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In this work, a portable-Raman device (excitationwavelength 1064 nm)was employed for the first time for con-
tinuously monitoring the complex molecular dynamics of terpenoid resins (dammar, mastic, colophony, sanda-
rac and shellac), which occur during their ageing under artificial light exposure. The instrumentation was
equipped with a pyroelectric sensor allowing for temperature control of the sample's irradiated surface while
the acquisition of spectra occurs by setting fixed maximum temperature and total radiant exposure. Resins
were dropped into special pits over a dedicated rotatingwheelmoved by aUSBmotor. The rotation allowed sam-
ples sliding between the positions designated for the acquisition of the Raman spectra and that for artificial age-
ing. Samples were exposed to artificial light for 45-days and almost 400 spectra for each resin sample were
collected. The exposure to artificial light led to significant changes allowing the characterization of the alteration
process. The automated acquisition of a large number of spectra overtime during light-exposure has given the
possibility to distinguish fast dynamics,mainly associated to solvent evaporation, from those slower due to resins
photo-degradation processes.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

All natural varnishes undergo ageing and degradation course over-
time, changing their chemical and physical properties. The characteriza-
tion of the alteration is a crucial issue concerning cultural heritage
artefacts in order to have a reliable and trustful diagnosis of their state
of conservation [1].

The ageing process can definitely affect the stability of the artefact
because of the destruction of the material itself as well as the loss of
its flexibility and cohesion properties. Similarly, change in color and
growth of cracks can alter the legibility as well. Depending on external
factors, degradation can be of thermal, hydrothermal, chemical, photo-
chemical or mechanical origin.

In this scenario, the understanding of molecular changes involved in
degradation becomes crucial for a more correct and durable conserva-
tion intervention. Among the materials used in the field of art, organic
polymers are indeed those subject to more complex ageing and degra-
dation processes [2]: auto-oxidative processes through chain radical re-
actions, photo-dissociative processes along with the generation of
cross-linking, condensations, chain shortening and defunctionalization
as well as bond breaking and disintegration are example of what may
happen during the alteration processes.
Nello Carrara" (IFAC - CNR), via
The identification of altered compounds is usually carried out by
means of mass spectrometry, which requires sampling and sample
pre-treatment [3–5]. FTIR spectroscopy is used for the identification
and discrimination between organic and inorganic species [6] as well
as for the assessment of the photodegradation kinetics of solvent and
oil-based varnishes [7].

These techniques are nowadays employed not only to assess molec-
ular changes due to the degradation of the polymer itself but also to un-
derstand how its interaction with other materials (i.e. heavy-metals
ions, pigments and other binders)may affect the time of ageing and de-
termine the formation of specific compounds [8–11].

In this scenario, Raman and non-contact IR spectroscopy can allow
to assess chain reactions and identify the formation of specific degrada-
tion products without any sampling and sample preparation [12,13].
However, in the present application IR spectroscopy is more suited for
describingmolecular processes involvingmainly C=Omolecular vibra-
tions, whereas Raman spectroscopy can provide a wider and more de-
tailed picture of the alteration dynamics thank to the higher spectral
resolution and sensitivity with respect to the C=C, C\\C, C\\O, and
C\\N bonds. Thus, the latter can better assess microstructural changes
(polymerization, de-polimerisation) and formation of new compounds
containing conjugated C=C bonds.

Effects of ageing were assessed through the comparison of Raman
bands (frequency shifts, intensity and shape changes) of the fresh and
aged samples of proteins binders [14,15], lipids [16,17], and natural
resins [18,19]. Recently, micro-Raman spectroscopy has been also
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Table 1
Resins, solvents and illuminance used for the experiment.

Resins Group No. of carbon atoms Solvent Illuminance at sample surface (lx) Total illuminance (Mlx in 45 days)

Dammar Triterpenoid 30 Ligroin 19,000 14.0
Mastic Triterpenoid 30 Ethanol 17,750 12.5
Colophony Diterpenoid 20 Ethanol 11,200 9.0
Sandarac Diterpenoid 20 Ethanol 19,500 14.0
Shellac Sesquiterpenoid 15 Ethanol 19,400 14.0

Fig. 1. Automated Raman setup used for characterizing resins degradation.
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used for assessing the chemical changes induced by UV laser radiation
on naturally cured and artificially aged varnishes [20].

In this work, for the first time, Raman spectroscopy has been
employed for continuously monitoring the complex molecular dynam-
ics of natural resins, which occur during their ageing under artificial
light exposure. In particular, a portable, temperature-controlled,
Raman device (excitation wavelength 1064 nm) has been developed
in order to automatically monitor the ageing process by preventing
phase changes and other undesired alteration effects. Temperature con-
trol of the sample's irradiated surface was achieved bymeans of a pyro-
electric sensor and dedicated software producing a feedback on the
laser power supply and then a suitable modulation of the output
beam. It allows collecting a sequence of spectra in the same area of anal-
ysis by setting fixedmaximum temperature and total radiant exposure.

One spectrumevery 4 h has beenmeasured during thewhole ageing
period of 45-days. Samples were prepared by applying various terpe-
noid resins (colophony, shellac, dammar, sandarac, mastic) on Polyeth-
ylene (PE) thin film and subjected to artificial ageing in order to
simulate natural light exposure in indoor museum conditions. Total ir-
radiance of 9–14Mlx was used which can be compared, assuming reci-
procity, to about 16–28 years of exposure in recommended museum
conditions (150–200 lx 8 h/day). Natural resins have been intensively
used in the past and they are still employed as adhesives, binders and
varnishes.

Intensity changes of the bands in Raman spectra have indicated
structural modifications after the ageing process which allowed de-
scribing the chemical alteration dynamics ofmolecular bonds over time.

2. Materials and methods

Homogeneous saturated solutions of fresh grinded natural terpenoid
resins (constituted of units of C5 compound isoprene) were prepared,
dissolving the material in the appropriate solvent and stirred for
1 day. All the formulations were dropped on very thin polyethylene
(PE) slides. Ethanol and ligroin were used as solvents for dissolving
the resins according to Table 1. Resins employed for the experiment
are dammar, mastic, colophony, sandarac and shellac. Dammar is a
triterpenoid resin largely composed of tetracyclic dammarane series
(C30H54), the pentacyclic compound ursonic acid (C30H46O3) and a pro-
portion of polymeric hydrocarbon. Mastic is a triterpenoid resin com-
posed of several tetracyclic compounds of the euphane series,
including masticadienonic acid (C30H46O3). Colophony and Sandarac
are diterpenoid resins composed mainly of abietic acid (C20H30O2) and
sandaracopimaric acid (C20H30O2) respectively. Shellac is a
sesquiterpenoid extracted from insectswith very complex composition:
probable primary components are jalaric (C15H22O5) and laccijalaric
acid (C15H20O4) [21].

A portable Raman device was conveniently assembled in the lab by
using a narrow-band CW diode-pumped Nd:YAG(1064 nm) laser and
a NIR-spectrometer equipped with an InGaAs linear array. A specific
probe was designed in order to control the local temperature rise of
the area under analysis. To this goal a pyroelectric sensor was used,
which provides the feedback for suitably modulating the output
power of the laser source and then limiting undesired heating effects
within the gauge volume. Furthermore, a dedicated rotating wheel
moved by a USB servo motor was designed as sample holder (Fig. 1).
Resins solutions were dropped into special pits over the wheel sur-
face. The rotation allowed samples sliding between the positions desig-
nated for the acquisition of the Raman spectra and that for artificial
ageing. All the experimental parameters including the time of exposure
to light and spectra acquisition were set in the control code and a
completely automated measurement cycles was launched.

Light ageing was carried out under six 55 Watt OSRAM DULUX®
(range 380–780 nm) daylight fluorescent tubes (5400 K color tempera-
ture). As the ultraviolet content of the light emitted by these lamps is
relatively low no further ultraviolet filter was used.

The light flow in lux, or illuminance, was measured at the surface of
each sample through a lux meter in order to consider irradiation slight
inhomogeneity. The illuminance (lx) and light dose (Mlx∗h) delivered
to each sample during 45-days of irradiation are reported in Table 1.

During the early 5-days of measuring, Raman spectra were acquired
after every½ h irradiation in order to follow the initial fastestmolecular
changes inmore detail, as, for example, those associate with the solvent
evaporation.

During the following 40-days Raman spectra were collected every
4 h for a total irradiance of 9–14Mlx which can be compared, assuming
reciprocity, to about 16–28 years of exposure in recommendedmuseum
conditions (150–200 lx 8 h/day). Acquisition time for Raman spectra of
4 min and laser output power of about 300 mWwere employed during
the experiment. In these conditions a maximum temperature of 35 °C
was reached during laser irradiation, which is lower than those of the
glass transition of the various resins [22].

Peakdeconvolutionwas carried out usingOrigin Pro 2015 in order to
investigate molecular changes induced by light ageing over time. The
local maximum method with high sensibility was used as peak finding
settings and the Lorentzian peak function was preferred to Gaussian
and Gaussian-Lorentzian profiles since it provided the highest R-
square value.

The need of an automated measurement protocol has been justified
by the following reasons. First, Ramanmeasurements of this work need
very high spatial accuracy because the samples cannot be considered

Image of Fig. 1


Fig. 2. Sequence of 370 Raman spectra of (a) dammar, (b)mastic, (c) colophony, (d) sandarac, (e) shellac exposed to accelerated ageing for 45-days. Raman intensity has been also plotted
as function of total irradiance in a 2D-map for easy viewing.
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homogeneous systems and, thus, the time dependent spectra must be
collected exactly in the same position. Second, the experiment is rather
time consuming taking into account that the total time needed for ac-
quiring the spectra is about 21 working days. Finally, in case of manual
measurements the time distribution of the measurements would have
been non-homogeneous.
3. Results

Fig. 2 shows the sequence of the 370 Raman spectra acquired during
45-days exposure for each resin sample. Spectra are ordered by irradi-
ance using a color palette from blue hues for low irradiance values to
red hues for the high values. After acquisition, the spectra were

Image of Fig. 2
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subjected to a background subtraction through polynomial fitting for
comparison purposes. In some details, a number of baseline points
were selected for the spectral set of a given resin in order to fit and sub-
tract the background of each spectrum using a polynomial of a suitable
order (from 3 to 9).

Examining the sequence of spectra along with the plot of the bands
intensity vs the irradiance in a 2D-map, the perception of themolecular
dynamics due to the irradiation process becomes immediate and clear.

For instance, in all the resins dissolved in ethanol such as colophony,
mastic, sandarac and shellac, the evaporation process of the solvent is
clearly identifiable in every spectrum. In particular, the intensity of the
main ethanol Raman bands at 1096, 1057 and 885 cm−1, which corre-
spond to δ(CH3), νa(CCO) and νs(CCO) vibrational modes, respectively,
undergo a rapid decrease as the irradiance increases. Moreover, in the
case of sandarac and shellac resins a decrease of the minor ethanol
Raman bands at 1278 and 436 cm−1 is observable as well. With regard
to the molecular dynamic of the band at 1457 cm−1 corresponding to
the δ(COH) mode of ethanol, a curve-fitting process is necessary in
order to separate the contribution of the ν(CH2)/δ(CH2) modes of the
resin itself. The intensity trend of ethanol bands of shellac as a function
of irradiance is shown in Fig. 3 as an example. It is noteworthy that the
intensity of the Raman bandof ethanol at 1457 cm−1 remains high even
at higher irradiance values because it is overlapped with the intense
ν(CH2) mode of the resin which, as previously mentioned, has similar
vibrational frequency. Besides this, the amount of solvent retained in
the bulk of varnish undergoes a relatively fast exponential decay. Specif-
ically, an intensity decreasing of 37% is seen after 0.1MLx∗h of exposure
and only after 2 Mlx∗h, the intensity of peaks related to solvent drops
down to about 7%.

Besides molecular changes due to the intrinsic alteration processes
of the resins, variations in Raman bands intensity can sometimes be
due to external factors as well. This was the case of sandarac resin,
where a temporary increase of the intensity was observed for every
band in the spectra for irradiance values between 4 and 9 MLx (Fig.
2). This behavior can be ascribable to the formation of bubbles inside
the volume of resin during the drying process the movement of which
towards the surface can lead to some variations in the Raman scattering
efficiency. Sandarac resinwas indeed the only sample showing the pres-
ence of bubbles in the surface after irradiation.

Molecular dynamics of resins are definitely slower than those corre-
lated to the evaporation of solvents. Although the completion of the
Fig. 3. Intensity trend of ethanol bands of shellac as a function of irradiance.
complex reaction mechanisms due to resins degradation might require
very long time, the accelerated ageing simulating 26-years of exposure
to lighting performed in this work has nevertheless led to tracking the
early molecular changes taking place during the polymerization and
the degradation of terpenoid varnishes.

In this respect, the latter were accurately monitored in the 1550–
1800 cm−1 region, where neither ligroin nor ethanol show significant
bands. The results achieved after the curve-fitting process using the
Lorentzian shape are displayed in Fig. 4.

Raman spectrum of dammar varnishwaswell fitted with four peaks
with maximum centered at about 1648, 1664, 1679 and 1712 cm−1.
These bands and the related shoulders are assigned to stretching vibra-
tions of C=C andC=Obonds, which are typically found in oleanane and
ursonic molecules. Similarly, mastic, although is a triterpenoid resin,
may be distinguished by dammar due to the lack of the shoulders at
1648 and 1679 cm−1. As regards diterpenoid resin, colophony is charac-
terized by two representative signals ascribable to C=C stretch of
abietadiene compounds. The most dominant bands at 1654 cm−1 is
assigned to trans conjugated C=C of abietic acids and the less intense
at 1617 cm−1 to the symmetric stretching of C=C in the aromatic ring
[23,24]. The latter may be related to the presence of dehydroabietic
acids, which is known to be formed upon oxidation over time [25]. Con-
trarily to abietane-type resins, the intense narrow band centered at
1651 cm−1 in sandarac sample may be instead assigned to C=C stretch
of vinyl group present in the side chain of communic acid, which is very
reactive and readily undergoes polymerization reaction [26,27]. In con-
trast to colophony, a very weak contribution at about 1700 cm−1 may
be also noticed.

With regard to shellac, the contribution of the band at 1643 cm−1 is
ascribed to C=C stretching deriving from the main resinous acids (i.e.
shellolic and jalaric acids) while the other two bands, at 1691 and
1717 cm−1 are due to the C=O in carboxylic acids.

Taking into account the fact that among the bands described above
those corresponding to the stretching of C=C are characterized by a
higher Raman cross section than C=O ones, they were chosen as useful
markers for themonitoring of the polymerization and degradation pro-
cesses of the present natural resins. To this aim, the results obtained
from Lorentzian peak fitting of the main C=C vibrational modes are
shown in Fig. 5 as function of total radiation dose. First of all, it is
worth noting as the center max and FWHM do not vary significantly
upon the irradiation time, although a slight broadening starting after
4 Mlx of exposure is observed for dammar varnish. Besides this, the
most relevant modifications are due to the minute decrease of the
area and intensity of the C=C bonds, which can be mainly ascribed to
oxidation and cross-linking. Surprisingly, C=C bonds in dammar and
evenmore in mastic result quantitatively decreased, most likely as con-
sequence of the cleavage of unsaturated ketones via Norrish type reac-
tions leading to oxidized functional groups [7,19].

In contrast to the triterpenoid resins, C=C bonds in colophony and
sandarac undergo a significant reduction either in the peak-area and
maximum height. As regards colophony, a similar decrease was seen
also in the band at 1617 cm−1 (data not shown). On the other hand,
diterpenoid resins, being rich of conjugated carbon-carbon double
bonds within and outside the terpenoid ring, are readily prone to isom-
erization and polymerization.

As expected, the signal of C=C bond in shellac resin, derivingmainly
from shellolic and jalaric acids, is only weakly affected by ageing, al-
though after longer time of exposure under intense light fluxes tends
to be reduced.

4. Conclusions

In this work, Raman spectroscopy has been employed for the first
time in order to continually monitor molecular dynamics of natural
resins exposed to accelerated ageing. The exposure to artificial light
for 45-days has led to significant changes especially concerning the

Image of Fig. 3
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intensity of the Raman bands allowing the characterization of the alter-
ation process. In particular, the automated acquisition of a large number
of spectra overtime during light-exposure has given the possibility to
distinguish fast dynamics, mainly associated to solvent evaporation,
from those slower due to resins photo-oxidation processes. Further-
more, the use of a rotating wheel, which has ensured that each
Fig. 4. Peak deconvolution of C=C and C=O stretching modes for the different resin stud
spectrum of every sample was acquired in exactly the same spot,
along with the use of a macro approach (1 mm laser beam diameter),
has made the comparison of spectra more trustworthy avoiding prob-
lems due to material inhomogeneities as well as to the nonuniformity
of the ageing process. Also the use of a pyroelectric sensor for modulat-
ing the output power of the laser source has been crucial in order to
ied. Raman spectra reported refer to samples prior to be exposed to artificial ageing.

Image of Fig. 4


Fig. 5. Radar plots showing the fit parameters (i.e. area fit, maximum height, center max and FWHM) related to the changes of C=C bands of all resins as function of total radiation dose
delivered.
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avoid undesired heating effects due to laser irradiation such as glass
transitions.We are really confident that this kind of approach can be ef-
fectively capable not only to continuously assessmolecular changes due
to the degradation of the polymers themselves but also to understand
how their interaction with other materials (i.e. heavy-metals ions, pig-
ments and other binders) may affect the time of ageing and the forma-
tion of specific final altered compounds.
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