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Summary. — The larger-than-expected forward-backward asymmetry of the top-
quark pairs produced in proton-antiproton collisions is suggestive of new physics.
The forward-backward asymmetry of the charged leptons from the cascade decay
of top-quark pairs serve as an complementary test for evidence for or against new
physics. We provide a detailed study of the methodology used to measure the
leptonic asymmetry at CDF, and measure the leptonic asymmetry in leptonic top
quark pair decays, as well as the CDF combination of the leptonic asymmetry. The
CDF leptonic asymmetry combination shows a 2 standard-deviation larger value
than the next–to–leading-order standard model expectation.

PACS 14.65.Ha – Top quarks.
PACS 11.30.Er – Charge conjugation, parity, time reversal, and other discrete
symmetries.
PACS 12.38.Qk – Experimental tests.

1. – Introduction

The forward-backward asymmetry of the tt̄ system produced at the Fermilab Tevatron
can be defined as

(1) Att̄
FB =

N(Δy > 0) − N(Δy < 0)
N(Δy > 0) + N(Δy < 0)

,

where N is the number of events, y is the rapidity of the (anti-)top quark, and Δy =
yt − yt̄. Previous measurements of Att̄

FB at CDF with 9.4 fb−1 and at D0 with 5.4 fb−1

data in the final state with only one charged lepton and hadronic jets (lepton+jets final
state) have indicated a larger Att̄

FB [1,2] than would be expected from the standard model
(SM) [3-5]. The asymmetry in the differential cross section of the tt̄ system has also been
probed in other ways. For example, the angular distribution of cross section of tt̄ system
has been studied in the lepton+jets final state at CDF [6], observing an excess in the
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coefficient of the linear dependent term of cos θt in the tt̄ differential cross section, where
cos θt is the angle between the top-quark momentum and the incoming proton momentum
as measured in the tt̄ center-of-mass frame. This is of great interest, as new particles or
interactions could cause the Att̄

FB to be different from SM-only predictions [7-26].
As the large-than-expected Att̄

FB is suggestive for physics beyond the SM, we can
look for more evidence for or against new physics with a separate set of observables
defined with the charged leptons from the cascade decays of the top-quark pairs, Al

FB

and All
FB [27, 28]. We can define the Al

FB as

(2) Al
FB =

N(qlηl > 0) − N(qlηl < 0)
N(qlηl > 0) + N(qlηl < 0)

,

where N is the number of leptons, q is the lepton charge, and η is the pseudorapidity of
the lepton. Similarly, since there are two leptons detected in each event in the final state
with two charged leptons (dilepton final state), the All

FB can be defined as

(3) All
FB =

N(Δη > 0) − N(Δη < 0)
N(Δη > 0) + N(Δη < 0)

,

where Δη = ηl+ − ηl− .
This set of observables is of equal importance, since the forward-backward asymmetry

of the charged leptons can originate from the asymmetry in the production direction
of their parent top quarks. In addition, the Al

FB and All
FB can deviate further from

their SM predictions in the scenarios that the top quarks are produced with a certain
polarization. For example, the resonant production of tt̄ pairs via a hypothetical gluon
with axial couplings (“axigluons”) could cause the Att̄

FB to deviate from its SM value;
various axigluon couplings to the top quarks could produce the same value of Att̄

FB, but
with very different values of Al

FB and All
FB [29].

2. – Leptonic asymmetry measurement methodology

Due to the limited detector coverage (|η| < 2 for electrons and |η| < 1.1 for muons), the
imperfect detector acceptance, the smearing due to detector response and contamination
from non-tt̄ sources, a correction and extrapolation procedure is needed to measure the
inclusive parton-level Al

FB and All
FB from data. Note that while we will be using the same

methodology for measuring the Al
FB as well as the All

FB, our description in this section
will only mention Al

FB explicitly.
The measurement of Al

FB at CDF in the lepton+jets final state [28] was based on the
asymmetric distribution of the qlηl spectrum (differential asymmetry), defined as

(4) A(qlηl) =
N (qlηl) −N (−qlηl)
N (qlηl) + N (−qlηl)

.

The differential asymmetry was modeled with an empirically determined function of the
form of

(5) A(qlηl) = a · tanh
(

1
2
qlηl

)
,
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Fig. 1. – The differential asymmetry from various physics models. The lines correspond to the
best fits from (a) the a · tanh model and (b) the double-Gaussian model.

where a is a free parameter that is directly related to the final asymmetry. This a · tanh
function was used to correct for the detector response and extrapolate to the inclusive
parton-level asymmetry. This methodology was very successful albeit purely empirical.
Here we provide a partial explanation of why this functional form works. For more details
see ref. [30].

To illustrate and test the measurement methodology, we employed a series of Monte
Carlo simulated tt̄ samples. Samples generated with alpgen [31], pythia [32] and
powheg [33-36] serve as estimates of the SM, and three tt̄ MC samples that include a
class of relatively light and wide axigluons (with masses at 200 GeV/c2 and widths at
50 GeV) with left-handed, right-handed, and axial axigluon couplings to the quarks [29]
serve as benchmark simulation samples to model various SM extensions. These samples
have various Al

FB in the rage between −6% and 15% [30]. The differential asymmetry
from these samples are shown in fig. 1(a). Best fits of the data to the a · tanh model from
eq. (5). are also shown in this figure. While the differential asymmetry is well modeled
in the region where |qlηl| < 2.5, it is not as good above 2.5.

We find that the sum of two Gaussian functions with a common mean works very
well at describing the data, even at large values of qlηl, as shown in fig. 2. This double-
Gaussian description appears good for all the samples we test on. The shape of the qlηl

spectrum is nearly identical for all the simulated samples, while the Al
FB comes from a

shift in the mean of the distribution. In addition, in the region of Al
FB we are interested

in, Al
FB appears linearly related with the mean of the double-Gaussian distribution.

Fig. 2. – The qlηl distribution from the powheg tt̄ sample at parton level, overlaid with the
double-Gaussian fit.
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Fig. 3. – Comparison of the differential contribution to the Al
FB between the a · tanh model and

the double-Gaussian model to the data from the powheg simulation.

Figure 1(b) shows the double-Gaussian model fit to the differential asymmetry for the
simulated samples. A comparison with fig. 1(a) shows that the double-Gaussian model
matches all the simulated samples better than the a·tanh model. However, the differences
are mostly in the high-qlηl region where the contribution to the inclusive Al

FB is small.
The systematic uncertainty introduced by the a · tanh fit is at the permil level while the
typical dominant uncertainty (statistical) at the Tevatron experiments is at the percent
level. The differential asymmetry is still the most sensitive way to determine the total
Al

FB, since it has the benefit of cancelling out most of the systematic uncertainties due
to the acceptance of the detector.

Another way to visualize the asymmetry is to look at a description of how much
contribution there is to the total asymmetry as a function of qlηl (the differential con-
tribution to the total Al

FB) as shown in fig. 3. With this, we learn that the asymmetry
mostly comes from region where |η| < 2.0, which is the place where the detectors offer
best coverages. The shape of the differential contribution to the total Al

FB is very stable
among all samples, which allows for a robust extrapolation from the detected asymmetry
to the parton-level inclusive asymmetry. We also note that the a · tanh parametrization
is excellent for |qlηl| < 2.5. This is more than good enough for the current measurement
at the Tevatron, thus we can move forward with confidence.

3. – CDF result of Al
FB and All

FB

We use the full dataset collected by the CDF detector during Run II of the Tevatron,
corresponding to an integrated luminosity of 9.1 fb−1, to measure the Al

FB and All
FB and

summarize the results presented in ref. [37]. We focus on the sample in the dilepton final
state, and follow the event selection criteria that was used in measuring the top-pair cross
section in the same final state [38], with the dilepton invariant mass (mll) requirement
raised to 10 GeV/c2 to prevent potential mismodelling in low dilepton invariant mass
region. The key features of this event selection criteria are requiring two opposite charged
leptons, at least two jets and large /ET .

Figure 4 shows the qlηl and Δη distributions from the data along with comparisons to
the SM using the powheg MC. Figure 5 shows the differential asymmetry as a function
of qlηl and Δη calculated from the data after subtracting off the expected background
contributions, with fits to the a · tanh model. After evaluating the systematic uncer-
tainties, the results are Al

FB = 0.072 ± 0.052(stat) ± 0.030(syst) = 0.072 ± 0.060 and
All

FB = 0.076 ± 0.072(stat) ± 0.039(syst) = 0.076 ± 0.082, to be compared with the
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Fig. 4. – The distribution of (a) qlηl and (b) Δη of SM expectation overlaid with observation
from data.

Fig. 5. – The differential asymmetry as a function of (a) qlηl and (b) Δη from data after
background subtraction. The green line shows expectation from Powheg MC.

Fig. 6. – Comparison among Al
FB measured in the lepton+jets and dilepton final states and the

combination.

prediction from the SM at the next-to-leading order (NLO) at Al
FB = 0.038 ± 0.003

and All
FB = 0.048 ± 0.004 [39], respectively. The dominant uncertainty in both mea-

surements are statistical uncertainties. Both results are consistent with the SM predic-
tions.
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We take one step further and combine the Al
FB measured in the dilepton final state

described in the previous sections and the same measurement in the lepton+jets fi-
nal state in ref. [28]. The combination is based on the best linear unbiased estimates
(BLUE) [40-42] method. In order to deal with the asymmetric uncertainties in the mea-
surement, we followed the approach of Asymmetric Iterative BLUE (AIB) [43]. The
combined Al

FB is Al
FB = 0.090+0.028

−0.026. This measurement is 2 standard deviations larger
than the NLO SM calculation at Al

FB = 0.038 ± 0.003. The comparison among Al
FB

measured in the lepton+jets and dilepton final states and the combination is shown in
fig. 6.

4. – Conclusion

The measurements of the forward-backward asymmetry of the top-pair production
at the Tevatron continues to produce exciting results. Our presented result cover both
improved understanding of the methodology used to measure the Al

FB as well as improved
measurements and combination of multiple measurements. We measure the Al

FB and
All

FB in the dilepton final state using full data collected during CDF Run II to be Al
FB =

0.072 ± 0.052(stat) ± 0.030(syst) = 0.072 ± 0.060 and All
FB = 0.076 ± 0.072(stat) ±

0.039(syst) = 0.076 ± 0.082. The results are consistent with the prediction from NLO
SM of Al

FB = 0.038 ± 0.003 and All
FB = 0.048 ± 0.004 [39]. Furthermore we obtained

the best measurement of the Al
FB from CDF by combining the measurement in the

lepton+jets final state with the measurement in the dilepton final state. The combined
result is Al

FB = 0.090+0.028
−0.026. This result is 2 standard deviation larger than the NLO SM

calculation. CDF is continuing the effort in measuring Att̄
FB in the dilepton final state

and further CDF and Tevatron combinations.
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