The mobility for the elderly population encompasses different dimensions of urban life including housing, transportation, work-related activities and social interactions. The initiatives for the elderly are mainly undertaken in the areas of health while in reality, this is only a part of the overall picture that might be considered while planning urban accessibility strategies.
TeMA. Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include: engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journal in the Area 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists.

TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR IN-CHIEF
Rocco Papa, University of Naples Federico II, Italy

EDITORIAL ADVISORY BOARD
Mir Ali, University of Illinois, USA
Luca Bertolini, University of Amsterdam, Netherlands
Luuk Boelens, Ghent University, Belgium
Dino Borri, Polytechnic University of Bari, Italy
Enrique Calderon, Polytechnic University of Madrid, Spain
Roberto Camagni, Polytechnic University of Milan, Italy
Derrick De Kerckhove, University of Toronto, Canada
Mark Deakin, Edinburgh Napier University, Scotland
Aharon Kellerman, University of Haifa, Israel
Nicos Komninos, Aristotle University of Thessaloniki, Greece
David Matthew Levinson, University of Minnesota, USA
Paolo Malanima, Magna Gracia University of Catanzaro, Italy
Agostino Nuzzolo, Tor Vergata University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Serge Salat, Urban Morphology and Complex Systems Institute, France
Mattheos Santamouris, National Kapodistrian University of Athens, Greece
Ali Soltani, Shiraz University, Iran

ASSOCIATE EDITORS
Rosaria Battarra, National Research Council Institute of Studies on Mediterranean Societies, Italy
Luigi dell'Olio, University of Cantabria, Spain
Romano Fisiotola, University of Sannio, Italy
Carmela Gargiulo, University of Naples Federico II, Italy
Thomas Hartmann, Utrecht University, Netherlands
Markus Hesse, University of Luxembourg, Luxembourg
Seda Kundak, Technical University of Istanbul, Turkey
Rosa Anna La Rocca, University of Naples Federico II, Italy
Houshmand Ebrahimpour Masoumi, Technical University of Berlin, Germany
Giuseppe Mazzeo, National Research Council Institute of Studies on Mediterranean Societies, Italy
Nicola Morelli, Aalborg University, Denmark
Enrica Papa, University of Westminster, United Kingdom
Dorina Pojani, University of Queensland, Australia
Floriana Zucaro, University of Naples Federico II, Italy

EDITORIAL STAFF
Gennaro Angiello, PhD at University of Naples Federico II, Italy
Gerardo Carpentieri, PhD at University of Naples Federico II, Italy
Federica Gaglione, PhD student at University of Naples Federico II, Italy
Stefano Franco, PhD student at Luiss University Rome, Italy
Rosa Morosini, PhD student at University of Naples Federico II, Italy
Marco Raimondo, Engineer, University of Sannio, Italy
Maria Rosa Tremiterra, PhD student at University of Naples Federico II, Italy
Andrea Tulisi, PhD at Second University of Naples, Italy
Special Issue 2.2018

Elderly Mobility

Contents

3 Editorial Preface
 M. Bricocoli, A. E. Brouwer, C. Gargiulo

9 Mobility and Accessibility of the ageing society. Defining profiles of the elderly population ar
 neighbourhods
 M. Akhavan, G. Vecchio

23 Smart Mobility and elderly people. Can ICTs make the city more accessible for everybody?
 R. Battarra, F. Zucaro, M.R. Tremiterra

43 Growing old and keeping mobile in Italy. Active ageing and the importance of urban mobility
 planning strategies
 C. Burlando, I. Cusano

53 A set of variables for elderly accessibility in urban areas
 C. Gargiulo, F. Zucaro, F. Gaglione

67 The tourist-religious mobility of the “silver-haired people”: the case of Pietrelcina
 (BN)
 R.A. La Rocca, R. Fistola

85 Measuring spatial accessibility for elderly. An application to subway station in Milan
 F. Manfredini, C. Di Rosa
95 Is Milan a city for elderly? Mobility for aging in place
 I. Mariotti, A. E. Brouwer, M. Gelormini

105 Measuring walking accessibility to public transport of the elderly: the case of Naples
 E. Papa, G. Carpentieri, C. Guida

117 Key characteristics of an age – friendly neighbourhood
 F. Pinto, M. Sulfneyestani
A SET OF VARIABLES FOR ELDERLY ACCESSIBILITY IN URBAN AREAS

CARMELA GARGIULO, FLORIANA ZUCARO, FEDERICA GAGLIONE

Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II
e-mail: gargiulo@unina.it; floriana.zucaro@unina.it;
federica.gaglione@unina.it
URL: www.tema_lab.unina.it

ABSTRACT

Until a few years ago, the elderly were considered as fragile, lonely, marginalized citizens, unable to live independently and had generally been "invisible" in studies and planning instruments that involved the governance of urban transformations. In recent years, a major focus of attention has been paid to the matter in urban development policies too (OECD, 2015), which should be oriented towards the construction of an urban model aimed at reducing the social exclusion of the elderly. For this purpose, this contribution describes a first research segment developed by the University of Naples operating unit concerning the definition of a set of variables to measure accessibility of the elderly segment of the population to the neighbourhood scale. In particular, the paper pursues a twofold objective: cognitive and methodological. Firstly, to outline the cognitive framework on the issue of urban accessibility for the elderly through a review of the main studies on this topic, the plans of sustainable urban mobility, the service plans and the governance tools for urban transformation, as well as of the most recent European best practices. The cognitive framework shall allow identifying the limits to be overcome in the reorganisation of the city. Secondly, this paper is intended to identify the set of significant variables taken from the cognitive framework and quantify its specific weight. The paper also proposes a first parameterization of the variables in the GIS environment, which refer to quantitative geo-localized data rather than collected from sample surveys, such as interviews, widely used in literature.

KEYWORDS

Elderly; Built Environment; Urban Accessibility
1 INTRODUCTION

In all the Western industrialized countries and in many developing ones, the population ageing index is gradually increasing and it is foreseen that by 2050 one in every five persons throughout the world will be at least 70 years old and that elderly people in 64 countries will represent the 30% of the entire population. The demographic change taking place poses many challenges of a social, economic, cultural and urban nature. Since the Second World Assembly on Ageing held in Madrid in 2002, the strengths on which to trigger and develop the International Action Plan for the social integration of elderly people have emerged. The most important of these strengths relate to safeguarding elderly people's health and well-being, and fostering an environment favourable to their capacity for initiative. The Plan, like many other subsequent documents, underlies the need for a cultural overturning marked by the recognition of the elderly as a resource and no longer as a problem or an obstacle to the social and economic development of the community and the organization of the urban system, borne in mind that in Italy, for example, in 2017 life expectancy at 65 has reached 21 years and the related health conditions are expected to improve. Until a few years ago, the elderly were considered as fragile, lonely, marginalized citizens, unable to live independently and had generally been "invisible" in studies and planning instruments that involved the governance of urban transformations. In recent years, a major focus of attention has been paid to the matter in urban development policies too (OECD, 2015), which should be oriented towards the construction of an urban model aimed at reducing the social exclusion of the elderly. In recent studies and research on the topic the ease of movement within the urban system and, more generally, accessibility to places and services, is identified as a prerequisite for the possibility of including elderly people in the economic and social processes (Glass et al., 2006; Newson & Kemps, 2005). Facilitating elderly people's mobility is a key element in ensuring their commitment to civic and social life, their participation in community activities and in pursuing human interactions that enrich their health, well-being and quality of life (Dickerson et al., 2007). In light of these brief considerations, the MOBILAGE research project aims to develop new forms of governance for the urban accessibility of the elderly. MOBILAGE also aims to define decision support tool to public administrations to improve the urban accessibility of the elderly to the activities and services of their interest, thus contributing to increase their quality of life. For this purpose, this contribution describes a first research segment developed by the University of Naples operating unit concerning the definition of a set of variables to measure accessibility of the elderly segment of the population to the neighbourhood scale. In particular, the paper pursues a twofold objective: cognitive and methodological. Firstly, to outline the cognitive framework on the issue of urban accessibility for the elderly through a review of the main studies on this topic, the plans of sustainable urban mobility, the service plans and the governance tools for urban transformation, as well as of the most recent European best practices. The cognitive framework shall allow identifying the limits to be overcome in the reorganization of the city. Secondly, this paper is intended to identify the set of significant variables taken from the cognitive framework and quantify its specific weight. As a first approximation, it can be stated that the four main categories of reference (subsystems) in which the variables are articulated are: socio-economic subsystem, environmental subsystem, physical subsystem and functional subsystem. Variables that refer to the physical and functional characteristics of the neighbourhood (supply) and the types of behaviour of the segment of the population (demand) will be identified within each category. The paper also proposes a first parameterization of the variables in the GIS environment, which refer to quantitative geo-localized data rather than collected from sample surveys, such as interviews, widely used in literature. In particular, the paper is articulated in four sections: the first
section proposes a review of the scientific literature on the issue of accessibility for the elderly; the second section proposes a reading of sustainable urban mobility plans, service plans; the third section is dedicated to the most effective identification and parameterization of variables, which are significant for physical and functional accessibility due to the socio-economic characteristics of the elderly population; the fourth section compares the variables emerged from the scientific literature with those proposed in this paper.

2 BACKGROUND

Since the early 1980s a number of initiatives on the old ageing issue have been promoted at governance and academic levels, although the “Global Age-Friendly Cities” project launched by the WHO in 2006 is most of the time mentioned as the starting point for age-friendly community development initiatives. In 1982 the UN approved the first Report on the World Assembly on Ageing to encourage the dialogue among policy makers, researchers and non-governmental organizations on “the implications of aging of the population for social, economic and urban development” (UN resolution 37/51). From 1991 to 1999 (the latter declared Year of Older Persons) several institutional documents were formulated to provide the main principles of well-being to older people, such as dignity, independence and participation. As a matter of fact, these documents were characterized by a continuous re-definition of terminologies, planning aim priority settings and the need of stressing the use of a multidisciplinary approach. If the UN policy recommendations of the 90s were mainly led by gerontological research, at the turn of the new millennium the attention shifted from social, civic and health matters to how to enhance people’s quality of life as they get old through urban planning (Biggs et al., 2000; Buffel et al., 2012). This shift occurred for four main reasons: (i) the demographic change related to an increase in the number of people aged 60 and over, which percentage raised from 7.7% in 1950 to 17.8% in 2010 and is expected to rise to 25.1% by 2050 (OECD, 2015); (ii) the urbanization process, as population growth and urbanization are projected to add 2.5 billion people to the world’s urban population by 2050 (Beard & Petitot, 2010); (iii) the spread of accessibility, sustainability, universal design concepts referred to some urban models such as healthy, compact and harmonious city; (iv) the idea to promote retirement communities to make people age in places that effectively meet their needs, also according to WHO principles of an age-friendly city (Evans, 2009; Rioux & Werner, 2011). In particular, the “new” interest in accessibility in cities within urban and transport planning, community design and urban geography disciplines promoted a broad research on how built environment allows to relate people, promote walkability and integrate different land uses (Angelidou, 2017; Batty, 2009; Busi, 2011; Tiboni & Rossetti, 2014). This has meant to discuss the need of “appropriate, well-designed places in which people choose to spend time and that provide a place for people to relax, socialize and be part of urban life” (Gehl & Matan, 2009; Meshur, 2016; Papa et al., 2016a). In other words, during the 2000s the raised questions about elder friendly cities started to relate to the mutual interaction between built environment and behavior of the elderly: on the one hand, the physical and functional organization of the urban system determines the opportunities to move and participate in the urban life (offer) and, on the other hand, the behaviours and habits of the elder population (demand) require a new configuration of the physical and functional assets of settlement systems. This duality has fuelled the debate on how to increase urban accessibility for elderly people, both by referring to the infrastructure network (transport and communication) and the localization of activities of interest (Alsnih & Henser, 2003; Arentze et al., 2008; Broome et al., 2010; Broom et al., 2012). A large literature has been produced on the key factors that influence travel decisions among people aged 65+ (Ritter et al., 2002; Spinney et al., 2009; Szeto et al., 2017; Wong et al., 2017), while a most recent line of research has focused on how the network of open spaces (built and not built) promotes social
participation, interaction among elderly and physiological benefits needed for the maintenance and enhancement of physical health and functioning (Sugiyama & Thompson, 2007; Yuryev et al., 2010). In particular, studies such as Temelová & Slezáková (2014), Yung et al. (2016) and Wen et al. (2018) have investigated elderly preferences about localization, accessibility, infrastructure and facility, maintenance and landscape features of public open spaces, by stressing the need of providing a sense of place that is inclusive and caring for its older users. Instead, little research has explored the development of new forms of governance for the urban accessibility of the elderly giving particular attention to the mutual influences among the forms of urban organisation, the configuration of infrastructural networks and lifestyles.

3 METHODOLOGY

As argued in the previous section, the senior segment of population has rarely been considered within urban development policies, despite the spread of the age-friendly approach. Policies and strategies to regulate the urban system should be promoted to meet the needs and requirements of this segment of the population, making the city more accessible, safe and inclusive through the organisation of spaces and mobility networks. In this perspective, this study aims to develop a methodology for defining the urban features necessary to increase accessibility levels, also in relation to the habits and behaviours of the elderly population. The proposed methodology is divided into four phases. In the first phase, the cognitive framework on urban governance tools has been drawn up, as well as the cognitive framework on studies and research on this topic, in order to identify the main urban features required to favor age-friendly environments/communities. The selection criteria for the instruments regulating urban transformations were two: those adopted in the last ten years and the ones relating to the Italian provincial capitals. The cognitive framework on research and studies, which refer to different subject areas, has shown that urban accessibility is mainly studied both in terms of organisation of the displacement networks and in relation to widespread behaviours and health conditions. Studies concerning, instead, the localization and distribution of activities on the territory are lacking. In fact, according to Buffel et al. (2012) "physical environments have a significant impact upon all age groups but especially for those reliant on their immediate locality for support and assistance". More specifically, the studies refer to three main areas of research: (i) studies on upgrading transport supply to improve the displacement of the elderly (Alsnih & Hensher, 2003; Haustein, 2012; Morency et al., 2011; Scheiner, 2006; Shoval et al., 2010; Wong et al., 2017); (ii) studies relating to the redevelopment of open spaces (built and not built), to encourage the participation and social aggregation of the elderly (Bowling & Dieppe, 2005; Gehl et al., 2006; Buffel et al., 2012; Scharlach & Lehning, 2013; Toepoel, 2013); iii) studies on the positive incidence of soft mobility on the reduction of diseases affecting the elderly (Macniven et al., 2014; Maisel, 2016; Moran et al., 2014; Pan et al., 2009; Stewart et al., 2001; Van Cauwenberg et al., 2016). The second phase concerned the classification of the characteristics identified in the previous phase in three macro-categories:

- Socio-economic characteristics: describe the behaviour of the elderly, such as age, education, employment and income, which most affect their choice of moving around;

- Urban accessibility characteristics: describe the levels of accessibility to urban areas including a judgment on the form and intensity of land use (or more generally on the distribution of activities in space) and a judgment on the performance of transport networks (or more generally on the degree of spatial separation between two or more activities);

- Built environment characteristics: describe the geometry and the physical aspects of the urban texture.
In the third phase, from the above listed initial set of urban and social characteristics were selected the ones recognized in literature as significant, based on the results of the analysis techniques used. These techniques favor the processing of questionnaires to collect information on elderly people’s lifestyles and the use of multivariate statistical techniques (such as ANOVA test and multiple regression) for the assignment of weights and the relative identification of significant variables (Haustein, 2012; Hawkesworth et al., 2018; Morency et al., 2011; Scheiner, 2006).

Because of the systemic-holistic approach which inspired the whole research work (Papa et al., 1992), in phase 4 the significant variables were reclassified in the following subsystems in which a city wishing to improve urban accessibility for the elderly can be articulated:

− Socio-economic subsystem: describes the behaviour and the habits of the elderly;
− Environmental subsystem: describes the climatic and context characteristics;
− Physical subsystem: describes the localization and distribution of open and built spaces of interest for elderly;
− Functional subsystem: describes the main activities of interest for elderly.

The set of variables that allow to define the offer in terms of urban accessibility (physical, functional and environmental subsystems) and the demand of the elderly population (socio-economic subsystem) has been established in view of the characteristics identified (phase 5 and Tab. 1). In addition to the characteristics identified as significant in literature, other relevant features for the objectives of the research work have been introduced. In this perspective, the purpose of our contribution, as a part of a broader research work, is to integrate the set of variables taken from the literature with further elements of interest related to each of the identified subsystems (phase 6). Tab. 2 shows the proposed set of variables. Phase 7 concerned the parameterization of each of the variables of the proposed set, aimed at estimating the urban characteristics to appropriately define the strategies and interventions needed to improve the accessibility of the elderly.

This is an innovative operation compared to other research studies, which mostly use qualitative data taken from sample surveys such as questionnaires. From Tab. 2 it is possible to notice that if the quantification of the socio-economic subsystem variables is already available by consulting the databases of institutes that deal with statistical analyses concerning both the population and the mobility, for the remaining subsystems (environmental, physical and functional) quantitative data will be obtained through spatial analyses in the GIS environment.

<table>
<thead>
<tr>
<th>ID</th>
<th>VARIABLE</th>
<th>WEIGHT</th>
<th>PAPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Population over 60 divided into age groups (60-70,70-80,> 80)</td>
<td>p= - 0.25</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p< 0.001</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.37</td>
<td>Morency et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= - 0.55</td>
<td>Scheiner, 2006</td>
</tr>
<tr>
<td>2</td>
<td>Population divided by gender</td>
<td>p= - 0.27</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.578</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= - 0.29</td>
<td>Scheiner, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= - 0.02</td>
<td>Schwanen & Páez, 2001</td>
</tr>
<tr>
<td>3</td>
<td>Education level of the population</td>
<td>p= 0.273</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.41-0.38</td>
<td>Scheiner, 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.06-0.10</td>
<td>Schwanen & Páez, 2001</td>
</tr>
<tr>
<td>4</td>
<td>State of employment</td>
<td>p= 0.4</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.09</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= (0.15-0.45)</td>
<td>Morency et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.05</td>
<td>Schwanen & Páez, 2001</td>
</tr>
<tr>
<td>ID</td>
<td>VARIABLE</td>
<td>MEASURE</td>
<td>SOURCE</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>5</td>
<td>Income</td>
<td>p= 1.9</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.29</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.15-0.17</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.37-0.50</td>
<td>Scheiner, 2006</td>
</tr>
<tr>
<td>6</td>
<td>Possession of car</td>
<td>p= 0.27-0.71</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.46</td>
<td>Morency et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.03</td>
<td>Schwanen & Páez, 2001</td>
</tr>
</tbody>
</table>

PHYSICAL SUBSYSTEM

<table>
<thead>
<tr>
<th>ID</th>
<th>VARIABLE</th>
<th>MEASURE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Metro stations</td>
<td>p= 0.7</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.5</td>
<td>Morency et al., 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.3</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td>8</td>
<td>Bus and tram stops</td>
<td>p= 0.94</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.80</td>
<td>Schwanen & Páez, 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Presence of pedestrian paths</td>
<td>p= 0.02</td>
<td>Wong et al., 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.005</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.86</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Distance from the tram</td>
<td>p= 0.29</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.15</td>
<td>Morency et al., 2011</td>
</tr>
<tr>
<td>11</td>
<td>Distance from the station</td>
<td>p= 0.45</td>
<td>Haustein, 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.30</td>
<td></td>
</tr>
</tbody>
</table>

FUNCTIONAL SUBSYSTEM

<table>
<thead>
<tr>
<th>ID</th>
<th>VARIABLE</th>
<th>MEASURE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Shops and services</td>
<td>p= 0.72</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.66</td>
<td>Scheiner, 2006</td>
</tr>
<tr>
<td>13</td>
<td>Density green area</td>
<td>p= 0.67</td>
<td>Hawkesworth et al., 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p= 0.50</td>
<td>Wong et al., 2017</td>
</tr>
</tbody>
</table>

Tab. 1 Significant variable (according to their weight)
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Units</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Presence of road crossings signaled by traffic lights</td>
<td>n°</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>15</td>
<td>Presence of benches and public baths</td>
<td>n°</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>16</td>
<td>Presence of pedestrian paths</td>
<td>Km</td>
<td>Openstreetmap-GIS</td>
</tr>
<tr>
<td>17</td>
<td>Presence of parking areas</td>
<td>Km²</td>
<td>Openstreetmap-GIS</td>
</tr>
<tr>
<td>18</td>
<td>Presence of escalators, elevators</td>
<td>n°</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>19</td>
<td>Distance from the tram</td>
<td>m</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>20</td>
<td>Distance from the station</td>
<td>m</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>21</td>
<td>Distance of residence from the first intersection</td>
<td>m</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>22</td>
<td>Built open space network</td>
<td>Km</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>23</td>
<td>Network of protected paths</td>
<td>Km</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>24</td>
<td>Cycle network</td>
<td>Km</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>25</td>
<td>Street lighting</td>
<td>n°</td>
<td>Geographic information system GIS</td>
</tr>
<tr>
<td>26</td>
<td>ASL</td>
<td>Influence ray (R.i.)= 500m</td>
<td>Services plan Bari Services plan Lodi</td>
</tr>
<tr>
<td>28</td>
<td>Pharmacies</td>
<td>R. i. = 500 m</td>
<td>Services plan Bari Services plan Lodi</td>
</tr>
<tr>
<td>29</td>
<td>Local market</td>
<td>R. i. = 600 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>30</td>
<td>Circles for the elderly</td>
<td>R. i. = 200 m</td>
<td>Services plan Bari Services plan Lodi</td>
</tr>
<tr>
<td>31</td>
<td>Social center</td>
<td>R. i. = 200 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>32</td>
<td>Churches</td>
<td>R. i. = 400 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>33</td>
<td>Cinema</td>
<td>R. i. = 515 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>34</td>
<td>Theater</td>
<td>R. i. = 1000 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>35</td>
<td>Theater</td>
<td>R. i. = 1000 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>36</td>
<td>Green areas</td>
<td>R. i. = 100 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
<tr>
<td>37</td>
<td>Municipal library</td>
<td>R. i. = 600 m</td>
<td>Falco, 1978 Urban standards, II edition</td>
</tr>
</tbody>
</table>
4 RESULTS

As argued, the study of scientific literature contributed to the objective of identifying the key urban features that constitute an elder-friendly city:

- Perception of the speed and volume of traffic;
- Neighborhood aesthetics (e.g., foliage, attractive buildings and scenery, absence of litter);
- Satisfaction with the ease and pleasantness of neighborhood;
- Overall safety;
- General functionality of the neighborhood (e.g., traffic condition, street lighting at night, unattended dogs and safety from crime);
- Walkability, pedestrian safety and attractive routes;
- Local park and natural environments nearby.

Some features, such as the aesthetics of the neighborhood, the presence of pedestrian paths and local parks, are meant to make the movement of the elderly easier and enjoyable; other features, such as street lighting and traffic perception, significantly affect their sense of security and their participation in social activities. The key features that significantly influence the urban accessibility of the elderly, articulated in the
A set of variables for elderly accessibility in urban areas

Four urban subsystems defined above (socio-economic subsystems, environmental subsystems, physical subsystems, functional subsystems), have been referred to the variables identified in literature as relevant for their statistical weights. The set of 13 variables identified has been extended with other features that allow to consider further elements of interest for this research work, related to both the demand and the offer of the urban system. In particular, the "Old index" and "Health state" variables have been added to the socio-economic subsystem in order to take into account, respectively, the population structure and the elderly potential to movement and participation in the city life. The "Elevation" and "Temperature" variables have been added to the environmental subsystem, as the presence of altitude differences and the microclimatic conditions (sunlight, ventilation, humidity) influence the displacement choices of the elderly who prefer a soft mobility. Other variables related to pedestrian safety of the weakest elderly users have been added to the physical subsystem, such as "Presence of road crossings signaled by traffic lights", "Usable sidewalks", "Presence of escalators and/or elevators" and "Street lighting". "Green network" is a further variable that characterizes the physical subsystem to take into account the many benefits that the network of not built open spaces brings to these weak users in terms of longevity, health, human well-being and thermal comfort improvements (Arnberger et al., 2017; Gargiulo et al., 2017; Hansmann et al., 2007; Papa et al., 2016b; Salata & Yiannakou, 2016). Some functional variables have been added to the functional subsystem to identify in a more detailed way than the related scientific literature all possible types of local and general services of interest for the elderly, such as "Pharmacy", "Local market", "Clubhouses for elderly", "Social center", in order to consider a broader and more diversified functional offer. Subsequently, efforts were made to identify possible interventions to improve elderly people's quality of life through the study of all the most recent plan instruments of the Italian provincial capitals. The Sustainable Urban Mobility Plans (SUMP) and Service Plans proved to be the only ones particularly sensitive to the issue of improving urban accessibility for the elderly. Several Italian provincial capitals, such as Milan, Parma and Turin, have paid particular attention to the issue starting from the core objectives of the plan: equity, security, social inclusion and everyone's right to access the city without barriers. Starting from these objectives, strategies and actions have been developed in order to improve urban accessibility for the elderly through:

- The increase in soft mobility facilities;
- The improvement of street lighting;
- Improving safety at traffic intersections;
- Reducing obstacles on sidewalks.

It is worth noting that the 100 Station Plan of Naples pays particular attention to the issue of improving accessibility (especially to rail network stations) through the integration of urban transformation governance and transport planning, although this plan was developed over 10 years ago (2001). In particular, this plan identifies the catchment area of the railway stations, according to the geometric, morphologic and functional characteristics that influence the pedestrian accessibility (Papa & Trifiletti, 2010), in line with the future steps of the MOBILAGE project research as described below. The Service Plans of the cities of Lodi and Bari make use of the radii of influence of some services for the elderly population in urban areas, such as:

- ASL (Local Health Service)= 500m;
- Pharmacies= 500m;
- Clubhouses for elderly= 200m.

The values of the radii of influence provided by the Service Plans above mentioned are, actually, the theoretical quantities from which to start to define the relative catchment areas. Hence, a subsequent phase
of this research work is aimed at defining, for each of the activities of interest for the elderly, different radii of influence due to the different age segments in which the over 60 population can be articulated. This goal is linked to the consideration that the will to travel gradually reduced distances is due to the increase in age and/or the reduction of health conditions. The parameterization of the variables identified is the first step to define a methodology for classifying the different types of urban fabric, given the different levels of accessibility for the elderly people. The overlapping of the areas of influence of the many activities of interest and the "density" and distribution of these types of services, on the one hand, and the presence of protected pedestrian paths and local public transport stops, on the other, will allow (at a later stage of the MOBILAGE research project) to identify which portions of the area investigated are more adequately meeting the demand of the elderly segment of the population and which ones, instead, lack in physical and/or functional supply, also taking into account the morphology of the area. This experimentation will be carried out in the VIII Municipality of Naples Vomero and Arenella, that is one of the two areas examined by the MOBILAGE project.

5 CONCLUSIONS

From the cognitive framework of the scientific literature and the Italian urban governance tools, this research work identified two main gaps about the issue of urban accessibility of elderly. First, elder people rarely feature in urban policies and governance tools aimed at efficiently satisfying their specific needs, despite the growth of the “age-friendly approach”. Our review confirms Uhlenberg (2009) and MacLeod et al. (2016) considerations about the fact that planning documents barely mention elder people's needs. They are usually mentioned in terms of numbers, but the analyses rarely result in concrete proposals and measures. In particular, this issue within urban planning tool has been discussing less intensely than other plans such as the urban mobility ones (in general). According to Buffel et al. (2012), "in this context, elderly people illustrate many of the tensions running through urban change" (see section 2). Second, to deal with this ageing challenge occurring in a shifting economic and global ecological context (EEA, 2013) it can be assumed that a city needs a physical and functional reorganisation. On the one hand, both public transport and soft mobility network should be redesigned in order to increase the attractiveness of the city and the elderly well-being by allowing a better accessibility to urban open and built spaces and to activities. On the other hand, a proper mix of functions and accessibility to the same places for different social and generational groups guarantee that the built space will contribute to the social equilibrium of a society. Intervening on both these two elements means improving urban accessibility for all ageing groups, by making built spaces livable and accessible to every category of people, including persons with disabilities (UN, 2006; Tiboni & Rossetti, 2012). In particular, the issue related to the most suitable localization and distribution of activities of interest for elderly is still lacking within the scientific debate. Few studies have addressed the issue of how the “spreading” of local and welfare facilities for elderly can contribute to increase urban accessibility levels. In order to fill this gap, the proposed set of variables has included many elements related to local and general activities as well as to the environmental and physical characteristics. The research work is based, in fact, on the consideration that the improvement of urban accessibility requires the adoption of a holistic-systemic approach to integrate activities already developed in the territory, networks of displacement and open spaces (built and not built), and user needs. In the light of the above, our paper suggests that decision makers and urban planners should adopt an integrated approach to plan ageing cities, as this challenge can be seen as an opportunity to increase city’s sustainability, attractiveness and competitiveness in the areas of land use, transport, welfare services and social cohesion.
ACKNOWLEDGEMENTS

This work has been supported by Fondazione Cariplo (Grant n° 2017-0942). The authors acknowledge the financial support from the Fondazione Cariplo.

REFERENCES

C. Gargiulo, F. Zucaro, F. Gaglione
A set of variables for elderly accessibility in urban areas

IMAGE SOURCES

AUTHOR’S PROFILE

Carmela Gargiulo is a full professor of Urban Planning Techniques at the University of Naples Federico II. Since 1987 she has been involved in studies on the management of urban and territorial transformations. Since 2004, she has been Member of the Researcher Doctorate in Hydraulic, Transport and Territorial Systems Engineering of the University of Naples "Federico II". She is Member of the Committee of the Civil, Architectural and Environmental Engineering Department of the University of Naples "Federico II". Her research interests focus on the processes of urban requalification, on relationships between urban transformations and mobility, and on the estate exploitation produced by urban transformations. On these subjects she has co-ordinated research teams within National Project such as Progetto Finalizzato Edilizia - Sottoprogetto "Processi e procedure" (Targeted Project on Building – Subproject "Processes and procedures"), from 1992 to 1994; Progetto Strategico Aree Metropolitane e Ambiente, (Strategic Project Metropolitan Areas and Environment) from 1994 to 1995; PRIN project on the "Impacts of mobility policies on urban transformability, environment and property market" from 2011 to 2013. Scientific Responsible of the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R&C Axis II, from 2012 to 2015. She is author of more than 90 publications.

Floriana Zucaro is an engineer, Ph.D. in Hydraulic, Transport and Territorial Systems Engineering at the Department of Civil, Building and Environmental Engineering – University of Naples Federico II. She received a M.Sc. in Environmental and Territorial Engineering at the University of Naples Federico II with a specialization in management of urban and territorial transformations. In 2014 she won a scholarship within the Project Smart Energy Master for the energy management of territory financed by PON 04A2_00120 R&C Axis II. Her research interests are in the field of land use planning and energy saving integration in urban policies, sustainable land use and sustainable mobility.

Federica Gaglione is an engineer, Ph.D. in Civil Systems Engineering at University of Naples Federico II. Her research topic concerns the urban accessibility. The aim is to develop a decision support tool that, on an urban scale, allows to choose the most effective actions to improve urban accessibility for vulnerable users, by contributing to improve their quality of life.