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Summary. — In this brief overview, we discuss selected topics of perturbative
QCD at the Large Hadron Collider (LHC). In particular we presents some recent
results on parton densities, higher-order calculations, Sudakov resummation and
parton showers.

PACS 12.38.-t – Quantum chromodynamics.
PACS 12.38.Bx – Perturbative calculations.
PACS 12.38.Cy – Summation of perturbation theory.
PACS 13.85.-t – Hadron-induced high- and super-high-energy interactions (energy
> 10 GeV).

1. – Introduction

The CERN Large Hadron Collider (LHC) is a hadronic machine: all the interesting
high-pT reactions initiate by a hard scattering of partons governed by QCD. A good
control of the QCD cross sections and the related kinematical distributions is thus nec-
essary in order to perform detailed studies on the Standard Model (SM) processes and,
in case, to claim for new-physics signals. This requires, in particular, the computation
of perturbative QCD radiative corrections.

The standard framework to perform perturbative QCD calculations at colliders is
provided by the factorization theorem of mass singularities (for a review see ref. [1]).
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According to it, a generic hard cross section σ(Q2) can be written as(1)

σ(Q2) =(1)
∑
a,b

∫ 1

0

dx1

∫ 1

0

dx2fa/h1(x1, μ
2
F )fb/h2(x2, μ

2
F )σ̂ab(x1x2s,Q

2, μ2
F ) + O((Λ/Q)p),

where fa/h(x, μF ) are the non-perturbative (universal) parton densities giving the distri-
bution of the parton a in the hadron h at the factorization scale μF as a function of the
longitudinal momentum fraction x carried by the parton, σ̂ab are the (process-dependent)
partonic cross sections and s (x1x2s = ŝ) is the hadronic (partonic) centre-of-mass energy
squared. The hard scale of the process, Q, is typically set by the invariant mass or the
transverse momentum of the triggered hard probe, and have to be much larger of the
QCD scale, Q � Λ, to be in a perturbative domain. The term O((Λ/Q)p) on the right-
hand side of eq. (1) represents power suppressed (p ≥ 1) non-perturbative contributions
to the cross section (the so-called higher-twist component). The first term on the right-
hand side of eq. (1) (the leading-twist component of the cross section), can be calculated
in perturbation theory. A generic(2) partonic cross section σ̂ab can be calculated through
a power expansion in the strong coupling αS

σ̂ab(ŝ, Q2, μ2
F ) =

∞∑
n=0

(
αS(μ2

R)
π

)n

σ̂
(n)
ab (ŝ, Q2, μ2

F , μ2
R),(2)

where μR is the renormalization scale and the QCD coupling at lowest order is

αS(μ2
R)

π
=

1
β0 log (μ2

R/Λ2)
� 1 ,(3)

for μR ∼ Q � Λ(3).

2. – Parton densities

Perturbation theory allows us to evaluate the Q-evolution of the parton densities or
parton distribution functions (PDFs) fa/h(x,Q2) in eq. (1) via the DGLAP equation [2]

(4)
d fa/h(x,Q2)

d ln Q2
=

∑
b

∫ 1

x

dz

z
Pab(αS(Q2), z) fa/h(x/z,Q2),

where the kernels Pab(αS, z) are the Altarelli–Parisi (AP) splitting functions which can
be computed as a power series expansion in αS

(5) Pab(αS, z) = αSP
(0)
ab (z) + α2

SP
(1)
ab (z) + α3

SP
(2)
ab (z) + O(α4

S).

(1) When the process involves observed final-state hadrons or photons, the factorization formula
contains additional convolutions with the corresponding fragmentation functions.
(2) However the corresponding hadronic observable has to be infrared and collinear safe: it has
to be independent of the number of soft and collinear particles in the final state.
(3) β0 is the (positive) first order coefficient of the QCD beta function defined by the equation
d ln αS(μ2)/d ln μ2 = β(αS) = −

P∞
n=0 βn(αS/π)n+1.
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Fig. 1. – MSTW 2008 NNLO parton densities at Q2 = 10 GeV2 and Q2 = 104 GeV2 [7] (left
panel). Uncertainty on gg luminosity function (4) (which is relevant for the Higgs boson pro-
duction) at the LHC

√
s = 8TeV from MSTW 2008, CT10 and NNPDF2.3 NNLO PDFs sets

taken as the ratio to NNPDF2.3 [10] (right panel).

The absolute normalization of the parton densities at an arbitrary scale is not com-
putable in perturbation theory and has to be determined otherwise (basically by a com-
parison with experimental data). Having determined fa/h(x,Q2

0) at a given input scale
Q0, the evolution equation (4) can be used to compute the parton densities at differ-
ent perturbative scales and larger values of the momentum fraction x. Moreover parton
densities are universal (process-independent) quantities: once determined from cross sec-
tion measurements, they can be used to predict cross sections for other hard-scattering
processes.

The parton densities are an essential ingredient to study hard-scattering collisions
since their knowledge enter in the computation of any cross section. At present par-
ton densities are determined by fitting data from deep-inelastic scattering (DIS), Drell–
Yan (DY) and jet production from a wide variety of experiments. Various groups
have produced different sets of PDFs which are publicly available: ABKM/ABM [3],
CTEQ/CT [4], GJR/JR [6], HERAPDF [5], MRST/MSTW [7] and NNPDF [8].

The method used to determine PDFs sets consists in parametrizing the parton den-
sities at some input scale Q0 with a given functional form and then adjusting the pa-
rameters to fit the data. However existing PDFs sets differ in many aspects: input data,
perturbative order in the evolution and in the partonic cross sections, parton densities
parametrization, treatment of αS , treatments of heavy quarks and criteria for determin-
ing uncertainties.

The state of the art in the determination of the PDFs is reviewed in ref. [9]. In fig. 1
(left side) the typical x-shape of the parton densities of the proton is shown.

An important aspect of the PDFs determination regards the quantification of the
corresponding uncertainty. The uncertainty is difficult to estimate since it depends on
the correlations between experimental errors and on the assumptions and the systematics
which affect the fit procedures. A recent comparison between various PDFs sets and the
implication of their uncertainties on the LHC physics is performed in ref. [10] (see right
side of fig. 1).

(4) Parton luminosities are defined as Lab(x, Q2) ≡
R 1

x
dz
z

fa/h1(z, Q2) fb/h2(
x
z
, Q2) .
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Fig. 2. – W− + 5jets production at the LHC: total hadronic energy HT =
P

i p
(i)
J spectrum in

LO and NLO QCD [15] (left panel). Diphoton production at the LHC: azimuthal angle Δφγγ

spectrum measured by ATLAS compared with NLO and NNLO QCD corrections [12] (right
panel).

3. – Higher-order calculations

Perturbative QCD calculations at leading order (LO) give only the order of magnitude
of the corresponding cross sections and distributions. A reliable theoretical estimate can
be obtained by the knowledge of next-to-leading order (NLO) and by the higher-order
QCD corrections. The large amount of precise experimental predictions accumulated by
the LHC requires NLO calculations for a wide variety of process.

The evaluation of perturbative QCD corrections to hard-scattering processes requires
the computation of higher-order real and virtual contributions which is not an easy task.
While the standard renormalization procedure remove the ultraviolet singularities affect-
ing the virtual contributions, difficulties arise from the presence of infrared singularities
at intermediate stages of the calculation which prevents a straightforward implemen-
tation of numerical techniques. The amplitudes which contribute at NLO are the real
corrections and the one-loop virtual corrections to the LO subprocess. Both contribu-
tions are separately infrared divergent while their sum is finite. However exploiting the
universality of the soft and collinear radiation, general algorithms [11] based on the sub-
traction method were developed. They allow relatively straightforward calculations for
any infrared-safe observable once the corresponding QCD amplitudes are available.

Nowadays efficient automated tools for the computation of multi-legs tree level matrix
elements which contribute to the Born and to the real correction process exist [13]. On
the contrary the computation of the virtual corrections with more than two particle in the
final states is still complicated. Nonetheless recently important advances in this respect
were possible thanks both to new semi-numerical methods based on on-shell recursion
relations and unitarity and to improved reduction technique for loop tensor integrals
(for a review see ref. [14]). Following these lines, NLO results for process of increasing
complexity (see left side of fig. 2) and with a high degree of automation [16] were recently
published by different groups.
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Next-to-next-to leading (NNLO) corrections are important to have a good control of
theoretical uncertainties and are especially useful in two cases: i) when NLO corrections
are particularly large (e.g. for Higgs production in gluon fusion), ii) for benchmark pro-
cesses measured with high precision whose knowledge have a wide impact for the LHC
physics program (e.g. for the Drell–Yan process). At this order three kind of corrections
contribute: double real, real-virtual (i.e. real at one-loop order) and two-loop virtual cor-
rections to the LO subprocess. In this case the complicated structure of the infrared
divergence has still prevented an automated and fully general extension of the subtrac-
tion schemes. For this reason, fully exclusive NNLO calculations have been computed
for the following few processes: Higgs boson production in gluon fusion [17, 18] and in
association with a W boson [19], Drell–Yan process [20,21] and diphoton production [22]
(see right side of fig. 2).

4. – Sudakov resummation

In particular kinematical region where the real emissions are strongly inhibited, the
cancellation of infrared singularities which are present in the real and virtual QCD matrix
elements is highly unbalanced. As a result, the convergence of the fixed-order perturba-
tive expansion is spoiled by the presence of large double-logarithmic terms due to soft
and/or collinear gluon emissions. To obtain reliable predictions, these terms have to be
resummed to all orders in perturbation theory.

The Sudakov resummation, which is the all-order summation of soft-gluon contribu-
tions, can be performed when the dynamics and the kinematics of the process factorize.
While dynamical factorization is a general property of the QCD matrix elements in the
soft limit, the factorization of kinematics strongly depends on the observable under con-
sideration. If the phase-space in the soft limit can be factorized, resummation allows
to write multi-gluon emissions in form of generalized exponentiation of the single-gluon
emission probability and to perform an improved perturbative expansion that systemati-
cally resums to all orders the exponentiated leading (LL), next-to-leading (NLL), next-to-
next-to-leading (NNLL) (and so on) logarithmic contributions. Moreover the logarithmic
resummed calculation can be consistently matched (i.e. avoiding double counting) with
the fixed order ones in order to obtain QCD prediction with uniform accuracy for the
entire kinematical region.

Well-known example of Sudakov resummation which are particularly relevant for the
LHC are the transverse-momentum (qT ) resummation at low qT [23] and threshold re-
summation [24].

Transverse-momentum logarithms, occur in the distribution of transverse momentum
of systems with high mass M (M � qT ) that are produced with a vanishing qT in the
LO subprocess. Some examples of such systems are DY lepton pairs [25] (see left side of
fig. 3), Higgs bosons [26] and diphoton production [27].

In such cases when qT � M the emission of real radiation at higher orders is strongly
suppressed. As a result large double-logarithms of the type L = lnM2/q2

T (which diverge
in the qT → 0 limit) appear order by order in the perturbative expansion.

Threshold logarithms occur when the observed high mass system is forced to carry a
very large fraction x (x → 1) of the available centre-of-mass energy

√
s. Also in this case,

the suppression of real emissions at higher orders give rise to large double-logarithms of
the type L = log(1 − x)/(1 − x). Some examples of such systems are DIS at large value
of the Bjorken variable x, production of DY lepton pairs [24] or Higgs bosons with large
invariant mass Q (x = Q/

√
s) (see right panel of fig. 3), production of heavy quark–
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Fig. 3. – Transverse-momentum resummed prediction for Drell-Yan lepton pair (e+e−/μ+μ−)
production at the LHC [25] compared to CMS data (left panel). Fixed-order and resummed
K-factors for Higgs production at the LHC from ref. [28] (right panel).

antiquark pairs (x = 2mQ/
√

s) [29], production of single particle at large transverse
momentum pT (x = 2pT /

√
s) [30].

5. – Monte Carlo parton showers

As we have seen in the previous sections, in the soft and collinear regions the con-
vergence of the standard perturbative expansion is spoiled by the presence of Sudakov
logarithms. Reliable perturbative results can be obtained resumming these logarithmic
corrections to all order with the analytic soft-gluon resummation techniques described
in the previous section.

A different approach to perform the resummation of the Sudakov logarithms is based
on Monte Carlo parton showers [31] which give an all-order approximation of the partonic
cross section in the soft and collinear regions.

The parton shower algorithms start from a LO cross section and generates multiple
parton emissions as a probabilistic Markov process. The probability distribution approx-
imates the squared QCD matrix elements. This approximation is based on the universal
(process-independent) factorization properties of the multi-parton QCD matrix elements
in the soft and collinear limits. However in the soft limit, factorization applies at the am-
plitude level and its square contains quantum interferences which prevent a probabilistic
formulation. This problem can be overcomed to leading infrared accuracy by exploit-
ing QCD coherence [32]: the interference is entirely destructive for soft gluons radiated
outside angular-ordered regions of phase space. Therefore it is possible to correctly take
into account soft-gluon interference by implementing in the parton shower algorithm an
angular-ordering constraint on the phase space available for parton emissions.

However while resummed analytic calculations can in principle be performed to any
logarithmic accuracy, the logarithmic accuracy achievable by parton showers is instead
limited by quantum interference effects which cannot be systematically (at higher orders)
taken into account with a probabilistic approach. Moreover the QCD running coupling
αS which is used in the parton showers corresponds only to the lowest order coupling,
while in resummed analytical calculation the QCD coupling can be consistently defined
at higher orders.
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Fig. 4. – Higgs qT spectrum at the LHC: comparison of various NLO+PS, Monte Carlo and
analytic resummation predictions (from ref. [36]).

Nonetheless, apart from these limitations regarding the higher-order accuracy, parton-
shower calculations have some advantages with respect to analytic resummation. Most of
all, parton showers can treat multi-parton kinematics exactly while analytic resummation
is always inclusive over the soft/collinear parton emissions. This aspect makes parton
showers suitable to be supplemented with a non-perturbative model of hadronization
effects. In this way, it is possible to obtain a QCD Monte Carlo event generator which
provides a complete description (at hadron level) of the hard-scattering process [33].

Although parton showers give a good approximation of the QCD matrix elements in
the dominant soft and collinear regions they cannot provide a good description of the
hard non-collinear emissions.

There exist two main alternative methods for combining fixed-order and parton-
shower QCD calculation avoiding double counting. The approach for merging tree-level
high-multiplicity QCD matrix elements and parton showers (ME+PS) [34] considers
multi-parton configurations generated by the parton shower and corrects them in the
hard non-collinear region by using the exact expressions of the matrix elements. This
can be obtained by implementing a truncated vetoed parton shower evolution. The
overall accuracy obtained for the inclusive cross section is at LO but hard multi-jet con-
figurations are correctly described and the logarithmic accuracy of the parton shower is
preserved. Another approach consists in exactly matching NLO calculations and parton
showers (NLO+PS). In this case total rates and hard emissions have a NLO accuracy
while soft/collinear emissions are handled by the parton shower [35] (see fig. 4).

6. – Conclusions

In this contribution we reviewed some selected topics on perturbative QCD and their
phenomenological implication to the physics program of the LHC. We presented recent
results on parton densities, higher-order calculations, Sudakov resummation and parton
showers.

There are however many other important aspects we could not cover in this brief
review. Some of them are: jets algorithms, flavour physics, top and Higgs physics,
effective theories and the determination of αS .

Nowadays perturbative QCD techniques allow us to perform accurate prediction which
are essential to fully exploit the physics potential of the LHC.
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