Colloquia: IFAE 2013

Mass measurement of the Higgs-like boson in $ZZ^{(*)} \to 4\ell$ channel with the ATLAS detector

N. Bruscino

Università di Napoli "Federico II" e INFN, Sezione di Napoli - Napoli, Italy

ricevuto l'1 Ottobre 2013

Summary. — The measurement of the mass of the observed Higgs-like boson in the decay channel $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$ is presented. Proton-proton collision data recorded by the ATLAS detector at the LHC, corresponding to an integrated luminosity of ~ 25 fb⁻¹, have been used. A clear excess of events over the background is observed at $m_H = 124.3 \text{ GeV}$ with a significance of 6.6 σ in $ZZ^{(*)} \to 4\ell$ analysis, corresponding to a background fluctuation probability of 2.7×10^{-11} . The mass of the Higgs-like boson is measured to be $m_H = 124.3^{+0.6}_{-0.5}(\text{stat})^{+0.5}_{-0.3}(\text{syst})$ GeV, and the signal strength (the ratio of the observed cross section to the expected SM cross section) at this mass is found to be $\mu = 1.7^{+0.5}_{-0.4}$.

 ${\rm PACS}~{\tt 14.80.Bn-Standard-model~Higgs~bosons}.$

1. – Introduction

The search for the SM Higgs boson through the decay $H \to ZZ^{(*)} \to \ell^+ \ell^- \ell'^+ \ell'^-$, where $\ell, \ell' = e$ or μ , provides good sensitivity over a wide mass range and due to its experimentally clean signature and an excellent signal-background ratio it is a "golden" channel for the Higgs boson discovery. Its main background comes from continuum $(Z^{(*)}/\gamma^*)(Z^{(*)}/\gamma^*)$ production. For $m_H < 180 \text{ GeV}$, there are also non-negligible background contributions from Z + jets and $t\bar{t}$ production, where the additional charged lepton candidates arise either from decays of hadrons with b or c-quark content or from misidentification of jets.

The measurement of the mass of the observed Higgs-like boson using data recorded by the ATLAS detector [1] at the LHC corresponding to integrated luminosities of 4.6 fb⁻¹ and 20.7 fb⁻¹ at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, respectively, is presented.

2. - Mass measurement

The events are selected by single-lepton and di-lepton triggers, searching for two same-flavour, opposite-sign lepton pairs (a lepton quadruplet). The lepton pair with the mass closest to the Z boson mass is referred to as the leading di-lepton (its invariant

[©] CERN on behalf of the ATLAS Collaboration

Creative Commons Attribution 3.0 License (http://creativecommons.org/licenses/by/3.0)

Fig. 1. – The profile likelihoods are shown with and without the mass scale systematics [2].

mass, m_{12} , is required to be between 50 and 106 GeV). The remaining same-flavour, opposite-sign lepton pair is the sub-leading di-lepton: m_{34} , is required to be in the range $m_{min} < m_{34} < 115$ GeV, where m_{min} is 12 GeV for $m_{4\ell} < 140$ GeV and rises linearly to 50 GeV at $m_{4\ell} = 190$ GeV. The Z + jets and $t\bar{t}$ background contributions are reduced by applying impact parameter requirements as well as track and calorimeter-based isolation requirements on the leptons.

The mass distributions are described using smooth, non-parametric, unbinned estimates of the relevant probability density functions obtained from simulation. The signal $m_{4\ell}$ shape, normalisation and corresponding uncertainties are parametrised as a function of m_H . Main background shapes are varied from the nominal expectation to allow for shape systematics. The statistical test used is the profile likelihood ratio and it is valued using a Maximum Likelihood [3] fit of signal and background. In fig. 1 the profile likelihood is shown as a function of m_H for the combined 2011 and 2012 data samples. It is

Fig. 2. – Likelihood ratio contours in the (μ, m_H) plane [2].

shown with the mass scale systematic uncertainties from electrons (MSS(e)) and muons (MSS(μ)) applied (solid curve) and without applying them. The value for the fitted mass from the profile likelihood is $m_H = 124.3^{+0.6}_{-0.5}(\text{stat})^{+0.5}_{-0.3}(\text{syst})$ GeV, where the systematic uncertainty is dominated by the energy and momentum scale uncertainties [2].

The global signal strength factor μ acts as a scale factor on the total number of events predicted by the Standard Model for each of the Higgs boson signal processes. Figure 2 presents the best μ and m_H fit values and the profile likelihood ratio contours that, in the asymptotic limit, would correspond to 68% and 95% confidence levels both with mass scale systematics applied (dark colour curves) and without applying them (lighter colour curves). The value of the signal strength μ at the best fit value for $m_H = 124.3 \text{ GeV}$ is $\mu = 1.7^{+0.5}_{-0.4}$. For a value of $m_H = 125.5 \text{ GeV}$ [4], the signal strength is found to be $\mu = 1.43 \pm 0.16(\text{stat}) \pm 0.14(\text{syst})$.

REFERENCES

- [1] ATLAS COLLABORATION, JINST, 3 (2008) S08003.
- [2] ATLAS COLLABORATION, ATLAS-CONF-2013-013, https://cds.cern.ch/record/1523699.
- [3] COWAN G., CRANMER K., GROSS E. and VITELLS O., Asymptotic formulae for likelihoodbased tests of new physics, http://arxiv.org/abs/1007.1727.
- [4] ATLAS COLLABORATION, ATLAS-CONF-2013-014, https://cds.cern.ch/record/1523727.