Molecular Plant Pathology

The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum

Journal:	Molecular Plant Pathology
Manuscript ID	MPP-OA-17-227.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Tang, Guangfei; Institute of Biotechnology, Zhejiang University, 310058 Zhang, Chengqi; Institute of Biotechnology, Zhejiang University, 310058; College of Plant Protection, Anhui Agricultural University, 230036 Ju, Zhenzhen; Institute of Biotechnology, Zhejiang University, 310058 Zheng, Shiyu; Institute of Biotechnology, Zhejiang University, 310058 Wen, Ziyue; Institute of Biotechnology, Zhejiang University, 310058 Xu, Sunde; Institute of Biotechnology, Zhejiang University, 310058 Chen, Yun; Institute of Biotechnology, Zhejiang University, 310058 Ma, Zhonghua; Institute of Biotechnology, Zhejiang University, 310058
Keywords:	Fusarium graminearum, Endogenous reactive oxygen species, FgLetm1, Mitochondrial integrity, Mycotoxin, Virulence

SCHOLARONE[™] Manuscripts

1		
2 3 4	1	The mitochondrial membrane protein FgLetm1 regulates mitochondrial
5	2	integrity, production of endogenous reactive oxygen species and
7 8	3	mycotoxin biosynthesis in Fusarium graminearum
9 10	4	Guangfei Tang ¹⁺ , Chengqi Zhang ^{1,2+} , Zhenzhen Ju ¹ , Shiyu Zheng ¹ , Ziyue Wen ¹ ,
11 12	5	Sunde Xu ¹ , Yun Chen ^{1*} and Zhonghua Ma ¹
13 14	6	¹ Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
15 16 17	7	² College of Plant Protection, Anhui Agricultural University, Hefei 230036,
18 19	8	China
20 21	9	*Corresponding author:
22 23	10	Yun Chen
24 25	11	Email: chenyun0927@zju.edu.cn;
26 27	12	Tel. & Fax (+86) 571 88982106.
28 29 30	13	† These authors contributed equally to this work.
30 31 32	14	
33		
34 35	15	RUNNING TITLE:
36 37	16	Function of FgLetm1 in Fusarium graminearum
38 39	17	KEYWORDS:
40 41	18	Fusarium graminearum; Endogenous reactive oxygen species; FgLetm1;
42 43	19	Mitochondrial integrity; Mycotoxin; Virulence.
44 45	20	Word count: 6997; Figure number: 8; Table number: 3.
46		-

21 SUMMARY

22	Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with
23	Fusarium graminearum. DON poses a serious threat to human and animal
24	health and is a critical virulence factor. Various environmental factors including
25	reactive oxygen species (ROS) have been shown to interfere with DON
26	biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger
27	DON production have been extensively investigated in <i>F. graminearum</i> .
28	However, the role of the endogenous ROS generating system in DON
29	biosynthesis is largely unknown. In this study, we genetically analyzed the
30	function of Leucine zipper–EF-hand–containing trans-membrane 1(LETM1)
31	super-family proteins and evaluated the role of the mitochondria-produced
32	ROS in DON biosynthesis. Our results show that there are two Letm1
33	orthologs, FgLetm1 and FgLetm2, in <i>F. graminearum</i> . FgLetm1 is localized to
34	the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2
35	plays a minor role in maintaining mitochondrial integrity. The Δ FgLetm1 mutant
36	demonstrated a vegetative growth defect, abnormal conidia and increased
37	sensitivity to various stress agents. More importantly, the Δ FgLetm1 mutant
38	showed significantly reduced levels of endogenous ROS, decreased DON
39	biosynthesis and attenuated virulence in planta. To our knowledge, this is the
40	first report that mitochondrial integrity and endogenous ROS production by
41	mitochondria are important for DON production and virulence in Fusarium
42	species.

43 INTRODUCTION

44	Deoxynivalenol (DON) is the most prevalent and economically important
45	mycotoxin associated with infested grains by Fusarium species (Desjardins,
46	2006). Among the Fusarium fungi, Fusarium graminearum is the main DON
47	producer that causes a devastating disease known as Fusarium Head Blight
48	(FHB) in cereal crops worldwide (Bennett & Klich, 2003, Desjardins, 2006,
49	Kimura et al., 2007). The biosynthetic pathway of DON has been extensively
50	studied, and nearly all genes involved in DON biosynthesis (TRI genes) have
51	been identified (Desjardins <i>et al.</i> , 1993, Kimura <i>et al.</i> , 2001, Kimura et al.,
52	2007). Biosynthesis of secondary metabolites including mycotoxins is
53	influenced by various environmental factors. Previous investigations on the
54	regulation of DON biosynthesis in <i>F. graminearum</i> revealed the influence of
55	mycotoxin production by environmental or extra-cellular factors, such as
56	nitrogen and carbon sources (Jiao et al., 2008, Miller & Greenhalgh, 1985, Oh
57	<i>et al.</i> , 2016), pH (Merhej <i>et al.</i> , 2011), magnesium (Pinson-Gadais <i>et al.</i> , 2009),
58	phenolic acids (Boutigny et al., 2009), and amines (Gardiner et al., 2009). Our
59	recent study showed that methylation of histone H3K4 also contributed to DON
60	production (Liu et al., 2015). In addition to those factors, reactive oxygen
61	species (ROS) have been highlighted as a stimulator interfering with DON
62	production (Audenaert et al., 2010, Ponts et al., 2007, Ponts et al., 2006,
63	Montibus et al., 2013, Jiang et al., 2015). Supplementation with hydrogen
64	peroxide (H_2O_2) or the fungicide prothioconazole to the liquid cultures of <i>F</i> .
65	graminearum were able to significantly increase the concentration of
66	intracellular ROS, which subsequently stimulated TRI gene expression and
67	induced DON production (Audenaert et al., 2010, Ponts et al., 2007, Ponts et

Page 4 of 51

1 2 3 4	
4 5 7 8	
9 10 11 12 13	
9 10 11 12 13 14 15 16 17 18	
19 20 21 22 23	
23 24 25 26 27	
29 30 31	
32 33 34 35 36	
37 38 39 40	
41 42 43 44 45	
46 47 48 49	
50 51 52 53 54	
55 56 57 58	
59 60	

68	al., 2006). Relatively higher concentrations of H_2O_2 were observed in the
69	infection cushions, as compared to runner hyphae during the infection process
70	of F. graminearum (Mentages & Bormann, 2015). However, the mechanism to
71	generate endogenous ROS, and the role of ROS the regulation of DON
72	biosynthesis remain relatively unknown in F. graminearum.
73	ROS are able to cause DNA damage, lipid peroxidation, and protein
74	oxidation (Beckman & Ames, 1998). Alternatively, ROS have been suggested
75	to be a secondary messenger that transduces signals to regulate cellular
76	functions such as immunity, cell proliferation and ion transport in mammals and
77	plants. In microbial eukaryotes, ROS have been shown to be involved in
78	regulation of life-span (Osiewacz, 2002), host-pathogen interactions and other
79	cellular functions (Missall et al., 2004, Nowikovsky et al., 2004). Mitochondria
80	are the major source of endogenous ROS, and produce about 95% of the total
81	of ROS during cellular oxidative metabolism (Liu, 1999). Meanwhile, several
82	enzymatic and non-enzymatic systems are also involved in intracellular ROS
83	production (Grissa et al., 2010). The most important enzymatic
84	ROS-generating system is the NADPH-dependent oxidase complex (Nox).
85	The role of NADPH oxidases NoxA and NoxB and the regulator NoxR in ROS
86	production have been investigated in <i>F. graminearum</i> (Wang et al., 2014,
87	Zhang et al., 2016). However, the roles of mitochondria and the mitochondrial
88	ROS-generating system in secondary metabolism and virulence of
89	phytopathogenic fungi, including F. graminearum, have not been investigated.
90	Leucine zipper–EF-hand–containing transmembrane 1(LETM1), an inner
91	mitochondrial membrane protein, has been identified as a protein associated
92	with Wolf-Hirschhorn syndrome (WHS), a complex multigenic human disease

93	caused by the partial deletion of the distal short arm of chromosome 4 (Endele
94	et al., 1999, Zollino et al., 2003). Letm1 is evolutionarily conserved from yeast
95	to mammals. The biological functions of the Letm1 orthologs have been
96	investigated in various organisms (Dimmer et al., 2008, Hasegawa & van der
97	Bliek, 2007, Hashimi <i>et al.</i> , 2013, McQuibban <i>et al.</i> , 2010, Nowikovsky et al.,
98	2004, Zhang et al., 2012). However, the function of the Letm1 super-family in
99	filamentous fungi is still largely unknown. In this study, the Letm1 orthologs
100	were selected as target proteins to investigate the biological function of ROS
101	generated from mitochondria and mitochondrial integrity in DON biosynthesis,
102	virulence and cell development. Our results showed that the deletion mutant
103	Δ FgLetm1 had a vegetative growth defect and abnormal conidia. The mutant
104	was also more sensitive to various stress agents. More importantly, Δ FgLetm1
105	significantly reduced the levels of cellular ROS, decreased DON biosynthesis
106	and attenuated virulence in planta.
107	
108	RESULTS
109	Identification and sequence analysis of Letm1-like proteins in Fusarium
110	graminearum
111	A BLASTP search using Saccharomyces cerevisiae Letm1 family proteins,
112	Mdm38 and Ylh47, as queries in the <i>F. graminearum</i> genome revealed only
113	one putative Letm1 gene in this fungus, FGSG_09158 (designated as
114	FgLetm1). The FgLETM1 gene is predicted to encode a protein with 550
115	amino acids, sharing 47% and 45% sequence identity with Mdm38 and Ylh47,
116	respectively. Meanwhile, we retrieved other genes with the LETM1
117	super-family domain in the F. graminearum genome, and found that the
	5

Page 6 of 51

2 3
4
5 6
7
7 8
9 10
11
12
13 14
14
16
17 10
11 12 13 14 15 16 17 18 19
20
21
22
20 21 22 23 24 25 26
25 26
26 27 28
28
29 30
31
31 32 33 34 35 36 37 38 39 40
33 34
35
36
37 38
39
40
41 42
43
44
45 46
47
48
49 50
51
52
53 54
55
56 57
57 58
59
60

118	FGSG_10063 locus (designated as FgLetm2) also contained a LETM1
119	super-family domain. However, FgLetm2 shares very low sequence identity
120	with Mdm38 and Ylh47 (9.8% and 11.4%, respectively). Similar to S.
121	cerevisiae Letm1 orthologs, FgLetm1 contains a noncanonical Letm1 protein
122	structure with a Letm1 super-family domain, a transmembrane (TM) domain
123	and a coiled-coil domain at the carboxyl terminus. The FgLetm2 protein
124	harbors a truncated Letm1 super-family domain after the TM domain at the
125	carboxyl terminus (Fig. 1a). Both FgLetm1 and FgLetm2 lack the EF-hand
126	domain present in human Letm1 (NP_036450). This was consistent with a
127	previous study, in which it was demonstrated that the EF-hand domain was
128	absent in lower eukaryotes, fungi and plasmodium (Nowikovsky et al., 2004).
129	To gain more insight into the Letm1 evolution in fungi, we retrieved all
130	genes that encode proteins containing the Letm1 super-family domain from 32
131	fungal genomes available in the NCBI Bioprojects and Broad Institute
132	database. The results indicated that genes for the Letm1-like proteins are
133	highly conserved in fungi, while the number of orthologs varies in different
134	fungal species. Most fungal species (25 out 32) harbored two orthologs, albeit
135	the representative fungi from Taphrinomycotina, Pucciniomycotina and
136	Chytridiomycota contained only one Letm1-like protein. Moreover, three
137	different genes encoding the Letm1-like proteins were retrieved from
138	Zygomycota fungi Rhizopus oryzae and Mucor circinelloides (Fig. S1). A
139	phylogenetic analysis of the putative Letm1-like proteins, which include <i>F</i> .
140	graminearum and six filamentous phytopathogenic fungi, showed that the
141	Letm1-like proteins are significantly divided into two groups (Fig. 1b). Proteins
142	in group II had a truncated Letm1 super-family domain with a length of 58-75

143	amino acids (Table S1). The domain characteristic and the phylogenetic tree
144	indicated that FgLetm1 might have similar biological functions to the Letm1
145	proteins Mdm38 and YIn47 in S. cerevisiae.
146	In addition, our in-house RNA-seq data indicated that the transcriptional
147	level of FgLETM1 was higher than that of FgLETM2, by a range of 5- to 20-
148	fold higher, in all four tested conditions including in the conidiation medium
149	(CMC), hyphae grown in PDA, plant infection and deoxynivalenol (DON)
150	biosynthesis induction medium (TBI) (Fig. 1c).
151	Disruption of FgLetm1 and FgLetm2
152	To characterize the function of FgLetm1 and FgLetm2, we generated single
153	and double deletion mutants, Δ FgLetm1, Δ FgLetm2 and $\Delta\Delta$ FgLetm1/2, using
154	the homologous recombination strategy. The single or double deletion mutants
155	were confirmed by Southern hybridization assays (Fig. S2). To confirm that the
156	phenotypic abnormalities of the mutants were directly related to the deletion,
157	we complemented the deletion mutants with the gene fused with gfp for the
158	green florescent protein (GFP) at the carboxyl terminus under their native
159	promoters, respectively, and generated the complemented strain Δ FgLetm1-C
160	(Δ FgLetm1+P _{LETM1} FgLetm1-GFP) and Δ FgLetm2-C (Δ FgLetm2+P _{LETM2}
161	FgLetm2-GFP) . The complemented strains were also confirmed by Southern
162	blot assays and PCR amplification (Fig. S2).
163	FgLetm1 regulates hyphal growth, conidiation and conidial germination
164	The Δ FgLetm1 mutant demonstrated radial and hyphal growth defects. The
165	rate of radial growth of Δ FgLetm1 was reduced on both PDA (potato dextrose
166	agar) and MM (minimal medium), in comparison with that of wild type PH-1,
167	respectively. Moreover, the deletion mutant of Δ FgLetm1 exhibited a reduction

Page 8 of 51

168	in aerial hyphae formation on solid agar plates (Fig. 2 a).
169	Δ FgLetm1 produced less conidia than that of the wild type PH-1 after 4
170	days of incubation in CMC (Table 1). To further examine conidial morphology,
171	calcofluor white staining assays were performed for individual mutants. The
172	results were observed under the fluorescent microscope. As shown in Fig. S3
173	and Table 1, the size of conidia produced by Δ FgLetm1 was shorter, in
174	comparison with that of the wild type. Moreover, the conidia of Δ FgLetm1
175	harbored fewer septa. Most of the conidia (65%) had only 3 septa in the
176	Δ FgLetm1, while the majority of conidia produced by wild type had 5 septa (Fig.
177	2b). Meanwhile, the abnormal conidia of Δ FgLetm1 showed slower
178	germination than that of the wild type in the present of 2% sucrose (Fig. 2c).
179	In contrast, the deletion mutant of Δ FgLetm2 did not show visible
180	phenotypic differences in vegetative growth, conidia formation and germination,
181	in comparison with that of the wild type. The $\Delta\Delta$ FgLetm1/2 double mutant
182	demonstrated similar phenotypes as those in the Δ FgLetm1 single mutant.
183	Phenotypic defects of Δ FgLetm1 were restored by the complementation in the
184	complemented strain Δ FgLetm1-C (Fig. 2). Thus, our evidences confirmed that
185	the defects in the mutants were linked to the loss of the FgLETM1 gene. Taken
186	together, the data presented here suggested that FgLetm1 is involved in the
187	hyphal growth, conidiation and conidial germination, and that FgLetm2 playes
188	a dispensable role in these biological processes under the tested conditions.
189	Deletion mutant of Δ FgLetm1 showed increased sensitivity towards
190	osmotic stress, heat shock and fungicides
191	It has been reported that Mdm38 is involved in resistance to several biotic

stresses in yeast (Frazier *et al.*, 2006, Sinha *et al.*, 2008, Dimmer *et al.*, 2002a).

1 2 3	
3 4 5 6 7 8	
9 10 11 12	
13 14 15 16	
17 18 19 20 21	
22 23 24 25	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
30 31 32 33	
31 32 33 34 35 36 37 38	
39 40 41 42	
43 44 45 46	
47 48 49 50	
51 52 53 54	
55 56 57 58 59	
60	

193	Therefore, we were interested in determining the susceptibility of the mutants
194	in <i>F. graminearum</i> to various stresses, including osmotic stress, heat shock,
195	and fungicide treatment. The susceptibility assays showed that the $\Delta FgLetm1$
196	mutant had a significantly increased sensitivity to osmotic stresses generated
197	by NaCl or KCl, whereas the Δ FgLetm2 mutant displayed the same
198	susceptibility to that of the wild type towards osmotic stresses (Figs. 3a, b).
199	The heat tolerance of the mutants was examined at 15 $^\circ\text{C}$, 25 $^\circ\text{C}$ and 32 $^\circ\text{C}$. As
200	shown in Fig. 3c, all strains displayed similar growth rate as that of the wild
201	type at 15 °C. For growth at 32 °C, noticeably, the Δ FgLetm1 mutant could not
202	grow at 32 °C. The complemented strains had similar growth rate and colony
203	morphology with the wild type PH-1. Therefore, our results indicated that
204	Δ FgLetm1 increased sensitivity to heat shock stress. To further confirm the
205	increase of sensitivity to high temperatures in Δ FgLetm1, we assayed the
206	transcriptional levels of the FgHSP30 (Fg01158), FgHSP70 (Fg00838), and
207	FgGSY2(Fg06822) genes, whose products are involved in the heat shock
208	tolerance in F. graminearum (Hu et al., 2014). When cultures were shifted from
209	25°C to 32°C for 1 h, the relative expression levels of FgHSP70 and FgHSP30
210	were 2.5- and 2-fold higher, respectively, in PH-1 compared to that of
211	Δ FgLetm1 (Fig. 3d). Therefore, the deletion mutant of Δ FgLetm1 decreased
212	the expression of the selected heat stress response genes in <i>F. graminearum</i> .
213	The susceptibility of the mutants towards ions and fungicides were also
214	examined. Δ FgLetm1 displayed more sensitivity to iprodione, phenamacril,
215	$FeSO_4$ and $CaCI_2$ than that of the wild type and complemented strains (Fig. 3e,
216	f). In particular, the $\Delta FgLetm1$ mutant was hyper-sensitive to $Fe^{2^{+}}$ and could
217	not grow on the MM amended with 10 mM Fe ²⁺ . It implied that FgLetm1 might

 $\Delta\Delta$ FgLetm1/2 showed similar phenotypes with that of Δ FgLetm1 in all tested conditions. FgLetm1 is localized to the mitochondria and is critical for mitochondrial integrity The complemented strains Δ FgLetm1-C and Δ FgLetm2-C with GFP-fusion proteins were rescued for the phenotypice defects seen in the mutants (Figs. 2-3), indicating that the fusion proteins were functional. These strains were further used for observing the subcellular localization of FgLetm1 and FgLetm2. A filamentous network pattern of GFP signals was present in the vegetative mycelia of the Δ FgLetm1-C strain (Fig. 4a). Co-localization experiments were performed using dual-labeling with FgLetm1-GFP and mitochondrial indicator Mito-HcRed staining. As shown in Fig. 4a, the GFP and Mito-HcRed signals clearly overlapped, suggesting that FgLetm1 was localized to the mitochondria. Using the same assay, we observated that FgLetm2-GFP was also co-localized with Mito-HcRed (Fig. 4a). Therefore, both FgLetm1 and FgLetm2 were localized to the mitochondria. Since both FgLetm1 and FgLemt2 were shown to be mitochondria localized proteins, we were interested in testing whether the deletion mutants would show altered mitochondrial structures. First, the mitochondrial patterns were observed by Mito-HcRed staining. Mito-HcRed signal in the mycelia of PH-1 and the complemented strains dominantly showed the filamentous network shapes (Fig. 4b, video S1), while it displayed punctate patterns in the mycelia of the Δ FgLetm1 single and the double mutant (Fig. 4b, video S2). Interestingly, mitochodrial mobility was relatively slower in the Δ FgLetm1

regulate the ferrum homeostasis in this fungus. The double mutant

1 2 3
4 5 6 7
8 9 10 11
8 9 10 11 12 13 14 15 16 17 18
19
20 21 22 23
20 21 22 23 24 25 26 27 28 29 30 31
-
32 33 34 35 36 37 38
39
40 41 42 43
44 45 46 47 48
49 50 51
52 53 54 55 56
56 57 58 59 60

243	mutant than in the wild type (videos S1, S2). This implied that the
244	mitochondrial morphology and function might be different in PH-1 and
245	Δ FgLetm1. Next, transmission electron microscope (TEM) experiment was
246	applied to visualize the details of the mitochondrial structures. The TEM
247	micrographs revealed that the deletion of the FgLETM1 gene caused
248	mitochondrial swelling, an increase in mitochondrial volume and a lack of
249	tubular shaped cristae structures (Fig. 4c). The mitochondrial morphologies in
250	the Δ FgLetm2 cells showed similar shape and cristae structures in comparison
251	with that in PH-1, while the volume was slightly increased. The abnormal
252	mitochondrial morphologies of the double mutant were consistent with those of
253	the Δ FgLetm1 mutant (Figs. 4b, c).In yeast, Mdm38 is essential for the
254	biosynthesis of the respiratory chain components (Frazier et al., 2006). To test
255	whether FgLetm1 has a similar function in <i>F. graminearum</i> , we selected
256	cytochrome <i>b</i> (Cyt <i>b</i>) as the indicator protein of respiratory chain components,
257	and detected the protein level of Cytb by western blotting. As shown in Fig. 4d,
258	the abundance of the Cyt b protein was clearly decreased in Δ FgLetm1 and
259	the double mutant. Our findings thus strongly suggested that FgLetm1 is a
260	structural protein, which helps to maintain the mitochondrial structure and is
261	essential for the biosynthesis or the stability of the components in the
262	respiratory chain, whereas FgLetm2 might play a minor role in these
263	processes.
264	The deletion mutant of Δ FgLetm1 decreased the production of
265	endogenous ROS and reduced ATP biosynthesis
266	Mitochondria are an important source of ATP synthesis and ROS production in
267	eukaryotic cells. Given that the deletion mutant of Δ FgLetm1 resulted in

Page 12 of 51

1 2 3
4 5 6 7
8 9 10 11
8 9 10 11 12 13 14 15 16 17 18
19
20 21 22 23
20 21 22 23 24 25 26 27 28 29 30 31
-
32 33 34 35 36 37 38
39
40 41 42 43
44 45 46 47 48
49 50 51
52 53 54 55 56
56 57 58 59 60

268	mitochondrial dysfunction, we next compared the concentration of intracellular
269	ROS and ATP biosynthesis in all above strains. The ROS content was
270	qualitatively analyzed with H2DCFDA (2', 7'-dichlorodihydrofluorescein
271	diacetate) staining in MM and TBI. As indicated in Fig. 5a, the mycelia of the
272	wild type, Δ FgLetm2 and complemented strains were all stained by the dye
273	and cells showed green signals under fluorescent microscope. Interestingly,
274	mycelia of the wild type, Δ FgLetm2 and complemented strains were swelled
275	and formed ovoid toxigenic cells, and displayed noticeably stronger green
276	signals in TBI (Fig. 5a, bottom panel) than in MM (Fig. 5a, upper panel). These
277	results suggested that ROS production were highly induced and ROS was
278	accumulated in cells during DON biosynthesis. However, limited fluorescent
279	signals were detected in Δ FgLetm1 and the double mutant in both media (Fig.
280	5a). Quantification data also confirmed that endogenous ROS was significantly
281	reduced in Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 (Table 2). Intracellular ROS levels
282	are usually balanced by the activities of catalases and superoxide dismutases.
283	Therefore, we performed qRT-PCR to measure the transcripts of seven
284	putative catalase and superoxide dismutase genes in the mycelia of the wild
285	type and the Δ FgLetm1 mutant after 3 days of incubation in TBI. As expected,
286	the qRT-PCR results indicated that all selected genes, except for FgZnSOD2,
287	showed very low transcriptional levels in Δ FgLetm1 in response to limited
288	intracellular ROS-mediated oxidative stress, in comparison with their
289	expression levels in the wild type (Fig. 5b). To determine whether the reduction
290	of intercellular ROS in Δ FgLetm1 and the double mutant would lead to their
291	higher tolerance towards extracellular ROS stress, we measured the sensitivity
292	of all strains to oxidative stress on the MM supplemented with 10 mM H_2O_2 .

Page 13 of 51

1 2

2
3
4 5
5
6
7
8
a
9 10
10
11
12
13
14
15
16
17
18
19
20
21
∠ I 22
22 22
23
9 10 11 12 13 14 15 16 17 18 9 21 22 24 25 27 28 9 31 23 34 35 67 89 37 89 30 31 23 34 35 67 89 30 31 32 33 45 36 37 89 30 37 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30
25
26
27
28
29
30
31
32
33
3/
25
20
30
37
38
39
40
41
42
43
44
45
46
47
48
40 49
49 50
50
51
52
53 54
54
55
56
57
58
59
60

293	Deletion mutant of Δ FgLetm1 and the double mutant exhibited significantly
294	increased tolerance to oxidative stress mediated by H_2O_2 compared to that of
295	the wild type, Δ FgLetm2 and complemented strains (Fig. 5c, d).
296	We next measured ATP production in the deletion mutants. The
297	quantification data indicated that the production of ATP in the Δ FgLetm1 and
298	the double mutant was decreased about 30%, compared with that of the wild
299	type. The Δ FgLetm2 mutant and the complemented strains produced ATP at a
300	level similar to that of the wild type strain (Table 2). In mammals, LETM1
301	knock-down led to mitochondrial malfunction and an induction of glycolysis in
302	the cytoplasm to maintain their ATP supply in these cells (Dimmer et al., 2008,
303	Hwang et al., 2010). To investigate whether the dysfunctional mitochondria in
304	Δ FgLetm1 also increases glycolysis, we measured the concentration of
305	ethanol, the byproduct of anaerobic respiration in fungi, in MM after 16 h of
306	incubation. As expected, the ethanol concentration of the cell-free supernatant
307	from the Δ FgLetm1 mutant was significantly elevated compared to the wild
308	type (Table 2), indicating that the FgLETM1 deletion disrupted the respiration
309	chain and up-regulated the glycolytic pathway in <i>F. graminearum</i> . Collectively,
310	our data suggested that FgLetm1 is critical for normal mitochondrial function in
311	ATP generation and ROS production.
312	The Δ FgLetm1 mutant is significantly attenuated in virulence

On wheat heads inoculated with PH-1, or ΔFgLetm2, or the complemented
strains, scab symptoms were first developed on the inoculated spikelets and
rapidly spread to the whole wheat head after 15 days of inoculation. In contrast,
the hyphal growth of ΔFgLetm1 or the ΔΔFgLetm1/2 double mutant failed to

317 spread from the inoculated floret to the rachis, and subsequently caused scab

Page 14 of 51

318	symptoms only in the inoculated spikelet (Fig. 6a, upper panel). Moreover,
319	almost all grains in infected wheat ears by wild-type PH-1, Δ FgLetm2 and
320	complemented strains were shriveled and bleached, while only the grain at the
321	inoculated site was shrunken in the treatment of $\Delta FgLetm1$ and $\Delta \Delta FgLetm1/2$
322	(Fig. 6a, bottom panel). Since that Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 mutants grew
323	well on the wheat head tissue medium (WA) (Fig. S4), the attenuated virulence
324	of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 was not likely due to the growth defect. Next,
325	we investigated whether the deletion mutations affected the penetration
326	process. We examined the infection structures of strains during the infection
327	using scan electron microscope (SEM). Ultrastructural examination showed
328	that the hyphae of the wild type formed typical infection cushions on the
329	glumes at 48 h post-inoculation with conidia, but such penetration structures
330	were not observed on the glumes inoculated with conidia of either Δ FgLetm1
331	or $\Delta\Delta$ FgLetm1/2 under the same conditions. Both Δ FgLetm2 and the two
332	complemented strains showed similar infection structures on plant tissues to
333	those of the wild type (Fig. 6b). Noticeably, the Δ FgLetm1 mutant was capable
334	of penetrating the spikelet and resulted in the scab symptom after 2 weeks at
335	the inoculated sites (Figs. 6a, S5). These results suggested that the Δ FgLetm1
336	mutant delayed the penetration structure formation and was defective in
337	spreading from the inoculation site to nearby spikelets via the rachis. We
338	conclude that FgLetm1 is important in virulence in <i>F. graminearum</i> .
339	FgLetm1 plays a critical role in DON biosynthesis
340	DON biosynthesis in the mutants was evaluated both in vitro and in planta.
341	First, the transcriptional levels of TRI genes in the mutants were assayed by
342	qRT-PCR in TBI. All selected TRI genes were strongly down-regulated in the
	14

Page 15 of 51

10 11 12 13 14 15 16 17 18 9 02 12 23 24 25 26 7 8 9 03 12 33 34 56 7 89 04 12 34 45 67 89 01 22 22 22 22 22 22 22 22 22 22 22 22 22

343	Δ FgLetm1mutant, but the expression was not affected in Δ FgLetm2,
344	compared to those in the wild type (Fig. 7a). Next, the toxisome formation
345	(Boenisch et al., 2017) for DON biosynthesis in the wild type and the mutants
346	was observed using the Tri1-GFP as an indicator in TBI cultures. As shown in
347	Fig. 7b, the Tri1-GFP was highly induced and formed spherical and crescent
348	toxisomes in the mycelia of the wild type and the Δ FgLetm2 mutant after 3
349	days of incubation in TBI. However, no visible green fluorescent signals were
350	observed in the mycelia of Δ FgLetm1 under the same condition. Consistent
351	with the expression of TRI genes and toxisomes formation, the amount of the
352	final product of DON biosynthesis in Δ FgLetm1 was strongly reduced by
353	18-fold when compared tp that in in the wild type in the TBI liquid medium
354	(Table 3). DON production was also significantly reduced in the Δ FgLetm1
355	deletion mutant in wheat grain cultures and the infested wheat kernels in
356	planta. The complemented strain Δ FgLetm1-C was completely restored in
357	DON production (Table 3). Collectively, our results suggest that FgLetm1 is
358	important in TRI gene expression and DON production in F. graminearum.
359	To determine whether the DON reduction is caused by decreased ATP and
360	ROS production in Δ FgLetm1, we conducted DON rescue assays by supplying
361	exogenous ATP or H_2O_2 in the liquid cultures induced by ammonium as
362	described previously (Gardiner et al., 2009). Treatment with H_2O_2 clearly
363	increased DON biosynthesis in PH-1, and partially recovered DON
364	biosynthesis in Δ FgLetm1(Fig. 7c). However, the final production of DON after
365	induction by H_2O_2 was still less than in the wild type (Fig. 7c). We next assayed
366	the expression of TRI5, TRI6 and TRI10 with RNA samples isolated from
367	hyphae of the wild-type and Δ FgLetm1 mutant with or without treatment of 0.5

368	mM H_2O_2 in LTB at day 3. In the wild type strain, the expression levels of <i>TRI5</i> ,
369	TRI6 and TRI10 were 4.0-, 10.4- and 5.2-fold higher in H_2O_2 -treated samples
370	than in untreated samples (Fig. 7d). Treatment with H_2O_2 also induced the
371	expression of these <i>TRI</i> genes in the Δ FgLetm1 mutant (Fig. 7d). However,
372	addition of exogenous ATP in TBI was unable to rescue the decreased of DON
373	biosynthesis in the Δ FgLetm1 mutant (Fig. S6). Therefore, our evidence
374	implied that the diminished endogenous ROS might be partly responsible for
375	the reduction of DON biosynthesis in Δ FgLetm1.
376	Wild type <i>F. graminearum</i> produced less DON and was strongly
377	attenuated in virulence under the hypoxic condition.
378	Given that dysfunctional mitochondria in the Δ FgLetm1 mutant increased the
379	activity of glycolysis, but decreased the DON biosynthesis and virulence, we
380	speculated that DON biosynthesis might be suppressed under hypoxic
381	condition. Therefore, we investigated DON biosynthesis and virulence of <i>F</i> .
382	graminearum under the limited O_2 condition (1%). Surprisingly, the radial
383	growth rate of the wild type PH-1 under hypoxic condition was similar to that
384	under the open air condition (Fig. 8a). Compared with the expression of TRI5,
385	TRI6 and TRI10 in TBI under the open air condition, the expression of these
386	genes in the wild type was strongly reduced under the hypoxic condition (Fig.
387	8b), which was similar levels to these in Δ FgLetm1 mutant (Fig. 7a). However,
388	the transcriptional level of the control gene AURJ for pigment formation was
389	increased under the hypoxic condition, indicating that the reduction of the TRI
390	gene expression was somehow specific under the hypoxic condition.
391	Meanwhile, the Tri1-GFP labeled toxisome formation was also completely
392	abolished under the hypoxic condition (Fig. 8c). Finally, the DON production

393	under hypoxic condition decreased by 40-fold than that in the open air (Fig. 8d).
394	The pathogenicity assay was also conducted under both conditions. After 7
395	days post-inoculation, the mycelia were able to infect the inoculated site,
396	caused the necrotic symptom, and spread to nearby spikelets under the open
397	air condition (Fig. 8e, left-hand panel). Remarkably, wild type PH-1 failed to
398	infect the inoculate spikelet under the hypoxia condition (Fig. 8e, right-hand
399	panel). Taken together, DON biosynthesis and virulence were suppressed in <i>F</i> .
400	graminearum under the low oxygen conditions, similar to the effect of
401	dysfunctional mitochondria caused by deletion of the FgLETM1 gene.
402	DISCUSSION
403	Mdm38 in yeast is critical for the maintenance of mitochondrial morphology.
404	The lack or RNAi silencing of Letm1 orthologs led to the disruption of the
405	mitochondrial network and apparent swelling of the mitochondria in various
406	organisms (Dimmer <i>et al.</i> , 2002b, Nowikovsky et al., 2004, Schlickum <i>et al.</i> ,
407	2004, Sickmann <i>et al.</i> , 2003, Hasegawa & van der Bliek, 2007, McQuibban et
408	al., 2010, Hashimi et al., 2013). To date, no study has been conducted to
409	investigate the biological roles of the Letm1 orthologs in filamentous fungi. In
410	this study, we showed that the Δ FgLetm1 mutant of the filamentous fungus <i>F</i> .
411	graminearum lacked tubular-shaped cristae structures and had increased
412	mitochondrial volumes (Fig. 4b-c). Interestingly, for the first time, we also
413	showed that FgLetm1 plays an important role in mitochondrial mobility, since
414	the Δ FgLetm1 mutation slows down the dynamic change of mitochondria
415	(Videos S1-2). Mdm38 in S. cerevisiae also plays a critical role in the
416	biogenesis of the respiratory chain by coupling ribosome function to protein
417	transport across the inner membrane (Frazier et al., 2006, Tamai et al., 2008).

Page 18 of 51

1 2 3 4	
4 5 6 7 8	
9 10 11 12	
9 10 11 12 13 14 15 16 17 18 19 20	
17 18 19 20 21	
20 21 22 23 24 25 26 27	
26 27 28 29 30	
31	
32 33 34 35 36 37 38	
39 40 41 42 43	
44 45 46 47	
48 49 50 51 52	
53 54 55 56	
57 58 59 60	

418	Here, we found that the protein synthesis of cytochrome <i>b</i> decreased in the
419	Δ FgLetm1 mutant (Fig. 4d). To support this idea, we conducted an affinity
420	capture assay with the FgLetm1-GFP fusion protein as a bait. Protein mass
421	spectrometry data showed that 18 proteins of the mitochondrial ribosome were
422	associated with FgLetm1 (Table S2). Among them, 12 homologous proteins
423	were also found in complex with Mdm38 and Ylh47 by affinity purification in
424	yeast (Frazier et al., 2006). Taken together, the roles of the Letm1 super-family
425	proteins in mitochondrial integrity and the biogenesis of the respiratory chain
426	seem to be highly conserved from yeast to mammals, although their amino
427	acid sequence and motif features differ among each other.
428	In addition, we also found that FgLetm1 in F. graminearum had some
429	distinct features from their orthologs in other organisms. For instance, Mdm38
430	is required for efficient growth on non-fermentable carbon sources, such as
431	glycerol, in yeast (Frazier et al., 2006). In contrast, the Δ FgLetm1 mutant of <i>F</i> .
432	graminearum showed a comparable growth phenotype on agar media
433	supplemented with either glucose or glycerol as the sole carbon source (Fig.
434	S7). Deletion of Δ FgLetm1 was strongly decreased the conidiation and septum
435	of conidia, and reduced stress response towards fungicides, ions and oxidative
436	stress. These results implied that FgLetm1 is critical for fitness in certain
437	environmental niches. Therefore, FgLetm1 may have species-specific
438	activities, in addition to the conserved function of Letm1 orthologs in
439	maintaining the integrity of mitochondria.
440	Reactive oxygen species (ROS) play a major role in pathogen-plant
441	interactions, during which the host plant rapidly triggers an oxidative burst to
442	suppress a pathogen infection. Pathogens have to cope with plant-released

443	ROS during a successful infection (Apel & Hirt, 2004, Heller & Tudzynski,
444	2011). Most likely, all organisms have evolved oxidative stress response (OSR)
445	mechanisms to scavenge elevated intracellular ROS levels. The ROS
446	scavenging system is important for the detoxification of ROS in the cells, and
447	the OSR has to be tightly regulated. In budding yeast, several signal
448	components are involved in the regulation of the OSR at the transcriptional
449	level, including the Hog1 cascade and the transcription factors Yap1, Atf1 and
450	Skn7 (He & Fassler, 2005, Kim & Hahn, 2013, Raitt <i>et al.</i> , 2000). In <i>F.</i>
451	graminearum, all three stress-related transcription factor genes, FgAP1,
452	FgATF1 and FgSKN7, play a role in the tolerance of oxidative stress.
453	Moreover, F. graminearum has evolved its OSR system to transduce oxidative
454	stress as a signal for the induction of DON biosynthesis, which is a critical
455	virulence factor during the infection process (Jiang et al., 2015, Montibus et al.,
456	2013, Van Nguyen <i>et al.</i> , 2013). A supplement of H_2O_2 in the cell culture of <i>F</i> .
457	graminearum stimulated TRI gene expression and increased DON
458	accumulation, in a manner largely dependent on the OSR transcription factor
459	FgSKN7 (Jiang et al., 2015). In addition to treatment of exogenous ROS,
460	endogenous ROS also modulates DON production. H_2O_2 was shown to
461	constitutively accumulate in the DON induction medium in the culture of <i>F</i> .
462	graminearum. Moreover, the time course curve of H_2O_2 accumulation followed
463	the pattern of DON production (Ponts et al., 2006, Ponts et al., 2007).
464	Consistence with above findings, we found that ROS was highly accumulated
465	in the mycotoxin induction medium (TBI), and exogenous H_2O_2 was stimulated
466	the DON production (Figs. 5, 7). We also found that deletion of <i>FgLETM1</i>
467	almost completely abolished ROS production in mitochondria in MM and TBI

468 media (Fig. 5a, Table 2), and caused the reduction of DON biosynthesis both *in* 469 *vitro* and *in planta* (Table 3). The expression of *TRI* genes and DON production 470 in Δ FgLetm1 were partially rescued in the LTB medium supplemented with 471 H₂O₂ (Figs. 7c-d). Therefore, the mitochondria-derived ROS was important for 472 the DON biosynthesis in *F. graminearum*, although other factors related to 473 mitochondrial dysfunction might also be involved in this process 474 (Bonnighausen *et al.*, 2015).

The concentration of oxygen in the atmosphere is important for the biosynthesis of mycotoxins. *Penicillium griseofulvum* produced less of the patulin toxin in 1% or 5% O_2 environment than in open air (20% O_2) (Paster & Lisker, 1985). Ans another example, only trace amounts of T-2 toxin was detected in Fusarium sporotrichioides under 40% CO₂/5% O₂, in comparison with a much greater amount of T-2 toxin under 40% CO₂/20% O₂ (Paster et al., 1986). Fungal growth in these gaseous environments was identical to that under the open air condition, even in O2 concentrations of <1% (Hocking, 1989).. Here we found that F. graminearum showed normal growth patterns in the 1% O₂ condition as in the open air condition (Fig. 8a), but low levels of oxygen strongly reduced DON production and virulence (Fig. 8b-e), similar to the phenotypes seen in the Δ FgLetm1 mutant (Figs. 6, 7). On the other hand, disruption of the mitochondrial integrity in Δ FgLetm1 significantly reduced the DON production (Fig. 7, table 3). We infer that fungicides targeting the mitochondria might possess a potential role in controlling the DON biosynthesis and FHB. We thus evaluated the effect of three mitochondrial targeting fungicides including boscalid, pyraclostrobin and py-diflumetofen on the DON production. As expected, all three tested fungicides strongly reduced

493	the DON production (Fig. S8). Taken together, our results suggested that
494	storage of grain under hypoxia and fungicides targeting mitochondria might
495	provide potential approaches for DON management.
496	
497	EXPERIMENTAL PROCEDURES
498	Fungal strains and culture conditions
499	Fusarium graminearum strain PH-1 (NRRL 31084) was used as the progenitor
500	for constructing gene deletion mutants. The wild type and transformants
501	generated in this study were grown at 25 °C on potato dextrose agar, minimal
502	medium, and wheat-head medium for mycelial growth tests (Liu et al., 2015).
503	CMC media was used for sporulation assays (Cappelli.Ra & Peterson, 1965).
504	For quantifying the DON production, strains were grown in liquid TBI medium
505	(Menke <i>et al.</i> , 2012). To evaluate the effect of H_2O_2 on the induction of DON
506	biosynthesis, wild type or mutants were cultured in the LTB as described
507	(Jiang <i>et al.</i> , 2016), and H_2O_2 was supplemented at a final concentration of 0.5
508	mM. For hypoxia condition, the inoculated TBI or wheat heads were statically
509	incubated in a modular incubator chamber (billups-rothenberg, Inc) filled with
510	mixture gases (1% O ₂ , 99% N ₂).
511	The sensitivity of strains towards stress agents was determined as
512	described previously (Liu et al., 2015). The final concentration of NaCl, KCl,
513	and fungicides, Fe^{2+} , CaCl ₂ and H ₂ O ₂ in MM were indicated in the figure. For
514	testing the temperature sensitivity of the mutants, cells were grown at 15 °C,
515	25 °C and 32 °C. The mycelial growth inhibition rate (MGIR) was calculated
516	using the formula MGIR% = $[(N-C)/C]^*100$, where, C is colony diameter of the
517	control without treatment, and N is that with treatment. Each experiment was

518 repeated three times independently.

Construction of gene deletion mutants and complemented strains Construction of gene deletion and complementation vectors and subsequent transformation of *F. graminearum* were carried out using the protocols described previously (Jiang et al., 2011). In order to generate double mutant of FqLETM1 and FqLETM2, FqLETM1 was knocked out in the FqLETM2 deletion mutant (Δ FgLETM2). The primers used to amplify the flanking sequences of each gene are listed in Table S3. Deletion candidates were identified by PCR with designated primers (Table S3), and were further analyzed by Southern blotting. Three independent transformants for each mutant were used in all experiments. FgLetm1-GFP, FgLetm2-GFP, Tri1-GFP and FgAtg8-RFP fusion constructs were generated as described previously (Gu et al., 2015a). Plant infection and DON production assays A 10- μ l aliquot of conidial suspension (1×10⁵ conidia/ml) was injected into a floret in the central section spikelet of single flowering wheat head of susceptible cultivar grown in the field. There were ten replicates for each strain. Fifteen days after inoculation, the infected spikelets in each inoculated wheat head were recorded. The experiment was repeated four times, and typical symptom was shown. Infectious hyphae developed in wheat tissue cells were examined at 48 h post-inoculation by SEM. The strain expressing the Tri1-GFP was used as the fluorescent reporter strain for toxisome formation, and toxisome formation was observed after 3 days of incubation in TBI. The DON production in the wild type, the mutants

541 and complemented strains were quantified under several conditions, including

542 the TBI, LTB, wheat kernel medium and inoculated spikelets. The supernatant

543	of TBI after 7-day incubation was collected for quantification of DON. DON
544	production in wheat kernel medium was conducted as described previously
545	(Liu et al., 2015, Ji et al., 2014). The inoculated spikelets were harvested after
546	fifteen days, and DON was extracted as described (Jiang et al., 2015). Total
547	amount of egrosterol was extracted from infected spikelets as described (Liu et
548	al., 2013). For ROS induction assay, LTB was used for replacement of TBI,
549	since the DON biosynthesis was already extremely induced. Recipe of LTB
550	medium was modified from TBI, only replacing the putrescine to ammonium
551	nitrate at the final concentration of 5 mM. H_2O_2 was daily added into the LTB to
552	the final concentration of 0.5 mM. After 7 days of incubation, the supernatant
553	was collected for DON quantification. DON samples were quantified by
554	LC-MS/MS as described previously (Dong <i>et al.</i> , 2016). The experiment was
555	repeated three times.
000	
556	qRT-PCR assays
556	qRT-PCR assays
556 557	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were
556 557 558	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H ₂ O ₂ ,
556 557 558 559	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H_2O_2 , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h
556 557 558 559 560	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H ₂ O ₂ , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h of treatment. TAKARA SYBR Premix Ex Taq was used for qRT-PCR assays
556 557 558 559 560 561	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H ₂ O ₂ , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h of treatment. TAKARA SYBR Premix Ex Taq was used for qRT-PCR assays with the CFX96 Real-Time System as described (Bio-RAD, USA). The actin
556 557 558 559 560 561 562	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H ₂ O ₂ , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h of treatment. TAKARA SYBR Premix Ex Taq was used for qRT-PCR assays with the CFX96 Real-Time System as described (Bio-RAD, USA). The actin gene of <i>F. graminearum</i> was used as the internal control. Relative expression
556 557 558 559 560 561 562 563	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H_2O_2 , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h of treatment. TAKARA SYBR Premix Ex Taq was used for qRT-PCR assays with the CFX96 Real-Time System as described (Bio-RAD, USA). The actin gene of <i>F. graminearum</i> was used as the internal control. Relative expression levels of each gene were calculated with the $2^{-}_{\Delta\Delta}^{Ct}$ method (Livak &
556 557 558 559 560 561 562 563 564	qRT-PCR assays RNA samples of the wild type, mutants and complemented strains were isolated as described (Liu et al., 2015). For the induction of <i>TRI</i> genes by H ₂ O ₂ , the hyphae of wild type or mutant were harvested for RNA extraction after 48 h of treatment. TAKARA SYBR Premix Ex Taq was used for qRT-PCR assays with the CFX96 Real-Time System as described (Bio-RAD, USA). The actin gene of <i>F. graminearum</i> was used as the internal control. Relative expression levels of each gene were calculated with the $2^{-\Delta \Delta}$ ^{Ct} method (Livak & Schmittgen, 2001).

previously (Yun et al., 2015). Anti-MT-CYB antibody (Abcam, ab103405) was

used to detect the cytochrome b for analyzing the biosynthesis of the respiratory chain. The samples were also detected with monoclonal anti-H3 antibody (Abcam, ab1791) as a reference. The mCherry-FgAtg8 proteolysis was guantified by western blots with anti-mCherry antibody (Abcam, ab167453). The samples were also detected with monoclonal anti-GAPDH antibody EM1101 (Hangzhou HuaAn Biotechnology co., Ltd.) as a reference. All experiments were conducted three times. Microscopy imaging Localization of green fluorescent labeled proteins and Mito-HcRed (Thermo Fisher, M7512) staining signals were visualized by the Zeiss LSM780 confocal microscope (Carl Zeiss AG, Germany). The microstructure of mitochondria in wild type or mutants was treated as described (Yun et al., 2015) and observed by the transmission electron microscope (TEM) JEOL JEM-1230. For observation of infection structures on wheat glumes, the glumes were treated as previous described (Gu et al., 2015b), and observed in Hitachi Model TM-1000 scan electron microscope (SEM) (Hitachi, Tokyo, Japan). Quantification of ATP and H₂O₂ production The mycelia grown in MM for 24 h and in TBI for 3 days were used for quantification of H_2O_2 and ATP. H_2O_2 and ATP production were assayed using the Hydrogen Peroxide Assay Kit (Beyotime Institute of Biotechnology, China, S0038) and ATP Assay Kit (Beyotime, S0026), respectively. Briefly, mycelia (0.05 g) were added to 200 µl of the lysis buffer in the H₂O₂ detection kit or 500 µl of the lysis buffer in the ATP detection kit. After lysis of mycelia,

⁵⁹¹ quantification of H₂O₂ or ATP production was conducted following the

2
2
3
4
3 4 5 6 7 8
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
10 11 12 13 14 15 16 17 18 19
20
20
21
20 21 22 23 24 25 26 27 28 29 30
23
24
25
20
26
27
28
20
23
30
30 31 32
32
33
33 34 35 36 37 38
34
35
36
37
38
50
39
41
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59

592	instructions provided by the manufacturer. Experiments were repeated three
593	times.
594	
595	ACKNOWLEDGEMENTS
596	We thank Dr. Jiang Cong and Dr. Huiquan Liu (Northwest A&F University) for
597	DON quantification and bioinformatics analyses, Prof. Yunrong Chai
598	(Northeastern University, Boston) and Kevin Gozzi (Massachusetts Institute of
599	Technology) for manuscript editing. The research was supported by the
600	Natural Science Foundation of Zhejiang Province (LR17C140001), National

- 601 Natural Science Foundation of China (31672064), International Science &
- Technology Cooperation Program of China (2016YFE0112900) and China
- ⁶⁰³ Agriculture Research System (CARS-3-1-15). The authors declare no conflict
- 604 of interest.

605	REFERENCES
606	Apel, K. and Hirt, H. (2004) Reactive oxygen species: Metabolism, oxidative stress,
607	and signal transduction. Annu Rev Plant Biol, 55, 373-399.
608	Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S. and Haesaert, G. (2010)
609	Hydrogen peroxide induced by the fungicide prothioconazole triggers
610	deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol, 10.
611	Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures.
612	<i>Physiol Rev,</i> 78, 547-581.
613	Bennett, J. W. and Klich, M. (2003) Mycotoxins. Clin Microbiol Rev, 16, 497-516.
614	Boenisch, M. J., Broz, K. L., Purvine, S. O., Chrisler, W. B., Nicora, C. D.,
615	Connolly, L. R. Freitag, M. Baker, S. E. and Kistler, H. C. (2017) Structural
616	reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin
617	biosynthesis. <i>Sci Rep,</i> 7, 44296.
618	Bonnighausen, J., Gebhard, D., Kroger, C., Hadeler, B., Tumforde, T., Lieberei, R.,
619	Bergemann, J., Schafer, W. and Bormann, J. (2015) Disruption of the
620	GABA shunt affects mitochondrial respiration and virulence in the cereal
621	pathogen Fusarium graminearum. Mol Microbiol, 98, 1115-1132.
622	Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N.,
623	Pinson-Gadais, L. and Richard-Forget, F. (2009) Ferulic acid, an efficient
624	inhibitor of type B trichothecene biosynthesis and Tri gene expression in
625	Fusarium liquid cultures. Mycol Res, 113, 746-753.
626	Cappelli.Ra and Peterson, J. L. (1965) Macroconidium formation in submerged
627	cultures by a non-sporulating strain of Gibberella Zeae. Mycologia, 57, 962-+.
628	Desjardins, A. E. (2006) Fusarium Mycotoxins: chemistry, genetics, and biology APS
629	Press, St. Paul, Minnesota, USA
630	Desjardins, A. E., Hohn, T. M. and Mccormick, S. P. (1993) Trichothecene
631	biosynthesis in Fusarium Species - chemistry, genetics, and significance.

632	Microbiol Rev, 57 , 595-604.
633	Dimmer, K. S., Fritz, S., Fuchs, F., Messerschmitt, M., Weinbach, N., Neupert, W.,
634	et al. (2002a) Genetic basis of mitochondrial function and morphology in
635	Saccharomyces cerevisiae. Mol Biol Cell, 13, 847-853.
636	Dimmer, K. S., Fritz, S., Fuchs, F., Messerschmitt, M., Weinbach, N., Neupert, W.
637	and Westermann, B. (2002b) Genetic basis of mitochondrial function and
638	morphology in Saccharomyces cerevisiae. Mol Biol Cell, 13, 847-853.
639	Dimmer, K. S., Navoni, F., Casarin, A., Trevisson, E., Endele, S., Winterpacht, A.,
640	Salviati, L. and Scorrano, L. (2008) LETM1, deleted in Wolf-Hirschhorn
641	syndrome is required for normal mitochondrial morphology and cellular viability.
642	Hum Mol Genet, 17, 201-214.
643	Dong, F., Qiu, J., Xu, J., Yu, M., Wang, S., Sun, Y., Zhang, G. and Shi, J. (2016)
644	Effect of environmental factors on Fusarium population and associated
645	trichothecenes in wheat grain grown in Jiangsu province, China. Int J Food
646	Microbiol, 230 , 58-63.
647	Endele, S., Fuhry, M., Pak, S. J., Zabel, B. U. and Winterpacht, A. (1999) LETM1, a
648	novel gene encoding a putative EF-hand Ca ²⁺ -binding protein, flanks the
649	Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS
650	patients. <i>Genomics</i> , 60 , 218-225.
651	Frazier, A. E., Taylor, R. D., Mick, D. U., Warscheid, B., Stoepel, N., Meyer, H. E.,
652	Ryan, M. T., Guiard, B. and Rehling, P. (2006) Mdm38 interacts with
653	ribosomes and is a component of the mitochondrial protein export machinery. J
654	<i>Cell Biol,</i> 172, 553-564.
655	Gardiner, D. M., Kazan, K. and Manners, J. M. (2009) Nutrient profiling reveals
656	potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal
657	<i>Genet Biol,</i> 46, 604-613.
658	Grissa, I., Bidard, F., Grognet, P., Grossetete, S. and Silar, P. (2010) The
	27

659	Nox/Ferric reductase/Ferric reductase-like families of Eumycetes. Fungal Biol,
660	114 , 766-777.
661	Gu, Q., Chen, Y., Liu, Y., Zhang, C. and Ma, Z. H. (2015a) The transmembrane
662	protein FgSho1 regulates fungal development and pathogenicity via the MAPK
663	module Ste50-Ste11-Ste7 in <i>Fusarium graminearum</i> . New Phytol, 206, 315-328.
664	Gu, Q., Zhang, C., Liu, X. and Ma, Z. H. (2015b) A transcription factor FgSte12 is
665	required for pathogenicity in <i>Fusarium graminearum</i> . Mol plant pathol, 16 , 1-13.
666	Hasegawa, A. and van der Bliek, A. M. (2007) Inverse correlation between
667	expression of the Wolfs Hirschhorn candidate gene Letm1 and mitochondrial
668	volume in <i>C. elegans</i> and in mammalian cells. <i>Hum Mol Genet</i> , 16 , 2061-2071.
669	Hashimi, H., McDonald, L., Stribrna, E. and Lukes, J. (2013) Trypanosome Letm1
670	protein Is essential for mitochondrial potassium homeostasis. <i>J Biol Chem</i> , 288 ,
671	26914-26925.
672	He, X. J. and Fassler, J. S. (2005) Identification of novel Yap1p and Skn7p binding
673	sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol
674	Microbiol, 58 , 1454-1467.
675	Heller, J. and Tudzynski, P. (2011) Reactive oxygen species in phytopathogenic
676	fungi: signaling, development, and disease. Annu Rev Phytopathol, Vol 49, 49,
	369-390.
677	Hocking, A. D. (1989) Responses of fungi to modified atmospheres. In: <i>Fumigation</i>
678	
679	and Controlled Atmosphere Storage of Grain, Proceedings of an International
680	Conference Held at Singapore. pp. 14-18.
681	Hu, S., Zhou, X. Y., Gu, X. Y., Cao, S. L., Wang, C. F. and Xu, J. R. (2014) The
682	cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and
683	pathogenesis in <i>Fusarium graminearum. Mol Plant Microbe In</i> , 27, 557-566.
684	Hwang, S. K., Piao, L., Lim, H. T., Minai-Tehrani, A., Yu, K. N., Ha, Y. C., Chae, C.
685	H., Lee, K. H., Beck, G. R., Park, J. and Cho, M. H. (2010) Suppression of

3	686	lung tumorigenesis by Leucine Zipper/EF Hand-containing transmembrane-1.
4 5	687	PLoS One, 5 .
6 7	688	Ji, F., Xu, J., Liu, X., Yin, X. and Shi, J. (2014) Natural occurrence of deoxynivalenol
8 9	689	and zearalenone in wheat from Jiangsu province, China. Food Chem, 157,
10 11	690	393-397.
12 13		Jiang, C., Zhang, C., Wu, C., Sun, P., Hou, R., Liu, H. and Xu, J. R. (2016) TRI6
14 15		
16	692	and TRI10 play different roles in the regulation of deoxynivalenol (DON)
17 18	693	production by cAMP signalling in Fusarium graminearum. Environ Microbiol, 18,
19 20	694	3689-3701.
21 22	695	Jiang, C., Zhang, S. J., Zhang, Q., Tao, Y., Wang, C. F. and Xu, J. R. (2015)
23 24	696	FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis,
25 26	697	pathogenesis and stress responses in Fusarium graminearum. Environ Microbiol,
27 28	698	17 , 1245-1260.
29 30	699	Jiang, J., Liu, X., Yin, Y. and Ma, Z. H. (2011) Involvement of a velvet protein FgVeA
31 32	700	in the regulation of asexual development, lipid and secondary metabolisms and
33 34	701	virulence in Fusarium graminearum. PLoS One, 6, e28291.
35 36	702	Jiao, F., Kawakami, A. and Nakajima, T. (2008) Effects of different carbon sources
37 38	703	on trichothecene production and Tri gene expression by Fusarium graminearum
39 40	704	in liquid culture. FEMS Microbiol Let, 285, 212-219.
41 42	705	Kim, D. and Hahn, J. S. (2013) Roles of the Yap1transcription factor and antioxidants
43 44	706	in Saccharomyces cerevisiae's Ttolerance to furfural and
45		
46 47	707	5-Hydroxymethylfurfural, which function as thiol-reactive electrophiles generating
48	708	oxidative stress. Appl Environ Microbiol, 79, 5069-5077.
49 50	709	Kimura, M., Anzai, H. and Yamaguchi, I. (2001) Microbial toxins in plant-pathogen
51 52	710	interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl
53 54	711	<i>Microbiol,</i> 47, 149-160.
55		
56 57	712	Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S. and Fujimura, M. (2007)
57 58 59 60	713	Molecular and genetic studies of <i>Fusarium</i> trichothecene biosynthesis: Pathways, 29

714	genes, and evolution. Biosci Biotech and Bioch, 71, 2105-2123.
715	Liu, S. S. (1999) Cooperation of a "reactive oxygen cycle" with the Q cycle and the
716	proton cycle in the respiratory chain - Superoxide generating and cycling
717	mechanisms in mitochondria. J Bioenerg Biomembr, 31, 367-376.
718	Liu, X., Jiang, J.H, Yin Y.N and Ma, Z. H. (2013) Involvement of FgERG4 in
719	ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium
720	graminearum. Mol Plant Pathol. 14 (1):71-83.
721	Liu, Y., Liu, N., Yin, Y. N., Chen, Y., Jiang, J. H. and Ma, Z. H. (2015) Histone H3K4
722	methylation regulates hyphal growth, secondary metabolism and multiple stress
723	responses in Fusarium graminearum. Environ Microbiol, 17, 4615-4630.
724	Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data
725	using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. <i>Methods</i> , 25 , 402-408.
726	McQuibban, A. G., Joza, N., Megighian, A., Scorzeto, M., Zanini, D., Reipert, S.,
727	Richter, C., Schweyen, R. J. and Nowikovsky, K. (2010) A Drosophila
728	mutant of LETM1, a candidate gene for seizures in Wolf-Hirschhorn syndrome.
729	Hum Mol Gen, 19 , 987-1000.
730	Menke, J., Dong, Y. and Kistler, H. C. (2012) Fusarium graminearum Tri12p
731	influences virulence to wheat and trichothecene accumulation. Mol Plant Microbe
732	<i>Interact,</i> 25, 1408-1418.
733	Mentges, M. and Bormann, J. (2015) Real-time imaging of hydrogen peroxide
734	dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Sci
735	<i>Rep</i> , 5 , 14980.
736	Merhej, J., Richard-Forget, F. and Barreau, C. (2011) The pH regulatory factor Pac1
737	regulates Tri gene expression and trichothecene production in Fusarium
738	graminearum. Fungal Genet Biol, 48, 275-284.
739	Miller, J. D. and Greenhalgh, R. (1985) Nutrient effects on the biosynthesis of
740	trichothecenes and other metabolites by Fusarium graminearum. Mycologia, 77,

741	130-136.
742	Missall, T. A., Lodge, J. K. and McEwen, J. E. (2004) Mechanisms of resistance to
743	oxidative and nitrosative stress: Implications for fungal survival in mammalian
744	hosts. <i>Eukaryot Cell,</i> 3, 835-846.
745	Montibus, M., Ducos, C., Bonnin-Verdal, M. N., Bormann, J., Ponts, N.,
746	Richard-Forget, F. and Barreau, C. (2013) The bZIP transcription factor Fgap1
747	mediates oxidative stress response and trichothecene biosynthesis but not
748	virulence in Fusarium graminearum. PLoS One, 8.
749	Nowikovsky, K., Froschauer, E. M., Zsurka, G., Samaj, J., Reipert, S., Kolisek, M.,
750	Wiesenberger, G. and Schweyen, R. J. (2004) The LETM1/YOL027 gene
751	family encodes a factor of the mitochondrial K^{\star} homeostasis with a potential role
752	in the Wolf-Hirschhorn syndrome. J Biol Chem, 279, 30307-30315.
753	Oh, M., Son, H., Choi, G. J., Lee, C., Kim, J. C., Kim, H. and Lee Y. W. (2016)
754	Transcription factor ART1 mediates starch hydrolysis and mycotoxin production
755	in Fusarium graminearum and F. verticillioides. Mol Plant Pathol, 17(5):755-768.
756	Osiewacz, H. D. (2002) Mitochondrial functions and aging. Gene, 286, 65-71.
757	Paster, N., Barkal G. R, and Calderon, M (1986) Control of T-2 toxin production
758	using atmospheric gases. J Food Protect, 49, 615-617.
759	Paster, N. and Lisker, N. (1985) Effects of controlled atmospheres on Penicillium
760	patulum growth and patulin production. Trichothecenes and Other Mycotoxins (J.
761	Lacy, ed.), New York: John Wiley and Sons.
762	Pinson-Gadais, L., Richard-Forget, F., Frasse, P., Barreau, C., Cahagnier, B.,
763	Richard-Molard, D. and Bakan, B. (2008) Magnesium represses trichothecene
764	biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium
765	graminearum. Mycopathologia, 165, 51-59.
766	Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F. and Ouellet, T.
767	(2007) Exogenous H_2O_2 and catalase treatments interfere with Tri genes
	24

768	expression in liquid cultures of Fusarium graminearum. FEBS Let, 581, 443-447.
769	Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M. N., Barreau, C. and
770	Richard-Forget, F. (2006) Accumulation of deoxynivalenol and its 15-acetylated
771	form is significantly modulated by oxidative stress in liquid cultures of Fusarium
772	graminearum. FEMS Microbiol Let, 258, 102-107.
773	Raitt, D. C., Johnson, A. L., Erkine, A. M., Makino, K., Morgan, B., Gross, D. S.
774	and Johnston, L. H. (2000) The Skn7 response regulator of Saccharomyces
775	cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat
776	shock genes by oxidative stress. Mol Bio Cell, 11, 2335-2347.
777	Schlickum, S., Moghekar, A., Simpson, J. C., Steglich, C., O'Brien, R. J.,
778	Winterpacht, A. and Endele, S. U. (2004) LETM1, a gene deleted in
779	Wolf-Hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial
780	protein. <i>Genomics,</i> 83 , 254-261.
781	Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E. <i>,</i>
782	Schonfisch, B.,, Perschil, I., Chacinska, A., Guiard, B., Rehling, P.,
783	Pfanner, N.and Meisinger, C. (2003) The proteome of Saccharomyces
784	cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA, 100, 13207-13212.
785	Sinha, H., David, L., Pascon, R. C., Clauder-Munster, S., Krishnakumar, S.,
786	Nguyen, M., Shi, G., Dean, J., Davis, R. W., Oefner, P. J., McCusker, J.
787	H. and Steinmetz, L. M. (2008) Sequential elimination of major-effect
788	contributors identifies additional quantitative trait loci conditioning
789	high-temperature growth in yeast. Genetics, 180, 1661-1670.
790	Tamai, S., lida, H., Yokota, S., Sayano, T., Kiguchiya, S., Ishihara, N. (2008)
791	Characterization of the mitochondrial protein LETM1, which maintains the
792	mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L. J Cell
793	Sci, 121, 2588-2600.
794	Van Nguyen, T., Kroger, C., Bonnighausen, J., Schafer, W. and Bormann, J.

 $\begin{array}{r} 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ \end{array}$

795	(2013) The ATF/CREB transcription factor Atf1 is essential for full virulence,
796	deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium
797	graminearum. Mol Plant-Microbe Interact, 26, 1378-1394.
798	Wang, L., Mogg, C., Walkowiak, S., Joshi, M. and Subramaniam, R. (2014)
799	Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium
800	graminearum. Can J Plant Pathol, 36, 12-21.
801	Yun, Y. Z., Liu, Z. Y., Yin, Y. N., Jiang, J. H., Chen, Y., Xu, J. R. and Ma Z. H. (2015)
802	Functional analysis of the Fusarium graminearum phosphatome. New Phytol,
803	207, 119-134.
804	Zhang, B. T., Carrie, C., Ivanova, A., Narsai, R., Murcha, M. W., Duncan, O., et al.
805	(2012) LETM proteins play a role in the accumulation of mitochondrially encoded
806	proteins in Arabidopsis thaliana and AtLETM2 displays parent of origin effects. J
807	<i>Biol Chem,</i> 287, 41757-41773.
808	Zhang, C., Lin, Y., Wang, J., Wang, Y., Chen, M., Norvienyeku, J., Li, G., Yu, W.
809	and Wang, Z. H. (2016) FgNoxR, a regulatory subunit of NADPH oxidases, is
810	required for female fertility and pathogenicity in Fusarium graminearum. FEMS
811	Microbiol Let, 363, fnv223.
812	Zollino, M., Lecce, R., Fischetto, R., Murdolo, M., Faravelli, F., Selicorni, A.,
813	Butte, C., Memo, L., Capovilla, G. and Neri, G. (2003) Mapping the
814	Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS
815	critical region and defining a new critical region, WHSCR-2. Am J Hum Genet, 72,
816	590-597.

Page 34 of 51

817	Figure legends
818	Fig. 1. Identification of the Letm1-like proteins in Fusarium graminearum.
819	a . Schematic architecture of the Letm1 super-family proteins in <i>F</i> .
820	graminearum, FgLetm1 and FgLetm2. The Homo sapiens Letm1 and S.
821	cerevisiae Mdm38 and Ylh47 are selected as references. Conserved domains
822	are indicated. b . Phylogenetic analysis of the putative Letm1-like proteins from
823	F. graminearum and six plant pathogenic fungi. Amino acid sequences of the
824	Letm1 orthologs are aligned using Clustal W and a neighbor-joining tree
825	generated by MEGA 5.0. c . Transcriptional levels of the <i>FgLETM1</i> and
826	FgLETM2 genes in the CMC, hyphae, infected plant tissues and TBI by
827	RNA-seq.
828	Fig. 2. Phenotypes of the deletion mutants of Δ FgLetm1, Δ FgLetm2 and
829	∆∆FgLetm1/2 in vegetative growth, conidiogenesis and germination.
830	a. Colony morphology of PH-1, the mutants and the complemented strains on
831	PDA and MM at 25 °C for 3 days. b . Ratio of the different number of conidial
832	septa in PH-1, mutants and complemented strains harvested from 5-day-old
833	CMC cultures. c . Δ FgLetm1 reduced the conidial germination. The column
834	labeled with star indicates a significant difference at $P = 0.05$.
835	Fig. 3. Δ FgLetm1 increased the sensitivity towards osmotic stress, heat
836	shock, fungicides and ion stresses.
837	a. Growth phenotype of PH-1, mutants and complemented strains grown on
838	MM without or with supplementation of NaCl or KCl after 4 days of incubation
839	at 25 °C. b. Statistical analysis of the growth inhibition rate of all strains under
840	the osmotic stresses. c . Δ FgLetm1 increased the sensitivity toward high
841	temperature. Colony morphology was shown after 4 days of incubation on MM

866	Fig. 5. Deletion mutant of Δ FgLetm1 decreased the concentration of
865	protein.
864	analyzed by immunoblot assays. The histone H3 was used as a reference
863	components. The protein abundance of Cyt <i>b</i> in the PH-1 and mutants were
862	protein level of cytochrome b (Cyt b), an indicator protein of respiratory chain
861	microscope. Bars were indicated in images. d . Δ FgLetm1 decreased the
860	of mitochondria in each strain was visualized by transmission electron
859	Δ FgLetm1 mutant caused mitochondrial swelling. Ultrastructural morphology
858	observation. Typical patterns in individual strain were shown. Bar= 10 $\mu\text{m}.~\textbf{c}.$
857	in CM broth for 16 h at 25 $^\circ\text{C},$ then harvested and stained with Mito-HcRed for
856	Δ FgLetm1 changed the mitochondrial structural patterns. Strains were grown
855	Images were taken by confocal fluorescent microscope. Bar=10 μ m. b.
854	FgLetm1-C and FgLetm2-C were grown in CM and stained with Mito-HcRed.
853	a. Both FgLetm1 and FgLetm2 are localized to the mitochondria. Mycelia of
852	mitochondrial integrity.
851	Fig. 4. FgLetm1 is localized to mitochondria and critical for the
850	by the same letter mean no significant difference at $P = 0.05$.
849	inhibition rate of strains towards above stresses. Values on the bars followed
848	at 25 °C for 4 days before imaging. f. Statistical analysis of the growth
847	phenamacril, and ion stresses than that of the wild type. Plates were incubated
846	The Δ FgLetm1 mutant was more sensitive towards fungicides iprodione,
845	PH-1. The expression levels of each gene at 25 °C for 16 h were set to 1. e.
844	in the Δ FgLetm1 mutant in response to heat shock, in comparison to that in
843	level of the heat tolerant genes FgHSP30, FgHSP70 and FgGSY2 decreased
842	at 15 °C and 25 °C, and 7 days of incubation at 32 °C. d . The transcriptional

Page 36 of 51

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
17
17
18
3 4 5 6 7 8 9 10 112 13 14 15 16 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 14 5 6 7 8 9 10 112 10 10 10 10 10 10 10 10 10 10 10 10 10
20
21
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
22
23
24
25
26
20
21
28
29
30
21
31
32
33
34
35
26
30
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50
51
51
52
53
54
55
50
55 56 57 58
57
58
59
60
00

1

868

867 endogenous reactive oxygen species (ROS).

grown in MM for 24 h, or TBI for 3 days were stained by the ROS indicator, 869 870 H2DCFDA. Bar=10 μ m. **b**. Mutant of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 decreased the transcriptional level of genes encoding catalases and superoxide 871 872 dismutases in TBI. c. Mutant of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 increased the 873 resistance towards the oxidative stress by H₂O₂. Strains were grown on MM with or without 10 mM H_2O_2 for 4 days at 25°C. **d**. Statistical analysis of the 874 875 growth inhibition rate of PH-1, mutants and complemented strains towards the 876 oxidative stress generated by H_2O_2 . Values on the bars followed by the same 877 letter indicate no significant difference at P = 0.01. 878 Fig. 6 Deletion mutants of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 were attenuated 879 in virulence in planta. a. Dissection of infected wheat heads caused by PH-1, the mutants and the 880 881 complemented strains. Inoculated ears were dissected at 15 dpi. Inoculated 882 sites were indicated with red arrows. b. Infection structures on glumes infected 883 by PH-1, mutants and complemented strains. The inoculated glumes were collected after 2 dpi with conidia, and observed by SEM. The infection 884 885 structures were pointed out by red arrows, and details were enlarged. 886 Fig. 7. Deletion mutants of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 reduced the DON 887 biosynthesis in vitro and in planta. 888 a. Δ FgLetm1 significantly decreased the transcriptional level of *TRI* genes in

a. Δ FgLetm1 strongly reduced the endogenous ROS in MM and TBI. Hyphae

- TBI medium. **b**. Toxisome formation of PH-1, Δ FgLetm1 and Δ FgLetm2.
- 890 Strains were labeled with Tri1-GFP and incubated in TBI for 3 days, and
- toxisomes were observed by confocal fluorescent microscope. Bar=10 μm. **c**.

892	Induction of DON biosynthesis by H_2O_2 in wild type and $\Delta FgLetm1$ grown in
893	LTB medium. H_2O_2 was added into LTB daily, and the supernatant after 7 days
894	of incubation was used for the quantification of DON production. d . Relative
895	expression levels of TRI5, TRI6 and TRI10 in PH-1 and Δ FgLetm1 with or
896	without H_2O_2 treatment. The relative expression level of each gene in wild type
897	without H_2O_2 treatment was arbitrarily set to 1. Values on the bars followed by
898	the same letter indicate no significant difference at $P = 0.05$.
899	Fig. 8. DON biosynthesis and virulence were reduced under hypoxia
900	conditions.
901	a . Colony morphology of wild type grown on PDA in the open air and hypoxia
902	conditions. b . Relative expression level of TRI5, TRI6 and TRI10 in the
903	mycelium of PH-1 under open air and hypoxia conditions. Strains were grown
904	in TBI for 3 days. The pigment biosynthesis gene, <i>AURJ</i> , was used as a
905	control. ${f c}$. Toxisome formation of the wild type under open air and hypoxia
906	conditions. The Tri1-GFP was observed after 3 days of incubation. d. DON
907	production of wild type under open air and hypoxia conditions after 7 days of
908	incubation. e . Virulence of wild type under open air and hypoxia conditions.
909	Scab symptom was taken after 7 dpi.

Page 38 of 51

910	Supplemental figure, table and video legends
911	Fig. S1. Phylogenetic tree of the Letm1 super-family orthologs from 32
912	fungal genomes available in the NCBI Bioprojects and Broad Institute
913	databases. Orthologs were retrieved with the yeast Letm1 proteins, Mdm38
914	and Ylh47, and FgLetm1 and FgLetm2 protein sequences as queries. The
915	phylogenetic tree was constructed by the neighbor-joining method using
916	MEGA 5.0. Numbers at the node represent the results of 1000 bootstrap
917	replications. The GenBank or organism-specific accession numbers are
918	indicated in the figure.
919	Fig. S2. Identification of deletion mutants and complemented strains.
920	a . Southern blot hybridization analysis of the deletion mutant of Δ FgLetm1,
921	$\Delta\Delta$ FgLetm1/2, and the complemented strain Δ FgLetm1+P _{LETM1} FgLetm1-GFP
922	using downstream DNA fragments of <i>FgLETM1</i> as the probe. Both Δ FgLetm1
923	and $\Delta\Delta$ FgLetm1/2 had an anticipated 4594 bp band, but both of them lacked
924	the 2219 bp band present in wild-type PH-1, when probed with a 725 bp
925	downstream DNA fragment of FgLETM1. b. Southern blot hybridization
926	analysis of the deletion mutant of Δ FgLetm2, $\Delta\Delta$ FgLetm1/2, and the
927	complemented strain Δ FgLetm2+P _{LETM2} FgLetm2-GFP using a downstream
928	DNA fragment of FgLETM2 as the probe. Using an 800 bp upstream DNA
929	fragment of <i>FgLETM2</i> as the probe, Δ FgLetm2 mutant had an anticipated
930	3253 bp band, when the chromosomal DNA of Δ FgLetm2 was digested with
931	NdeI. $\Delta\Delta$ FgLetm1/2 presented a 4098 bp band but lacked the 1585 bp band
932	present in the wild-type PH-1, when the chromosomal DNA of $\Delta\Delta$ FgLetm1/2
933	was digested with <i>EcoRV</i> and blotted with the same probe. c . PCR verification
934	of complemented strain Δ FgLetm1+P _{LETM1} FgLetm1-GFP, and

935	Δ FgLetm2+P _{LETM2} FgLetm2-GFP. The whole cassette including the promoter,
936	ORF and gfp was amplified, respectively.
937	Fig. S3. Conidial morphology of the wild type, Δ FgLetm1, Δ FgLetm2,
938	ΔΔFgLetm1/2 and the complemented strains. The septa were stained with
939	calcofluor white and observed by fluorescent microscope. Bar= 20 $\mu m.$
940	Fig. S4. Colony morphology of PH-1, the mutants and the complemented
941	strains on wheat head medium (WA) at 25 °C for 3 days.
942	Fig. S5. Infection structure of wild type and deletion mutant of Δ FgLetm1
943	on the inoculated glumes at 14 days post-inoculation. Samples were
944	collected after 2 weeks post-inoculation and observed by the scan electron
945	microscope. Bars were indicated on the images.
946	Fig. S6. Induction of DON biosynthesis by exogenous ATP in the wild
947	type and mutants grown in TBI medium. ATP was added into TBI with at the
948	final concentration of 10 $\mu M,$ and the cell free supernatant after 7 days of
949	incubation was used for the quantification of DON production. Error bars
950	denote standard deviation from three repeated experiments.
951	Fig. S7. Deletion mutant of Δ FgLetm1 was not changed the utilization of
952	non-fermentable carbon. Colony morphology of the wild type, Δ FgLetm1,
953	Δ FgLetm2 and $\Delta\Delta$ FgLetm1/2 on minimal medium supplemented with glucose
954	or glycerol as a sole carbon source. Plates were photographed after incubation
955	at 25 °C for 3 days.
956	Fig. S8. Fungicides targeting mitochondria are able to inhibit the
957	toxisome formation and DON biosynthesis.
958	a . The growth inhibition of tested fungicides at 0.3 μ g/ml. b . Toxisome
959	formation of fungicides at 0.3 μ g/ml. The Δ Tri1:Tri1-GFP strain was grown in
	39

- TBI for 24 h, then individual fungicide was added at the final concentration at
 - 961 0.3 µg/ml and incubated for another 24 h before observation. c. The DON
- 962 production of each treatment. The DON was extracted from the 7-day cultured
- TBI in each treatment and quantified by LC-MS. Column followed by different
- 964 letter indicated a significantly difference at P = 0.05.
- **Table S1** The Letm1-superfamily domain in the Letm1 orthologues of 6
- 966 filamentous plant pathogenic fungi and Saccharomyces cerevisiae.
- **Table S2** Proteins of the mitochondrial ribosome in complex with FgLetm1 by
- 968 affinity purification and mass spectrometry assay.
- **Table S3**. Oligonucleotide primers used in this study.
- **Video 1.** Mitochondrial patterns stained by Mito-HcRed in the wild type.
- 971 Video 2. Mitochondrial patterns stained by Mito-HcRed in deletion mutant of
- Δ FgLetm1.

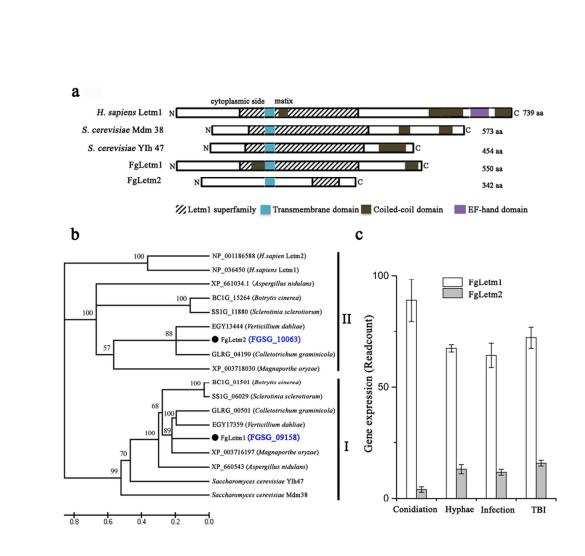
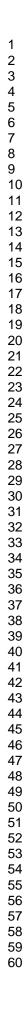



Fig. 1. Identification of the Letm1-like proteins in Fusarium graminearum. a. Schematic architecture of the Letm1 super-family proteins in F. graminearum, FgLetm1 and FgLetm2. The Homo sapiens Letm1 and S. cerevisiae Mdm38 and Ylh47 are selected as references. Conserved domains are indicated. b. Phylogenetic analysis of the putative Letm1-like proteins from F. graminearum and six plant pathogenic fungi. Amino acid sequences of the Letm1 orthologs are aligned using Clustal W and a neighbor-joining tree generated by MEGA 5.0. c. Transcriptional levels of the FgLETM1 and FgLETM2 genes in the CMC, hyphae, infected plant tissues and TBI by RNA-seq.

80x73mm (300 x 300 DPI)

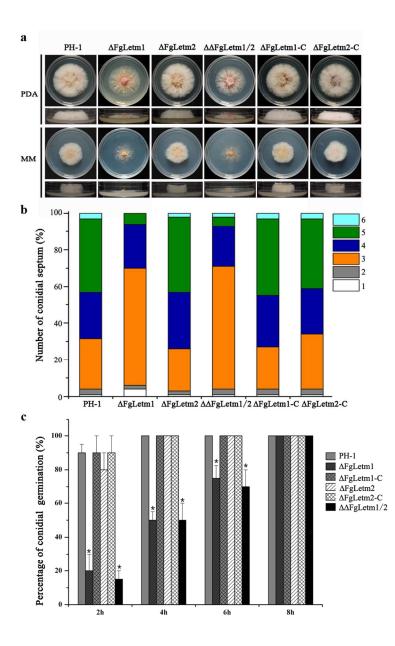


Fig. 2. Phenotypes of the deletion mutants of Δ FgLetm1, Δ FgLetm2 and $\Delta\Delta$ FgLetm1/2 in vegetative growth, conidiogenesis and germination.

a. Colony morphology of PH-1, the mutants and the complemented strains on PDA and MM at 25 °C for 3 days. b. Ratio of the different number of conidial septa in PH-1, mutants and complemented strains harvested from 5-day-old CMC cultures. $c.\Delta FgLetm1$ reduced the conidial germination. The column labeled with star indicates a significant difference at P = 0.05.

80x128mm (300 x 300 DPI)

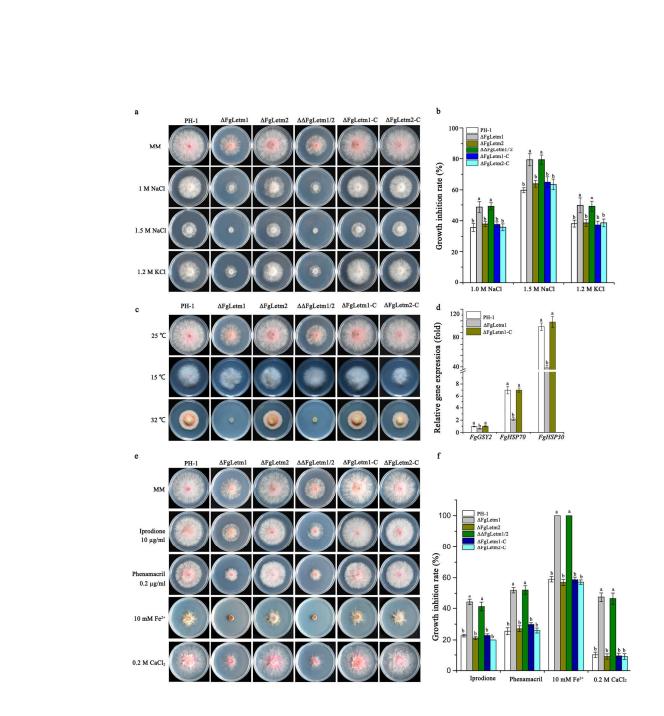


Fig. 3. Δ FgLetm1 increased the sensitivity towards osmotic stress, heat shock, fungicides and ion stresses. a. Growth phenotype of PH-1, mutants and complemented strains grown on MM without or with supplementation of NaCl or KCl after 4 days of incubation at 25 °C. b. Statistical analysis of the growth inhibition rate of all strains under the osmotic stresses. c. Δ FgLetm1 increased the sensitivity toward high temperature. Colony morphology was shown after 4 days of incubation on MM at 15 °C and 25 °C, and 7 days of incubation at 32 °C. d. The transcriptional level of the heat tolerant genes FgHSP30, FgHSP70 and FgGSY2 decreased in the Δ FgLetm1 mutant in response to heat shock, in comparison to that in PH-1. The expression levels of each gene at 25 °C for 16 h were set to 1. e. The Δ FgLetm1 mutant was more sensitive towards fungicides iprodione, phenamacril, and ion stresses than that of the wild type. Plates were incubated at 25 °C for 4 days before imaging. f. Statistical analysis of the growth inhibition rate of strains towards above stresses. Values on the bars followed by the same letter mean no significant difference at P = 0.05. 170x202mm (300 x 300 DPI)

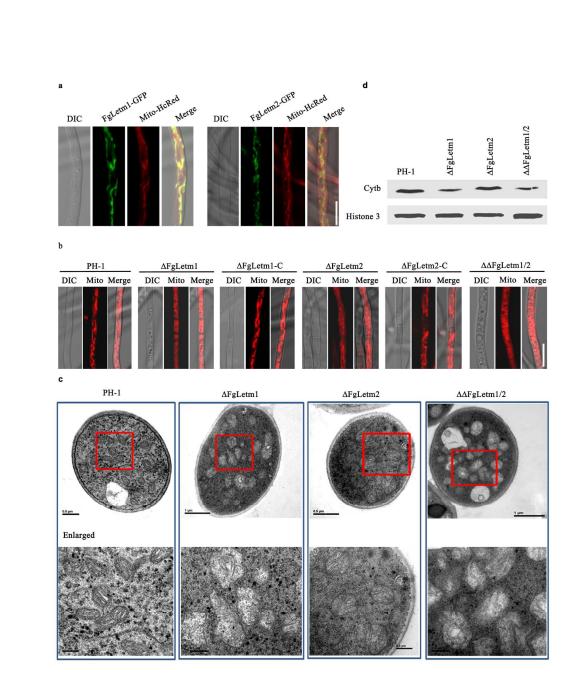


Fig. 4. FgLetm1 is localized to mitochondria and critical for the mitochondrial integrity.
a. Both FgLetm1 and FgLetm2 are localized to the mitochondria. Mycelia of FgLetm1-C and FgLetm2-C were grown in CM and stained with Mito-HcRed. Images were taken by confocal fluorescent microscope. Bar=10 μm. b. ΔFgLetm1 changed the mitochondrial structural patterns. Strains were grown in CM broth for 16 h at 25 °C, then harvested and stained with Mito-HcRed for observation. Typical patterns in individual strain were shown. Bar= 10 μm. c. ΔFgLetm1 mutant caused mitochondrial swelling. Ultrastructural morphology of mitochondria in each strain was visualized by transmission electron microscope. Bars were indicated in images. d. ΔFgLetm1 decreased the protein level of cytochrome b (Cyt b), an indicator protein of respiratory chain components. The protein abundance of Cyt b in the PH-1 and mutants were analyzed by immunoblot assays. The histone H3 was used as a reference protein.

170x200mm (300 x 300 DPI)

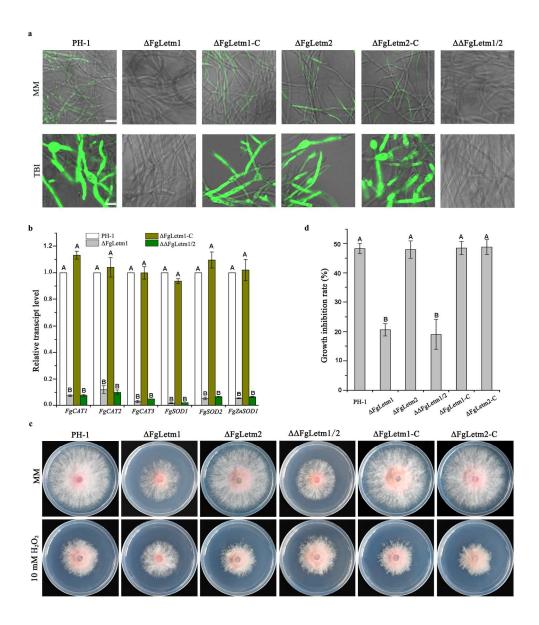


Fig. 5. Deletion mutant of Δ FgLetm1 decreased the concentration of endogenous reactive oxygen species (ROS).

a. Δ FgLetm1 strongly reduced the endogenous ROS in MM and TBI. Hyphae grown in MM for 24 h, or TBI for 3 days were stained by the ROS indicator, H2DCFDA. Bar=10 µm. b. Mutant of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 decreased the transcriptional level of genes encoding catalases and superoxide dismutases in TBI. c. Mutant of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 increased the resistance towards the oxidative stress by H2O2. Strains were grown on MM with or without 10 mM H2O2 for 4 days at 25°C. d. Statistical analysis of the growth inhibition rate of PH-1, mutants and complemented strains towards the oxidative stress generated by H2O2. Values on the bars followed by the same letter indicate no significant difference at P = 0.01.

170x198mm (300 x 300 DPI)

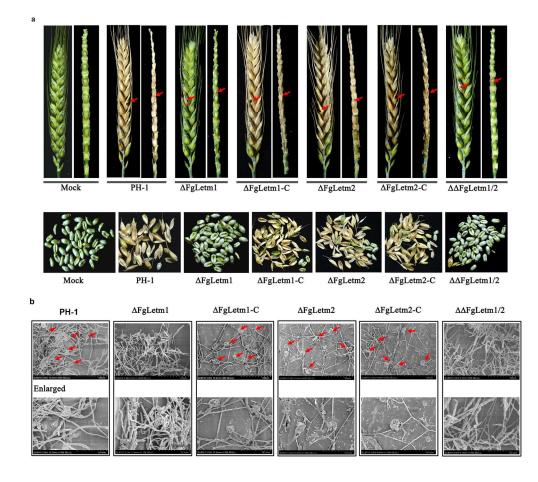


Fig. 6 Deletion mutants of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 were attenuated in virulence in planta. a. Dissection of infected wheat heads caused by PH-1, the mutants and the complemented strains. Inoculated ears were dissected at 15 dpi. Inoculated sites were indicated with red arrows. b. Infection structures on glumes infected by PH-1, mutants and complemented strains. The inoculated glumes were collected after 2 dpi with conidia, and observed by SEM. The infection structures were pointed out by red arrows, and details were enlarged.

170x157mm (300 x 300 DPI)

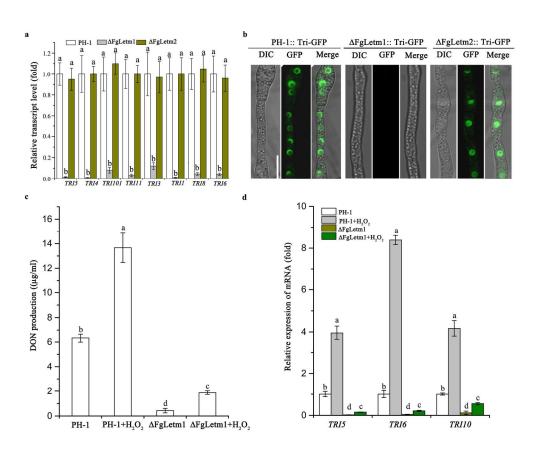
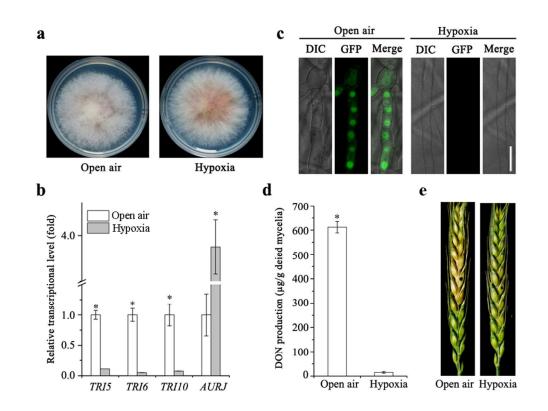
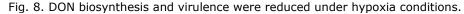




Fig. 7. Deletion mutants of Δ FgLetm1 and $\Delta\Delta$ FgLetm1/2 reduced the DON biosynthesis in vitro and in planta.

a. Δ FgLetm1 significantly decreased the transcriptional level of TRI genes in TBI medium. b. Toxisome formation of PH-1, Δ FgLetm1 and Δ FgLetm2. Strains were labeled with Tri1-GFP and incubated in TBI for 3 days, and toxisomes were observed by confocal fluorescent microscope. Bar=10 µm. c. Induction of DON biosynthesis by H2O2 in wild type and Δ FgLetm1 grown in LTB medium. H2O2 was added into LTB daily, and the supernatant after 7 days of incubation was used for the quantification of DON production. d. Relative expression levels of TRI5, TRI6 and TRI10 in PH-1 and Δ FgLetm1 with or without H2O2 treatment. The relative expression level of each gene in wild type without H2O2 treatment was arbitrarily set to 1. Values on the bars followed by the same letter indicate no significant difference at P = 0.05.

170x143mm (300 x 300 DPI)

a. Colony morphology of wild type grown on PDA in the open air and hypoxia conditions. b. Relative expression level of TRI5, TRI6 and TRI10 in the mycelium of PH-1 under open air and hypoxia conditions. Strains were grown in TBI for 3 days. The pigment biosynthesis gene, AURJ, was used as a control. c.
 Toxisome formation of the wild type under open air and hypoxia conditions. The Tri1-GFP was observed after 3 days of incubation. d. DON production of wild type under open air and hypoxia conditions after 7 days of incubation. e. Virulence of wild type under open air and hypoxia conditions. Scab symptom was taken after 7 dpi.

80x62mm (300 x 300 DPI)

Table 1 Vegetative growth and conidiation of Fusarium graminearum

strains

Strain	Growth rate (cm/day)	Conidiation Production (×10 ⁵)	Conidial length (µm)
PH-1	2.43±0.06 ^{a*}	6.15±0.47 ^a	63.50±6.10 ^a
∆FgLetm1	2.06±0.03 ^b	4.65 ± 0.53^{b}	38.88±4.39 ^b
Δ FgLetm1-C	2.40±0.04 ^a	6.28±0.48 ^a	63.13±8.04 ^a
∆ FgLetm2	2.32±0.02 ^a	6.03±0.38 ^a	56.50±5.07 ^a
∆ FgLetm2-C	2.37±0.02 ^a	5.98±0.26 ^a	59.88±2.10 ^a
∆ FgLetm12	2.03±0.03 ^b	5.20±0.34 ^b	41.25±3.57 ^b

^{*}Values followed by the same letter are not significantly different at P = 0.05 for each

treatment.

<text>

Strain	AT	Ρ(μΜ)	H	₂ O ₂ (mM)	Ethanol (mg/ml)
Strain	MM	TBI	MM	TBI	MM
PH-1	1341.35±29.24 ^{a*}	1360.05±42.46 ^a	24.97±2.14 ^a	133.94±9.85 ^ª	2.16±0.07 ^b
∆FgLetm1	1008.54±34.32 ^b	902.17±23.46 ^b	3.26±0.18 ^b	4.51±0.36 ^b	4.32±0.12 ^a
∆ FgLetm1-C	1320.14±13.11 ^a	1358.23±35.23 ^a	20.67±3.25 ^ª	120.55±20.11 ^a	2.3±0.21 ^b
∆ FgLetm2	1300.02±24.53 ^a	1250.22±48.37 ^a	19.66±1.67 ^b	122.63±15.37 ^a	2.43±0.20 ^b
∆ FgLetm2-C	1360.56±15.21 ^a	1400.26±68.70 ^ª	21.79±3.22 ^a	120.33±18.54 ^a	2.1±0.25 ^b
Δ FgLetm12	953.56±30.14 ^b	875.65±50.32 ^b	2.34±0.86 ^b	2.56±0.25 ^b	4.17±0.14 ^a

Table 2 Productions of ATP, hydrogen peroxide and ethanol in PH-1, mutants and complemented strains

^{*}Values followed by the same letter are not significantly different at P = 0.05 for each treatment.

complemented strains in TBI, wheat kernel medium and infected

spikelets

StrainDON production (µg/g dried mycelia)DON production (µg/mg ergosterol)DON production (mg/mg ergosterol)PH-1 $650.75\pm7.07^{a^*}$ 398.88 ± 13.07^{a} 581.53 ± 30.28^{a} Δ FgLetm1 38.24 ± 2.81^{b} 11.81 ± 1.40^{b} 228.61 ± 20.25^{b} Δ FgLetm1-C 630.80 ± 12.86^{a} 428.56 ± 14.59^{a} 536.27 ± 17.36^{a} Δ FgLetm2 635.07 ± 13.80^{a} 420.97 ± 15.58^{a} 566.54 ± 30.85^{a} Δ FgLetm2-C 660.46 ± 8.96^{a} 394.22 ± 15.08^{a} 605.03 ± 35.18^{a} Δ FgLetm12 35.93 ± 3.53^{b} 9.43 ± 2.89^{b} 188.10 ± 19.51^{b} `Values followed by the same letter are not significantly different at $P = 0.05$ for each treatment.		ТВІ	Wheat kernel	Infected spikelet
(µg/g dried mycelia)(µg/mg ergosterol)(mg/mg ergosterol)PH-1 $650.75\pm7.07^{a^*}$ 398.88 ± 13.07^{a} 581.53 ± 30.28^{a} Δ FgLetm1 38.24 ± 2.81^{b} 11.81 ± 1.40^{b} 228.61 ± 20.25^{b} Δ FgLetm1-C 630.80 ± 12.86^{a} 428.56 ± 14.59^{a} 536.27 ± 17.36^{a} Δ FgLetm2 635.07 ± 13.80^{a} 420.97 ± 15.58^{a} 566.54 ± 30.85^{a} Δ FgLetm2-C 660.46 ± 8.96^{a} 394.22 ± 15.08^{a} 605.03 ± 35.18^{a} Δ FgLetm12 35.93 ± 3.53^{b} 9.43 ± 2.89^{b} 188.10 ± 19.51^{b} Values followed by the same letter are not significantly different at $P = 0.05$ for each	Strain	DON production	DON production	DON production
Δ FgLetm1 38.24 ± 2.81^{b} 11.81 ± 1.40^{b} 228.61 ± 20.25^{b} Δ FgLetm1-C 630.80 ± 12.86^{a} 428.56 ± 14.59^{a} 536.27 ± 17.36^{a} Δ FgLetm2 635.07 ± 13.80^{a} 420.97 ± 15.58^{a} 566.54 ± 30.85^{a} Δ FgLetm2-C 660.46 ± 8.96^{a} 394.22 ± 15.08^{a} 605.03 ± 35.18^{a} Δ FgLetm12 35.93 ± 3.53^{b} 9.43 ± 2.89^{b} 188.10 ± 19.51^{b} Values followed by the same letter are not significantly different at $P = 0.05$ for each significant sig	Sudin	(µg/g dried mycelia)	(µg/mg ergosterol)	(mg/mg ergosterol)
Δ FgLetm1-C630.80±12.86a428.56±14.59a536.27±17.36a Δ FgLetm2635.07±13.80a420.97±15.58a566.54±30.85a Δ FgLetm2-C660.46±8.96a394.22±15.08a605.03±35.18a Δ FgLetm1235.93±3.53b9.43±2.89b188.10±19.51b	νH-1	650.75±7.07 ^{a*}	398.88±13.07 ^a	581.53±30.28 ^a
Δ FgLetm2 635.07 ± 13.80^{a} 420.97 ± 15.58^{a} 566.54 ± 30.85^{a} Δ FgLetm2-C 660.46 ± 8.96^{a} 394.22 ± 15.08^{a} 605.03 ± 35.18^{a} Δ FgLetm12 35.93 ± 3.53^{b} 9.43 ± 2.89^{b} 188.10 ± 19.51^{b} Values followed by the same letter are not significantly different at $P = 0.05$ for each	\FgLetm1	38.24±2.81 ^b	11.81±1.40 ^b	228.61±20.25 ^b
Δ FgLetm2-C 660.46±8.96 ^a 394.22±15.08 ^a 605.03±35.18 ^a Δ FgLetm12 35.93±3.53 ^b 9.43±2.89 ^b 188.10±19.51 ^b Values followed by the same letter are not significantly different at $P = 0.05$ for each	∖ FgLetm1-C	630.80±12.86 ^a	428.56±14.59 ^a	536.27±17.36 ^a
Δ FgLetm12 $35.93\pm3.53^{\text{b}}$ $9.43\pm2.89^{\text{b}}$ $188.10\pm19.51^{\text{b}}$ Values followed by the same letter are not significantly different at P = 0.05 for each	\FgLetm2	635.07±13.80 ^a	420.97±15.58 ^a	566.54±30.85 ^a
Values followed by the same letter are not significantly different at $P = 0.05$ for each	∖ FgLetm2-C	660.46±8.96 ^a	394.22±15.08 ^a	605.03±35.18 ^a
	∆ FgLetm12	35.93±3.53 ^b	9.43±2.89 ^b	188.10±19.51 ^b

treatment.