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Summary. — In many situations it has been widely recognized that studies based
on single-gene differential expression statistical analyses are too simplistic, since they
do not consider the complexity of the underlying biological system, mainly based on
specific interaction between genes (at a transciptomic, proteomic and metabolomic
level). For this reason, novel approaches are sought aiming to exploit network-
based methods, in a Systems Biology perspective, capable of integrating single-
probe measurements with biological information at a whole-genome scale. We de-
scribe a method, based on Statistical Mechanics and Network Theory, that goes into
this direction, combining what is actually known about gene-gene interactions at a
protein level and high-throughput mRNA data obtained in different experimental
conditions. We will provide a framework for a phenomenological interpretation of
Entropy of a Network Ensemble based on an Information Theory approach.

PACS 05.10.-a – Computational methods in statistical physics and nonlinear
dynamics.
PACS 87.18.Vf – Systems Biology.
PACS 87.18.Vd – Genomics.

1. – Introduction

In the last 15 years, an enormous revolution has occurred in the medical and bi-
ological fields. New experimental techniques have allowed to collect information at a
very fine scale (for example at the level of single genes or exons, single proteins, and
even single DNA mutations) in a rigorously quantitative manner. These data have
been made available to the whole scientific community thanks to open-access databases
(see for example www.ncbi.nlm.nih.gov/geo/ and www.ebi.ac.uk/arrayexpress/ for
transcriptomics and epigenomics data). Moreover, thanks to the availability of these
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techniques, large-scale experiments have been performed allowing to build databases of
relations between elementary constituents of the cells (like genes, proteins, metabolites:
www.broadinstitute.org/cmap/ for protein-protein interactions, or humanmetabolism.
org/ for the human metabolic reaction network).

This huge amount of data and information have become amenable of novel analy-
sis and modeling approaches, more common to biophysicist rather than to a biologist,
encompassing, among the others, advanced data analysis techniques, stochastic model-
ing and statistical mechanics. These approaches can be gathered under the big hat of
Systems Biology, a highly interdisciplinary field of study that requires a strong interac-
tion between biologists and physicists, also at the experimental design level, in order to
gain new perspectives on classical biological and medical problems (e.g. understanding
of complex biological processes by means of mathematical models [1], but also design of
new therapeutic protocols based on such models [2]).

In Physics, since the second half of the 19th century, systems composed of many (in-
teracting or not) elements have been described by the Statistical Mechanics formalism.
Even if single elements have their own degrees of freedom, their collective behaviour can
be analyzed with a probabilistic approach, and in many cases it can be shown that the
larger the system, the smaller the deviation of its single elements from this ”average”
behaviour. On the other hand, Biology has always been the realm of extreme uncer-
tainty, for several reasons: the difficulty to control all the experimental conditions with
sufficient detail, the individual variability of the samples studied (being them single cells
or whole organisms), but also for the lack of experimental techniques capable of a reliable
quantitative measure over a large number of probes. Nowadays these measurements are
available, so it has come the time to apply these physical approaches to these problems.
In particular, since the interactions between biological elements is one of their charac-
terizing features, the network formalism has been widely applied in this context [3-5]. A
very recent synthesis between Statistical Mechanics and Network Theory has led to the
definition of a measure of Entropy for Network ensembles [6], that is the basis of our
approach described in the next section.

2. – Statistical Mechanics of network ensembles

The basis of a Statistical Mechanics approach to physical systems is a description
of the interactions between its elements: this is provided by the Hamiltonian of the
system, that describes how the energy is distributed in the system. The study of physical
systems historically starts with a phenomenological approach, formalized in the laws of
Thermodynamics and all the relations between thermodynamic variables, and only in a
second time it is rigorously embedded in the theoretical approach provided by Statistical
Mechanics. This to say that many theoretical results could be easily translated into useful
observables and predictions (as in the case of heat capacity for ideal mono- and bi-atomic
gases) since a great phenomenological work was preceding the theoretical achievements,
and mathematical constraints such as constant energy (for the Microcanonical ensemble)
or constant temperature (for the Canonical ensemble) could be easily understood for a
physical system. Given a system with many elements, even if each single element must
obey deterministic laws (stated by the Hamiltonian), the incomplete knowledge of each
single element state leads to a probabilistic approach, in which every system state has a
certain probability to be realized. To describe this behaviour, the Partition Function is
introduced, describing the probability of the systems to be in a certain state given the
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temperature T . When the system is in thermal equilibrium this reads

(1) p(x, v) =
e−βH(x,v)

Z
; Z =

∫
e−βH(x,v) dxdv.

It can be demonstrated that in a situation of constant energy (or more realistically
of constant temperature) the systems evolves towards a state of maximum entropy, a
thermodynamic function defined as

(2) S = −
∫

p(x) log p(x)dx.

This is not the case for Network Theory, since in many cases a clear Hamiltonian
function is not available to describe the system. A network describes the structure of
the interaction between elements, by means of an adjacency matrix A that takes into
account the existence of a link aij between two nodes labeled as i and j. Our approach
is better interpreted from an Information Theory point of view [7], that is based on an
exact counting of the possible states of the “system” given specific constraints, and thus
starts from the definition of the Entropy rather than from the Hamiltonian of the system.
Also in this case Entropy maximization characterizes the system, and the Hamiltonian
function (with its physical meaning) is substituted by one or more constraints on the
variables describing the system (e.g. with respect to some statistical moments of the
distribution of the system variables).

The combination of entropy S and the constraints on it leads to the definition of a
free energy function F ′, here written in comparison with the thermodynamic free energy
function F :

F = E − TS,(3)

F ′ = −S +
E′

T ′ .(4)

In the first equation we have the classical Helmoltz free energy, while in the second we
have emphasized(1) the dependence of the function on entropy, and (as we will see in
following examples) E′ terms represent the constraints on S and 1/T ′ is the related
Lagrange multiplier.

The point of applying this approach to networks derives from the following assump-
tion: each real network (e.g. given by the hyperlinks in the WWW, by people having
friendship relations or exchanging emails, or by genes and proteins interacting inside a
biochemical process) is a realization (the most probable realization) of a general ensemble
of network satisfying specific constraints. Thus, starting from a real instance of a network
ensemble, the mathematical formulation of the constraints that define such ensemble is
the foundation onto which the Information/Statistical approach is built. The problem is
that there is not a clear phenomenology of networks, since they can be related to very
different systems (people, proteins, stocks, web pages, and so on) and a simple “physical”
interpretation of its observables is not available. After introducing the exact formalism

(1) Note that F ′ has not the dimension of an energy, since the variables do not have the same
phenomenological meaning as in F .



208 D. REMONDINI

of entropy of network ensembles, we will consider a set of examples that will lead to the
definition of our specific problem.

3. – Network Entropy: definition and application to transcriptomics

Contrarily to Statistical Mechanics, in which the Hamiltonian of the system and the
physical observables of the system lead “naturally” to a definition of physical state and
probability of a physical state [8], different starting points can be considered for defining
the probability of having a specific network. As described in [6], we will characterize the
probability of having a particular instance of a network as the joint probability of having
all the single links composing the network:

(5) p(A) =
∏

pij , pij = p(aij = 1).

In a canonical approach, similar to the one described previously, Entropy for a network
ensemble is calculated over the possible instances of the network, that are related to the
probabilities of having (or not having) each single link in each possible network. If (as
will be our case) we consider only symmetric(2) unweighted networks (so that for each
link we can have only two probabilities, Pij = p(aij = 1) and p(aij = 0) = 1 − Pij),
the probability for eaving each graph can be calculated, and also the network entropy
accordingly:

P (A) =
∏
i<j

p
aij

ij (1 − pij)|1−aij |,(6)

S = −
∑
i<j

(pij log pij + (1 − pij) log(1 − pij)) .(7)

At difference with Gibbs entropy, this entropy is a bivariate function (indexes i and j
for each couple of nodes), and takes directly into account the presence as well as the
absence of a link. The claim is that the real instance of the network observed is the
one maximizing the entropy of the ensemble: it can be demonstrated that if entropy
function has a set of constraints that is linear in its variables (the pij) it can have only
one maximum [9], that is found by derivation (or numerically in case there is no simple
analytical solution):

(8) SMAX → dS

dpij
= 0.

The different values of entropy will depend on network size but, most importantly,
on the constraints imposed on it, derived from the information we want to include in
our network model. Also in this case there is a substantial difference between classical
Statistical Mechanics and Networks: in the former case, the constraints are typically
intensive (i.e. independent on the number of elements) while for networks many relevant
observables (e.g. connectivity degree, defined as ki =

∑
j aij) are defined at a single-node

level.

(2) That restrict the analysis to the upper triangular part of A.
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Since one important feature of a network is its topology (often summarized by the
distribution of connectivity degrees p(k)) it can be taken into account in the constraints
for the computation of maximum entropy by imposing the full degree sequence of the
network (i.e. the series of all connectivity degrees ki∀i = 1, . . . , N). In this case the “free
energy” (entropy + constraints) becomes

(9) S = −
∑
i<j

(pij log pij + (1 − pij) log(1 − pij)) +
N∑
i

λi

N∑
j

pij ,

in which the λi are the Lagrange multipliers for the N constraints (analogous to the role
of β = 1/KT for the classical canonical ensemble). This formalism allows to calculate
the entropy for a nework ensemble with a fixed number N of nodes and a fixed degree
sequence {ki}.

In order to apply this approach to real data, we want to include in the definition of the
ensemble some specific features on the nodes derived by real experimental observations
(that thus would distinguish one sample from the other, even if the topology of the
network remains the same).

In the application to gene expression data, we consider the genes as nodes, and the
gene expression values (measured for example by high-throughput microarray techniques)
as values associated to the nodes specific for a particular realization (e.g. the expression
profile of a cell under a specific condition, such as healthy, cancer, irradiated, treated
with chemicals, etc.). Defining a metrics (e.g. Euclidean) we can calculate the distance
between nodes i, j in terms of their expression level gi, gj : dij =

√
(gi − gj)2, and

this values can be interpreted as weights on the link between nodes i, j. Also this
information can be embedded as a constraint in the calculation of the maximum entropy
of the network ensemble, and we can summarize our approach as follows:

– each sample (a pool of cells from a specific tissue or organ of the human organism(3))
is represented by a network ensemble;

– in this network ensemble genes are nodes, and links are given by protein-protein
interactions (PPI, as annotated in Connectivity Map, a repository from Broad
Institute that collects information on protein-protein interactions from multiple
datasets, www.broadinstitute.org/cmap/ );

– PPI topology (equal for alle the samples) is imposed on the network ensemble by
a constraint on the connectivity degree (in our case N = 10000 nodes for the
full-genome network);

– information about gene expression profile (specific for each sample) is imposed on
the network ensemble by a constraint on the number of links that have a weight in
a specific interval (binning of the empirical distance distribution)

The “free energy” can thus be written as follows, with an additional constraint for the

(3) But it could be applied to any organism for which the same information are available.
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Table I. – Entropy values for the two groups and P value for the statistical test.

Probe set Entropy group 1 Entropy group 2 P -value

Whole-genome 97577 97565 0.06

5% probe selection 19.02 19.00 0.0028

weighted link distribution with respect to the previous definition:

S = −
∑
i<j

(pij log pij + (1 − pij) log(1 − pij))

+
N∑
i

λi

∑
j

pij +
∑
N

bγi

⎛
⎝Bi −

N∑
i<j

χl(dij)pij

⎞
⎠ .

Maximization of this function produces a maximum entropy value for each sample an-
alyzed, that integrates information about single gene expression profile and interaction
between nodes that are relevant from a biological point of view. Since it is not possible
to obtain analytic results, the function is maximized by numerical implementation of an
iterative algorithm (as described in [10]).

As an example for the application of this formalism, we consider a dataset of breast
cancer samples (publicly available in th GEO Omnibus repository with the GEO accession
number GSE2990) obtained from about 130 patients: 97 samples are primary tumours,
and 28 are tissues from primary tumours that subsequently developed metastasis. We
performed the analysis of entropy variations in the two groups with two different set of
genes: the first with the whole genome profile available (corresponding to about 10000
genes mapped onto the PPI) and the second over a selection of about 400 probes whose
expression level was different between the two groups (calculated by a Student’s T -test
with a 5% significance threshold).

As it can be seen in table I, the two groups have a different distribution of entropy
values, with a lower value for the metastatic group. This result is similar both at a
whole-genome level and in the significant gene selection, with an increase of statistical
significance for the gene selection subset. We remark that this result cannot be obtained
by an analysis of single probes, and it is not related to simple statistical parameters of
the gene profile distribution such as mean or variance for each group (data not shown).
The question is how to gain some biological insight from this result: since entropy gives
a measure of the number of networks that belong to a certain ensemble (i.e. that satisfy
the given constraints), we can think that in this example entropy measures the number
of possible cell states available to the cell, given a specific gene expression profile and
a network of interactions between genes. With this hypothesis in mind, we can try to
interpret the lower value of entropy in the second group as follows: cancer cells that will
become metastatic must undergo specific transformations, as a sort of “natural selection”
from an evolutionary point of view, thus their expression profile must be more controlled,
and more bounded (in terms of the possible values that can be assumed the genes). A
lower entropy represents a smaller volume of “phenotypic space” available to the cell,
with the cell phenotype defined as the set of observable characteristics (morphological,
biochemical and functional) related to its genotype (our observables, the set of gene
expression values) and to the environment (not considered in this analysis).
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4. – Conclusions

We describe a framework for the application of Statistical Mechanics concepts to
Network Theory. In particular, we can define a measure of entropy for network ensembles
that satisfy some constraints, related to network topology and to features associated
to the links. This measure has been applied to high-throughput transcriptomics data,
allowing to calculate a value of entropy for each sample. An interpretation of this entropy
values, in terms of the biological application, is under study, since a phenomenological
interpretation of entropy is not as simple as in classical Statistical Mechanics, in which the
physical meaning of the thermodynamics variables was already known before the rigorous
formalization operated by the work of Gibbs and Boltzmann. The first results seem to
point to a measure of the “parameter space” available to the cell, with implications for
its phenotype given the genomic profile that characterizes its state.
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