fig. 29 for the NL3-model.

We have integrated numerically eqs. (334)–(342) for the models listed in table IV.
The boundary conditions for the numerical integration are fixed through the following
procedure. We start assuming a value for the central baryon number density nb(0) =
nn(0) + np(0). From the regularity conditions at the origin we have e−λ(0) = 1 and
ne(0) = np(0).
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Fig. 29. – Upper panel: electric field in the core-crust transition layer in units of the critical
field Ec. Lower panel: particle density profiles in the core-crust boundary interface in units
of cm−3. Here we use the NL3-model of table IV and λσ = �/(mσc) ∼ 0.4 fm denotes the
sigma-meson Compton wavelength. The density at the edge of the crust in this example is
ρcrust = ρdrip = 4.3 × 1011 g/cm3. In the right panel plot we have set gρ = 0 in order to see the
effects of the ρ-meson with respect to the case gρ �= 0.

The metric function ν at the origin can be chosen arbitrarily, e.g. ν(0) = 0, due to
the fact that the system of equations remain invariant under the shift ν → ν+ constant.
The right value of ν is obtained once the end of the integration of the core has been
accomplished and duly matched to the crust, by fulfilling the following identity at the
surface of the neutron star,

(350) eν(R) = e−λ(R) = 1 − 2GM(R)
c2R

,

being M(R) and R the total mass and radius of the star. Then, taking into account the
above conditions, we solve the system (337)–(342) at the origin for the other unknowns
σ(0), ω(0), ρ(0), nn(0), np(0), ne(0).
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The initial conditions for the numerical integration of the core-crust transition layer
equations are determined by the final values given by the numerical integration of the
core equations, i.e. we take the values of all the variables at the core-radius Rcore.

In region I the effect of the Coulomb interaction is clear: on the proton profile we can
see a bump due to Coulomb repulsion while the electron-profile decreases as expected.
Such a Coulomb effect is indirectly felt also by the neutrons due to the coupled nature
of the system of equations. However, the neutron-bump is much smaller than the one
of protons and it is not appreciable in fig. 29 due to the plot-scale. In region II we
see clearly the effect of the surface tension due to nuclear interaction which produces
a sharp decrease of the neutron and proton profiles in a characteristic scale ∼ λπ. In
addition, it can be seen a neutron skin effect, analogous to the one observed in heavy
nuclei, which makes the scale of the neutron density falloff slightly larger with respect to
the proton one, in close analogy to the neutron skin effect observed in neutron rich nuclei,
see e.g. [80]. Region III is characterized by a smooth decreasing of the electron density
which resembles the behavior of the electrons surrounding a nucleus in the Thomas-Fermi
model.

The matching to the crust must be done at a radius Rcore + δR where full charge
neutrality of the core is reached. Different thicknesses δR correspond to different electron
Fermi energies EF

e . The thickness of the core-crust transition boundary layer δR as well
as the value of the electron density at the edge of the crust, ncrust

e = ne(Rcore + δR),
depend on the nuclear parameters, especially on the nuclear surface tension.

The equilibrium conditions given by the constancy of the Klein potentials (340)–(342)
throughout the configuration, impose in the transition layer the following continuity
condition

(351) EF
e = eνcore/2μcore

e − eV core = eνcrust/2μcrust
e ,

where μcore
e = μe(Rcore), eV core = eV (Rcore), and μcrust

e = μe(Rcore + δR), and eνcrust �
eνcore .

In the boundary interface, the electron chemical potential and the density decrease:
μcrust

e < μcore
e and ρcrust < ρcore. For each central density, an entire family of core-crust

interface boundaries exist each one with a specific value of δR: the larger the ρcrust, the
smaller the δR. Correspondingly, an entire family of crusts with different mass and thick-
ness, exist. From the continuity of the electron Klein potential in the boundary interface
given by eq. (351), it follows that different values of ρcrust ≥ 0 correspond to different
values of the electron Fermi energy EF

e ≥ 0. In close analogy to the compressed atoms
studied in [12], the case EF

e = 0 corresponds to the “free” (uncompressed) configuration,
where δR → ∞ and ρcrust = 0, i.e. a bare core. In this configuration the electric field
reaches its maximum value. The case EF

e > 0 is analogous to the one of the compressed
atom [12]. In fig. 30 we have plotted the electron distribution in the core-crust boundary
interface for selected densities at the edge of the crust ρcrust = [ρdrip, 1010, 109] g/cm3,
where ρdrip ∼ 4.3 × 1011 g/cm3 is the neutron drip density.

The configuration with ρcrust = ρdrip separates neutron stars with and without inner
crust. In the so-called inner crust, the neutrons dripped from the nuclei in the crust
form a fluid that coexist with the nuclei lattice and the degenerate electrons [58]. For
definiteness, we present in this article the results for configurations ρcrust ≤ ρdrip, i.e.
for neutron stars possessing only outer crust. The construction of configurations with
ρcrust > ρdrip needs to be studied in more detail and will be the subject of a forthcoming
work.
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Fig. 30. – Distribution of electrons in the core-crust boundary interface for different densities
at the edge of the crust, ρcrust. The larger the ρcrust, the smaller the electric field E and the
smaller the thickness of the interface δR.

In fig. 29 we show the core-crust transition layer for the NL3 model of table IV with
and without the presence of the ρ-meson respectively. The presence of the ρ-meson is
responsible for the nuclear asymmetry within this nuclear model. The relevance of the
nuclear symmetry energy on the structure of nuclei and neutron stars is continuously
stressed in literature; see, e.g., [81-85]. The precise value of the nuclear symmetry energy
plays here a crucial in determining the precise value of the ρ-meson coupling which, in
the present case, is essential in the determination of the intensity of the electric field in
the core-crust boundary interface; as can be seen from the comparison of fig 29.

13.3. Crust equations. – Turning now to the crust, it is clear from our recent treatment
of white dwarfs [14] that also this problem can be solved by the adoption of Wigner-Seitz
cells and from the relativistic FMT approach [12] it follows that the crust is clearly
neutral. Thus, the structure equations to be integrated are the TOV equations

dP
dr

= −G(E + P)(M + 4πr3P)
r2(1 − 2GM

r )
,(352)

dM

dr
= 4πr2E ,(353)

where M = M(r) is the mass enclosed at the radius r.
The effects of the Coulomb interaction in “solid”-like electron-ion systems appears

only at the microscopic level, e.g., Debye-Hueckel screening in classical systems [86] and
Thomas-Fermi screening in the degenerate case [87]. In order to analyze the effects of the
microscopic screening on the structure of the configuration we will consider two equations
of state for the crust: the locally neutral case or uniform approximation (see, e.g., [29])
and, for simplicity, instead of using the RFMT EoS [12], we use as second EoS the one
due to Baym, Pethick and Sutherland (BPS) [58], which is by far the most used equation
of state in literature for the description of the neutron star crust (see, e.g., [19]).

In the uniform approximation, both the degenerate electrons and the nucleons distri-
bution are considered constant inside each cell of volume Vws. This kind of configuration
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Table V. – ρmax is the maximum density at which the nuclide is present; Δ R1, Δ R2 and
R.A.1(%), R.A.2(%) are respectively the thickness of the layer where a given nuclide is present
and their relative abundances in the outer crust for two different cases: Mcore = 2.56M�,
Rcore = 12.79 km; Mcore = 1.35M�, Rcore = 11.76 km.

Equilibrium Nuclei Below Neutron Drip

Nucleus Z ρmax(g cm−3) Δ R1 (km) R.A.1(%) Δ R2 (km) R.A.2(%)

56Fe 26 8.1 × 106 0.0165 7.56652 × 10−7 0.0064 6.96927 × 10−7

62Ni 28 2.7 × 108 0.0310 0.00010 0.0121 0.00009

64Ni 28 1.2 × 109 0.0364 0.00057 0.0141 0.00054

84Se 34 8.2 × 109 0.0046 0.00722 0.0017 0.00683

82Ge 32 2.2 × 1010 0.0100 0.02071 0.0039 0.01983

80Zn 38 4.8 × 1010 0.1085 0.04521 0.0416 0.04384

78Ni 28 1.6 × 1011 0.0531 0.25635 0.0203 0.25305

76Fe 26 1.8 × 1011 0.0569 0.04193 0.0215 0.04183

124Mo 42 1.9 × 1011 0.0715 0.02078 0.0268 0.02076

122Zr 40 2.7 × 1011 0.0341 0.20730 0.0127 0.20811

120Sr 38 3.7 × 1011 0.0389 0.23898 0.0145 0.24167

118Kr 36 4.3 × 1011 0.0101 0.16081 0.0038 0.16344

can be obtained only imposing microscopically the condition of local charge neutrality

(354) ne =
Z

Vws
.

The total pressure of the system is assumed to be entirely due to the electrons, i.e.

(355) P = Pe =
2

3 (2π�)3

∫ P F
e

0

c2p24πp2√
c2p2 + m2

ec
4
dp,

while the total energy-density of the system is due to the nuclei, i.e. E=(A/Z)mNne,
where mN is the nucleon mass.

We turn now to the BPS equation of state. The first correction to the uniform model,
corresponds to abandon the assumption of the electron-nucleon fluid through the so-
called “lattice” model which introduces the concept of Wigner-Seitz cell: each cell of
radius Rws contains a point-like nucleus of charge +Ze with A nucleons surrounded by
a uniformly distributed cloud of Z fully-degenerate electrons.

The sequence of the equilibrium nuclides present at each density in the BPS equation
of state is obtained by looking for the nuclear composition that minimizes the energy per
nucleon for each fixed nuclear composition (Z,A) (see table V and [58] for details). The
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pressure P and the energy-density E of the system are, within this model, given by

P = Pe +
1
3
WLnN ,(356)

E
nb

=
WN + WL

A
+

Ee(nbZ/A)
nb

,(357)

where the electron energy-density is given by

(358) Ee =
2

(2π)3

∫ P F
e

0

√
p2 + m2

e4πp2dp,

and WN (A,Z) is the total energy of an isolated nucleus given by the semi-empirical
formula

(359) WN = mnc2(A − Z) + mpc
2Z − bA,

with b being the Myers and Swiatecki binding energy per nucleon [88]. The lattice energy
per nucleus WL is given by

(360) WL = −1.819620Z2e2

a
,

where the lattice constant a is related to the nucleon density nN by nNa3 = 2.

14. – Neutron star structure

In the traditional TOV treatment the density and the pressure are a priori assumed
to be continuous as well as the local charge neutrality of the system. The distinguishing
feature of our new solution is that the Klein potentials are constant throughout the three
regions; the core, the crust and the transition interface boundary. An overcritical electric
field is formed and consequently a discontinuity in density is found with a continuous
total pressure including the surface tension of the boundary. In fig. 31, we compare
and contrast the density profiles of configurations obtained from the traditional TOV
treatment and with the treatment presented here.

In figs. 32, 33 we show the results of the numerical integration of the system of the
general relativistic constitutive equations of the configuration from the center all the way
up to the surface with the appropriate boundary conditions between the involved phases.
In particular, we have plotted the mass-radius relation as well as the compactness of the
neutron stars obtained with the models listed in table IV.

It is worth to note that the inclusion of the Coulomb interaction and in particular the
presence of the negative lattice energy WL results in a decreasing of the pressure of the
cells. Such an effect, as shown in figs. 34, 35, leads to a decreasing of the mass and the
thickness of the crust with respect to the uniform-approximation case where no Coulomb
interactions are taken into account.

Comparing the mass and the thickness of the crust obtained with these two differ-
ent EoS, we obtain systematically crusts with smaller mass and larger thickness when
Coulomb interactions are taken into account. This results are in line with the recent
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Fig. 31. – Top panel: particle density profiles in the core-crust boundary interface, in units
of cm−3. Middle panel: electric field in the core-crust transition layer, in units of the critical
field Ec. Lower panel: density profile inside a neutron star with central density ρ(0) ∼ 5ρnuc.
We compare and contrast the structural differences between the solution obtained from the
traditional TOV equations (locally neutral case) and the globally neutral solution presented
here. We use here the NL3 nuclear parametrization of table IV and λσ = �/(mσc) ∼ 0.4 fm,
denotes the sigma-meson Compton wavelength. The density at the edge of the crust is ρcrust =
ρdrip = 4.3 × 1011 g/cm3 (top plot) and ρcrust = 1010 g/cm3 (bottom plot).

results in [14], where the mass-radius relation of white-dwarfs has been calculated using
an EoS based on the relativistic FMT model for compressed atoms [12].

In the case of the BPS EoS, the average nuclear composition in the outer crust,
namely the average charge to mass ratio of nuclei Z/A, is obtained by calculating the
contribution of each nuclear composition present to the mass of the crust. We exemplified
the analysis for two different cores: Mcore = 2.56M�, Rcore = 12.79 km; Mcore = 1.35M�,
Rcore = 11.76 km. The relative abundance of each nuclide within the crust of the star
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Fig. 32. – Mass-Radius relation for the neutron stars obtained with the nuclear models listed
in table IV. In the crust we have used the BPS equation of state. The mass is given in solar
masses and the radius in km.

can be obtained as

(361) R.A. =
1

MBPS
crust

∫
Δr

4πr2Edr,

where the integration is carried out in the layer of thickness Δr where the particular
nuclide is present; see table V and fig. 36. Our results are in agreement with the analysis
on the neutron star crust composition obtained in [55, 56]. In both cases we obtain as
average nuclear composition 105

35 Br. The corresponding crusts with fixed nuclear com-
position 105

35 Br for the two chosen cores are calculated neglecting Coulomb interactions
(i.e. using the first EoS). The mass and the thickness of these crusts with fixed 105

35 Br
are different with respect to the ones obtained using the full BPS EoS, leading to such
average nuclear composition. For the two selected examples we obtain that the mass

Fig. 33. – Compactness of the star GM/(c2R) as a function of the star mass M (left panel) and
the radius (right panel). In the crust we have used the BPS equation of state and the nuclear
models are in table IV.
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Fig. 34. – Left panel: mass of the crust as a function of the total mass of the star for the crust
EoS without Coulomb interactions. Right panel: crust-thickness as a function of the total mass
of the star.

and the thickness of the crust with average 105
35 Br are, respectively, 18% larger and 5%

smaller with respect to the ones obtained with the corresponding BPS EoS. This result
shows how small microscopic effects due to the Coulomb interaction in the crust of the
neutron star leads to quantitative not negligible effects on the macroscopic structure of
the configuration.

15. – Observational constraints on the mass-radius relation

It has been recently pointed out that the most up-to-date stringent constraints to
the mass-radius relation of neutron stars are provided by the largest mass, the largest
radius, the highest rotational frequency, and the maximum surface gravity, observed for
pulsars [89].

So far, the highest neutron star mass measured with a high level of experimental
confidence is the mass of the 3.15 millisecond pulsar PSR J1614-2230, M = 1.97 ±
0.04M�, obtained from the Shapiro time delay and the Keplerian orbital parameters of
the binary system [90]. The fitting of the thermonuclear burst oscillation light curves

Fig. 35. – Same as fig. 34 but for the BPS EoS.
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Fig. 36. – Relative abundances of chemical elements in the crust for the two cores analyzed in
table V.

from the accreting millisecond pulsar XTE J1814-338 weakly constrain the mass-radius
relation imposing an upper limit to the surface gravity of the neutron star, GM/(c2R) <
0.24 [91]. A lower limit of the radius of RX J1856-3754, as seen by an observer at
infinity R∞ = R[1 − 2GM/(c2R)]−1/2 > 16.8 km, has been obtained from the fit of
the optical and X-ray spectra of the source [92]; it gives the constraint 2GM/c2 >
R − R3/(Rmin

∞ )2, being Rmin
∞ = 16.8 km. Assuming a neutron star of M = 1.4M� to

fit the Chandra data of the low-mass X-ray binary X7, it turns out that the radius
of the star satisfies R = 14.5+1.8

−1.6 km, at 90% confidence level, corresponding to R∞ =
[15.64, 18.86] km, respectively (see [93] for details). The maximum rotation rate of a
neutron star taking into account both the effects of general relativity and deformations
has been found to be νmax = 1045(M/M�)1/2(10 km/R)3/2 Hz, largely independent of the
equation of state [94]. The fastest observed pulsar is PSR J1748-2246ad with a rotation
frequency of 716 Hz [95], which results in the constraint M ≥ 0.47(R/10 km)3M�. In
fig. 37 we show all these constraints and the mass-radius relation presented in this article.

As discussed by J. E. Trümper in [89], the above constraints strongly favor stiff
equations of state which provide high maximum masses for neutron stars. In addition,
putting all of them together, the radius of a canonical neutron star of mass M = 1.4M�
is highly constrained to the range R � 12 km disfavoring, at the same time, the strange
quark hypothesis for these specific objects. It is clear from fig. 37 that the mass-radius
relation presented here is consistent with all the observation constraints, for all the
nuclear parametrizations of table IV. We present in table VI, the radii predicted by
our mass-radius relation for a canonical neutron star of M = 1.4M� as well as for the
millisecond pulsar PSR J1614-2230, M = 1.97 ± 0.04M�.
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Fig. 37. – Constraints on the mass-radius relation given by J. E. Trümper in [89] and the
theoretical mass-radius relation presented in this article in fig. 32. The solid line is the upper
limit of the surface gravity of XTE J1814-338, the dotted-dashed curve corresponds to the
lower limit to the radius of RX J1856-3754, the dashed line is the constraint imposed by the
fastest spinning pulsar PSR J1748-2246ad, and the dotted curves are the 90% confidence level
contours of constant R∞ of the neutron star in the low-mass X-ray binary X7. Any mass-
radius relation should pass through the area delimited by the solid, the dashed and the dotted
lines and, in addition, it must have a maximum mass larger than the mass of PSR J1614-2230,
M = 1.97 ± 0.04M�.

16. – Comparison with the traditional TOV treatment

In the traditional TOV treatment local charge neutrality as well as the continuity
of the pressure and the density in the core-crust transition are assumed. This leads to
explicit violation of the constancy of the Klein potentials throughout the configuration
(see, e.g., [15]). In such a case there is a smooth transition from the core to the crust
without any density discontinuity and therefore the density at the edge of the crust is
∼ ρnuc ∼ 2.7 × 1014 g/cm3. The so-called inner crust in those configurations extends in
the range of densities ρdrip � ρ � ρnuc while, at densities ρ � ρdrip, there is the so-called
outer crust.

In fig. 38 we compare and contrast the mass and the thickness of the crust as obtained
from the traditional TOV treatment with the new configurations presented here in the
case ρcrust = ρdrip.

Table VI. – Radii (in km) predicted by the nuclear parametrizations NL3, NL-Sh, TM1 and
TM2 of table IV, for a canonical neutron star of M = 1.4M� and for the millisecond pulsar
PSR J1614-2230, M = 1.97 ± 0.04M�.

M(M�) RNL3 RNL−SH RTM1 RTM2

1.40 12.31 12.47 12.53 12.93

1.93 12.96 13.14 13.13 13.73

2.01 13.02 13.20 13.17 13.82
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Fig. 38. – Mass (left panel) and thickness (right panel) of the crust given by the traditional locally
neutral Tolman-Oppenheimer-Volkoff treatment and by the new globally neutral equilibrium
configurations presented in this article. We use here the NL3 nuclear model, see table IV.

The markedly differences both in mass and thickness of the crusts (see fig. 38) obtained
from the traditional Tolman-Oppenheimer-Volkoff approach and the new equilibrium
configurations presented here, leads to a very different mass-radius relations which we
compare and contrast in fig. 39.

We have formulated the equations of equilibrium of neutron stars based on our re-
cent works [16] and [12, 14, 15]. The strong, weak, electromagnetic, and gravitational
interactions are taken into due account within the framework of general relativity. In
particular, the strong interactions between nucleons is described by the exchange of the
σ, ω, and ρ mesons. The equilibrium conditions are given by the set of Einstein-Maxwell-
Thomas-Fermi equations and by the constancy of the general relativistic Fermi energies
of particles, the Klein potentials, throughout the configuration.

Fig. 39. – Mass-Radius relation obtained with the traditional locally neutral TOV treatment
and with the new globally neutral equilibrium configurations presented here. We use here the
NL3 nuclear model, see table IV.
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We have solved these equilibrium equations numerically, in the case of zero tempera-
tures, for the nuclear parameter sets NL3 [76], NL-SH [77], TM1 [78], and TM2 [79]; see
table IV for details.

A new structure of the star is found: the positively charged core at supranuclear den-
sities is surrounded by an electronic distribution of thickness � �/(mec) ∼ 102

�/(mπc)
of opposite charge and, at lower densities, a neutral ordinary crust.

In the core interior the Coulomb potential well is ∼ mπc2/e and correspondingly
the electric field is ∼ (mp/mPlanck)(mπ/me)2Ec ∼ 10−14Ec. Due to the equilibrium
condition given by the constancy of the Klein potentials, there is a discontinuity in the
density at the transition from the core to the crust, and correspondingly an overcritical
electric field ∼ (mπ/me)2Ec develops in the boundary interface; see fig. 29.

The continuity of the Klein potentials at the core-crust boundary interface leads to a
decreasing of the electron chemical potential and density, until values μcrust

e < μcore
e and

ρcrust < ρcore at the edge of the crust, where global charge neutrality is achieved. For each
central density, an entire family of core-crust interface boundaries and, correspondingly,
an entire family of crusts with different mass and thickness, exist. The larger ρcrust, the
smaller the thickness of the interface, the peak of the electric field, and the larger the mass
and the thickness of the crust. The configuration with ρcrust = ρdrip ∼ 4.3 × 1011 g/cm3

separates neutron stars with and without inner crust. The neutron stars with ρcrust >
ρdrip deserve a further analysis in order to account for the reduction of the nuclear tension
at the core-crust transition due to the presence of dripped neutrons from the nuclei in
the crust.

All the above new features lead to crusts with masses and thickness smaller than
the ones obtained from the traditional TOV treatment, and we have shown specifically
neutron stars with ρcrust = ρdrip; see fig. 38. The mass-radius relation obtained in this
case have been compared and contrasted with the one obtained from the locally neutral
TOV approach; see fig. 39. We have shown that our mass-radius relation is in line with
observations, based on the recent work by J. E. Trümper [89]; see fig. 37 for details.

The electromagnetic structure of the neutron star presented here is of clear astro-
physical relevance. The process of gravitational collapse of a core endowed with electro-
magnetic structure leads to signatures and energetics markedly different from the ones
of a core endowed uniquely of gravitational interactions; see, e.g., [96-99].

It is clear that the release of gravitational energy in the process of gravitational
collapse of the core, following the classic work of Gamow and Schoenberg (see [100,101]),
is carried away by neutrinos. The additional nuclear and electromagnetic energy ∼ 1051

erg of the collapsing core introduced in this article are expected to be carried away by
electron-positron plasma created in the overcritical electromagnetic field in the collapsing
core.
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