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Lorentz violation as the origin of dynamical flavour oscillations
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Summary. — We present an alternative mechanism to generate masses and oscilla-
tions dynamically for two fermion flavours coupled to a Lorentz-Invariance-Violating
(LIV) gauge field. The LIV field plays the role of a regulator for the gap equations
and the non-analytic form of the dynamical masses allows to consider the limit where
the LIV field decouples from the (Dirac or Majorana) fermions and, then, Lorentz
invariance is recovered.

1. – Introduction

The generation of quark, lepton and vector boson masses, as described in the standard
model due to their coupling with the Higgs field, seems to have been confirmed at the
LHC [1]. However, the origin of neutrino masses is still not well established, although
the seesaw mechanism seems the most elegant and simple for such a purpose [2].

The possibility, therefore, of generating neutrino masses without the involvement
of right-handed states is still at play. In [3], preliminary steps in this direction have
been taken, in which flavour oscillations can arise dynamically, from the flavour-mixing
interaction of two massless bare fermions with a LIV gauge field. Lorentz violation is
achieved by higher order space derivatives suppressed by a mass scale M , which allows
the dynamical generation of fermion masses, as shown in [4], and also regulates the model.

An important point is the structure of the dynamical mass [4]: mdyn �
M exp(−a/e2), where a is a positive constant and e is the gauge coupling. As one
can see, mdyn has a non-analytical form which can be derived from the Schwinger-Dyson
approach, for example. In addition, we note that the simultaneous limits M → ∞ and
e → 0 can be taken, in such a way that the dynamical mass remains finite, corresponding
to a physical fermion mass.

c© Società Italiana di Fisica 173



174 J. ALEXANDRE, J. LEITE, N. E. MAVROMATOS

2. – Model and solutions

The LIV model considered in [3] is

(1) L = −1
4
Fμν(1 − Δ

M2
)Fμν + Ψ̄(i/∂ − τ /A)Ψ ,

where M is a large mass scale that suppresses Δ = −∂i∂
i and

(2) Fμν = ∂μAν − ∂νAμ , Ψ =
(

ψ1

ψ2

)
, τ =

(
e1 −iε
iε e2

)
.

To begin with, the flavour states in Ψ are considered to be Dirac, but the structure of
the gap equations remains the same in the case of Majorana fermions.

Then, we assume the possibility of generating the following mass matrix

(3) M =
(

m1 μ
μ m2

)
.

Thus, from (1) and (3), Dμν , S and G, the bare gauge propagator and, the bare and
dressed fermion propagators can be written, respectively, as

Dμν = − i

1 + �p2/M2

(
ημν

ω2 − �p2
+ ζ

pμpν

(ω2 − �p2)2

)
, S = i

/p

p2
,(4)

G = i
p2 + /p(m1 + m2) + m1m2 − μ2

(p2 − m2
1)(p2 − m2

2) − 2μ2(p2 + m1m2) + μ4

(
/p − m2 μ

μ /p − m1

)
.

Now, neglecting corrections to the wave functions, vertices and gauge propagator, the
Schwinger-Dyson equation for the fermion propagator is

G−1 − S−1 =
∫

p

Dμν τγμ G τγν .(5)

Such an integral is finite as a consequence of the LIV term �p2/M2 in Dμν .
Consequently, eq.(5) leads to four gap equations which must be satisfied by m1,m2, μ.

We solve these gap equations analytically respecting all the constraints and present, in
table I, two interesting cases.

Table I. – Two possible cases, where X = 8π2

4+ζ
and λ± are mass eigenvalues.

Case λ± θ, mixing angle Solution

I: m1 = m2 �= 0 : ε = 0, e1 = e2, μ2 = m2 2m; 0 ∓π/4(μ = ±m) m = M
2 exp (−X/e2)

II i): μ = 0, ε = 0 and mi �= 0, i = 1, 2 mi 0 mi = M
2 exp (−X/e2

i )

II ii): μ = 0, ε = 0 and m1 = 0, m2 �= 0 0, m2 0 m2 = M
2 exp (−X/e2

2)
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3. – Discussion

Looking at table I, we note that both cases allow for finite dynamical mass generation,
even when setting M → ∞ and e → 0. However, only in “I”, oscillations take place,
since for this, we need that λ2

+ �= λ2
− and θ �= 0. Nevertheless, in this case, one fermion

is left massless and θ is maximal.
Then, calculating the one-loop fermion self-energy and setting M → ∞ and e → 0,

we find: Σ(ω, �p) → −[1/(4 + ζ)](ωγ0 − �p · �γ)1 − MR, where MR is the “renormalized”
mass matrix. Therefore, the dispersion relations are relativistic, since space and time are
dressed in the same way.

Furthermore, two extensions (related to II i) and ii)) to Majorana neutrinos have been
considered in [3]. One of them has shown that masses and oscillations can be dynamically
generated when Ψ in (1) represents two left-handed Majorana fields. While for the other,
where the fields in (1) are in the background of a Higgs field and Ψ represents a left-
handed and a right-handed field, it was shown that the mechanism described here and
the Higgs mechanism can be, respectively, responsible for the generation of the Majorana
mass term and the Dirac mass term present in seesaw mechanisms.

Finally, we plan to extend our model to the physical case of three generations, includ-
ing CP violation, to look for realistic phenomenology.
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