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ABSTRACT 

A controlled and eco-friendly, scalable CVD method for the production of single and few layer 

MoS2 crystals is proposed. The MoS2 crystals are fabricated at atmospheric pressure through 

the reaction of pre-deposited sodium molybdate (Na2MoO4) in solution and elemental sulfur at 

800 °C, offering the flexibility to achieve two growth regimes -either homogeneously 

distributed single layer MoS2 crystals or continuous MoS2 films- by varying the Na2MoO4 

solution concentration. In particular, for low precursor concentrations, isolated single layer 

MoS2 crystals with controllable mean lateral size were produced. Higher concentrations 

resulted in continuous single layer films grown in tandem with highly oriented few layer 

epitaxial domains. The area of the monolayer relative to the few-layer domains can be adjusted. 

The significant impact on the optical properties of single layer MoS2 crystals due to the growth 

induced strain is also examined. The grown monolayer crystals are found to experience ~ 0.3 

% biaxial tensile strain relative to the exfoliated ones, while a strain relief of 0.6 % is measured 

when these CVD crystals are transferred to another plastic substrate. Moreover, in their 

photoluminescence (PL) spectra, the neutral exciton and negative trion peaks are shifted 

linearly with biaxial strain. By correlating PL and Raman spectroscopies the deformation 

potential of the direct optical transition in single layer MoS2 can be determined. 

 

Introduction 

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) possess a unique 

combination of fundamental solid-state physical phenomena including strong Coulomb 

exchange, many-body interactions [1, 2], rich excitonic effects [3, 4], large spin-orbit [5, 6] 
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and spin-valley coupling [3, 7] and thus provide a benchmark to test the physics of 2D systems. 

Moreover, TMDCs have shown a great potential for diverse applications such as gas sensing 

[8], actuation [9-11], nanophotonics [12, 13], renewable energy devices (photovoltaics and 

hydrogen production) [14, 15], electronics [16, 17], quantum manipulation, spintronics and 

valleytronics [18]. 

In order to successfully extend the usage of these materials from laboratory to real-life 

applications, large scale and cost-effective production methods are required. During the past 

years, several bottom-up [14, 19-28] and top-down [29-35] strategies for the fabrication of 

atomically thin films have been developed. As has already been proven in the case of graphene, 

Chemical Vapour Deposition (CVD) method is compatible with industry providing large area 

high quality material suitable for optoelectronic applications [36]. Extensive attempts to grow 

atomically thin molybdenum disulphide (MoS2) through CVD methods have also taken place. 

In general, the methods developed so far can be divided in one- and two-step processes [37]. 

In the former method the Mo precursor is introduced in the reactor to act as source for gaseous 

Mo containing species, while in the latter the Mo precursor is pre-deposited on the substrate 

prior to thermal treatment [38].  

The first and most common single step CVD synthetic route for the fabrication of 2D MoS2 is 

the vapor phase reaction between a molybdenum oxide, typically MoO3 or MoO2, and 

elemental sulfur in relatively high temperatures (650 °C - 900 °C) [19, 25, 26, 39-41]. By this 

approach, triangular single-layer (SL) MoS2 crystals can be effectively fabricated on the target 

substrate. Through a continuous refinement of this technique, the quality and the size of the 2D 

- crystals has increased from a few microns [19] to single crystals with lateral dimensions of 

hundreds of μm [42, 43]. In some cases, even continuous polycrystalline monolayer films in 

the mm regime have been obtained, for example, by a space-confined set-up [37, 44]. 
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Continuous films have also been fabricated using MoCl5 instead of MoO3, and was shown that 

the thickness of the MoS2 film depends on the partial pressure of the MoCl5 species, and thus 

on the amount of the introduced solid MoCl5 in the reactor [45]. 

Although, one step methods yield relatively large and high-quality crystals, it has been proven 

difficult to control. More specifically, the nucleation density of MoS2 crystals on the substrate 

is inhomogeneous [42] depending strongly on the geometry of the CVD system and, most 

importantly, on the proximity of the substrate to the MoO3 source, where sharp spatial 

concentration gradients occur [43, 46, 47]. Such gradients affect the local Mo:S atomic ratio, 

which in turn has considerable impact on the growth kinetics of the 2D crystals [46]. Therefore, 

qualities of the resulting crystals (size, thickness etc.) depend strongly on the geometrical 

characteristics of the reactor and the utilized substrate, hindering an easy scaling-up of this 

method [37]. A series of efforts to attain better control of the reaction kinetics in one-step 

methods, yielding promising results, are the so-called space-confined approaches which have 

been summarized in a recent review [37]. 

Two-step methods try to overcome the inhomogeneous nucleation problem by pre-depositing 

the Mo precursor directly onto the substrate before the reaction with sulfur vapors. Typically, 

the Mo precursor is a film of elemental Mo, MoO2, MoO3 or even a thiomolybdate salt such as 

(NH4)2 MoS4 [48-50]. In most cases the produced MoS2 films are predominantly few-layered 

[48] and may require a low pressure CVD setup in tandem with more complex substrate 

preparation and treatment which would increase the fabrication costs. It was found that the 

thickness of the produced MoS2 film depends on the thickness of the pre-deposited precursor 

film [50], but so far, obtaining a continuous single-layer (SL) film of MoS2 has proven to be a 

non-trivial task. 
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In this work, a two-step atmospheric pressure CVD method is presented, exhibiting controlled 

and large area growth of 2D-MoS2 single and few-layered (FL) crystals through the reaction 

between sulfur vapors and pre-deposited sodium molybdate (Na2MoO4) on a Si/SiO2 substrate. 

Sodium molybdate, in contrast to MoO3 [51], is a non-toxic and environmental friendly water-

soluble precursor commonly used as a fertilizer. It is worth noting here that in the past, a 

hydrothermal reaction between Na2MoO4 and KSCN has been utilized to synthesize bulk MoS2 

[52]. 

It is shown that for low precursor concentrations (< 1.67 mg/mL) the shapes of the fabricated 

crystals are predominantly SL triangles or three-point stars containing a nucleation point 

located at their centers. For higher concentrations (>1.67 mg/mL) the crystals tend to merge, 

forming progressively a continuous SL film with highly oriented and randomly distributed 

epilayers. Further increase of the precursor concentration results in the coalescence of the 

epilayers and the production of a bulk crystal. Most importantly, the lateral size and the 

thickness of the crystals as well as the substrate coverage (monolayer and epilayer domain 

areas) can be controlled by varying the Na2MoO4 precursor concentration providing a more 

efficient production route. The advantage of the proposed method lies on its flexibility to 

achieve two different growth regimes depending on the Na2MoO4 solution concentration. For 

low concentrations, isolated and homogeneously distributed monolayer MoS2 triangles or 

three-point stars are produced with controllable mean lateral size, while for high concentrations 

continuous SL films with FL domains are epitaxially formed as was verified from electron 

diffraction images.  

X-ray Photoelectron Spectroscopy (XPS), optical, electron and atomic force microscopies were 

employed to verify the stoichiometry, crystal quality and morphology of the produced crystals. 

A variety of crystals were spatially investigated by means of Raman and photoluminescence 
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(PL) mapping. Based on our previous Raman & PL analysis for SL MoS2 crystals [53], the 

level of doping and mechanical strain is quantified and compared with exfoliated samples. A 

release of the mechanical strain was observed after the deposition of the fabricated CVD 

crystals onto a polymer substrate. Also, the determination of the mechanical strain imparted to 

fabricated or transferred SL crystals, enabled the extraction of the direct optical band gap 

deformation potential for SL-MoS2 which is in accordance with recent theoretical and 

experimental studies. The work highlights the importance of the mechanical strain in MoS2 

growth and transfer, while the level of induced strain is adequately high to reliably extract 

important physical parameters such as deformation potentials and Grüneissen parameters. 

Methods 

Two-dimensional MoS2 crystals were synthesized by the reaction of sodium molybdate 

(Na2MoO4) and sulfur vapors in atmospheric pressure and high temperature under inert N2 

atmosphere. In particular, an aqueous solution of Na2MoO4:2H2O (Aldrich no. 331058) was 

spin coated (2000 rpm for 2 min) onto a Si/SiO2 wafer which was then placed at the centre of 

the high temperature zone of a quartz tube (1-inch diameter) furnace. A series of samples with 

different precursor concentrations, namely 0.1 mg/mL, 0.2 mg/mL, 1 mg/mL, 2 mg/mL, 5 

mg/mL and 10 mg/mL were prepared. A quartz crucible filled with sulfur powder (Aldrich no. 

84683) was placed in the independently controlled low temperature zone, located near the tube 

end. The tube was purged with nitrogen with a flow of 50 sccm and kept constant during the 

whole production process. The temperature increased up to 800 °C with a fixed ramp rate of 

13 °C/min and held constant at that temperature for 15 minutes. When the main zone’s 

temperature reached 800 °C, the temperature of the sulfur powder increased at a ramp rate of 

60°C/min up to 300 °C, well above the sulfur’s melting point. Then, the sulfur vapours were 

carried by the inert nitrogen gas flow towards the reaction zone. After 15 min the reactor was 
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immediately removed from the furnace to cool down to room temperature. It should be noted 

that the mass of 2 gr of elemental sulfur was identical for all runs. 

Transmission Electron Microscopy (TEM) observations were performed using a FEI Tecnai 

F20 ST microscope operated at 120 KeV to reduce the radiation damage on the MoS2 flakes 

during the observation. The images were captured with a Gatan MSC794 camera. To prepare 

the samples for TEM observations, the MoS2 crystals were transferred onto Quantifoil grids 

using a standard wet transfer procedure (see Figure S1 in the Supplementary Information) [54]. 

First, a protective layer of PMMA was spin-coated onto the Si/SiO2 wafer with MoS2 crystals, 

then the wafer was detached by etching the SiO2 in 1 mol L-1 KOH for several hours. The 

MoS2-PMMA film was transferred onto a clean wafer and Quantifoil grids were inserted 

between the film and the wafer. The sample was allowed to dry overnight, then the grids were 

removed and heated to 200 °C to relax the PMMA, which was then removed in vapours of 

acetone. 

The X-ray photoemission experiments were carried out in an ultra-high vacuum system 

equipped with a SPECS LHS-10 hemispherical electron analyzer. In all XPS measurements 

the unmonochromatized Al Kα line at 1486.6 eV and an analyzer pass energy of 36 eV, giving 

a full width at half maximum (FWHM) of 0.9 eV for the Au 4f7/2 peak, were used. The XPS 

core level spectra were deconvoluted by means of mixed Gaussian-Lorentzian peaks after a 

Shirley background subtraction. Errors are found to be less than 10% (peak areas), while the 

accuracy of the recording binding energies is ±0.1 eV. 

AFM images were taken using a Dimension Icon (Bruker Nano) AFM with ScanAsyst Air 

probes, or ATESP probes with force constants of 0.4 N/m and 40 N/m, respectively. 

Raman and photoluminescence spectra were collected in the backscattering geometry using a 

Renishaw InVia 2000 spectrometer equipped with a 2400 grooves/mm and 1200 grooves/mm 
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gratings, providing a spectral resolution of nearly 2.5 cm-1 and 7 cm-1, respectively. The 

spectral accuracy was better than 0.1 cm-1 for both gratings (Figure S2). For excitation, the 

514.5 nm line of an Ar+ laser was focused on the sample by means of an ×100 objective lens 

(NA = 0.85) yielding a beam waist of 470 nm (see supplementary material and Figure S3). In 

order to avoid unintentional heating of the sample the excitation power was kept below 100 

μW in all measurements. 

Results and discussion 

XPS spectra were collected before and after the reaction of elemental sulfur on top of a 

Na2MoO4 coated substrate and are presented in Figure 1. The XPS survey scan (Figure 1(a)) 

revealed that Mo, Si, C and O were present while sulfur was detected only after the treatment. 

Besides, sodium was detected before treatment and, interestingly, only traces (< 0.5 atom %) 

were found after the reaction. Before treatment, the existence of a peak doublet (Figure 1(b)) 

located at 232.6 eV and 235.8 eV corresponding to Mo3d5/2 and Mo3d3/2, respectively, can be 

assigned to Mo6+ chemical state [55]. After treatment, the Mo3d doublet shifted to lower 

energies at 229.0 eV (Mo3d5/2) and 232.1 eV (Mo3d3/2), and a new peak appeared at 226.3 eV 

corresponds to the S2s. Moreover, the S2p peak doublet (Figure 1(d)) located at 162.9 eV 

(S2p1/2) and 161.8 eV (S2p3/2) is assigned to S2p1/2 and S2p3/2. The recorded binding energies 

of Mo3d, S2s and S2p core levels indicate the fabrication of MoS2 phase on the SiO2 substrate 

[56]. Using the peak areas of Mo3d, S2p and the appropriate sensitivity factors (based on 

Wagner’s collection and adjusted to the transmission characteristics of the electron analyzer) 

the atomic ratio S:Mo is calculated as 1.8 ± 0.2 . 
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Figure 1 (a) XPS survey scan of a Na2MoO4 coated Si/SiO2 substrate before (black) and after 

(red) exposure to sulfur vapor. Mo3d and S2s core level peaks of samples before (b) and after 

(c) heat treatment. (d) S2p1/2 and S2p3/2 core level peaks of sulfur after treatment. 

Figure 2(a)-(d) correspond to optical microscope images of the grown flakes at low levels of 

Na2MoO4 concentration (≤ 2 mg/mL) while Figure S4 shows the grown continuous films at 

higher levels of Mo precursor concentration up to 10 mg/mL. For concentrations of Na2MoO4 

lower than 5 mg/mL, the total area (~ 1.5 x 1.5 cm2) of the substrate was uniformly covered by 

three-point star MoS2 flakes which is a signature of sulfur-rich conditions in the growth region 

[46, 57]. It has been found that this type of shape is usually developed when the growth rate of 

the Mo edge is at least three times faster than that of the S edge in the initial hexagonal nuclei 

[57, 58]. As can be seen in Figure 2(a)-(d) and in the inserts, the average crystal size and the 

nucleation density increase with the Mo precursor solution concentration. At 5 mg/mL the 

flakes merged and the substrate was almost completely covered, mainly by single- and few-

layered MoS2 as was further verified by Raman and PL spectroscopies (Figure S5). It should 

be noted that at specific locations on the monolayer, MoS2 epilayers with three-point star or 

dendritic shapes formed (Figure S4(a)). These features are associated with instabilities of the 
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growth process connected with surface diffusion and self-accelerated localized growth that 

happens when the corners of the regular shape have access to a higher concentration of Mo 

precursor [59, 60]. Finally, at 10 mg/mL the substrate was fully covered by bulk crystals of 

MoS2 (Figure S4(b)). 

The morphometric analysis (see supplemental material and Figure S6) unveiled a correlation 

between the Mo precursor concentration and the coverage of the substrate with MoS2 crystals 

(monolayers and epilayers). In particular, for concentrations in the range of 0.1 mg/mL to 2 

mg/mL the percent coverage of the substrate (Cov(%)) increases from 10% to 30%, 

respectively. While for concentrations higher than 5 mg/mL, Cov(%) reaches almost 100% due 

to the formation of a continuous MoS2 film (Figure S4). The dependence between Cov(%) and 

the Mo precursor solution concentration, C, is illustrated in Figure 2(e) where the experimental 

data are fitted by the linear relation: Cov(%) = (9.5 mL/mg) C + 10 % . In the supporting 

information Table S1 summarizes the substrate’s coverage and the ratio of single-layer MoS2 

(or epilayer) domain area to the total MoS2 area for the precursor concentrations used in this 

work. As can be verified from Table S1 and the insets in Figure S4, the ratio of the monolayer 

domain area to that of the epilayer MoS2 area decreases for concentrations higher than 1.67 

mg/mL. 

In a large number of three-point star crystals (Figure 2(a)-(d)), and at their exact centre, a 

nucleation point can be clearly identified (blue or white features). As has been proved recently 

[61], this nucleation centre possesses a core/shell-like structure consisting of an oxysulfide core 

wrapped in a FL-MoS2 shell. This fullerene-like structure represents the early stages of the 

flake growth when the surface is under sulfur deficient atmosphere [61]. It is interesting to note 

that by increasing the precursor concentration the diameter of the nucleation centre increases 
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and becomes more pronounced and visible denoting the addition of more MoS2 layers on the 

shell structure.  

 
Figure 2 Optical microscope images of samples prepared from Na2MoO4 solution with 

concentrations of (a) 0.1 mg/mL, (b) 0.2 mg/mL, (c) 1 mg/mL, (d) 2 mg/mL. (e) The percent 

coverage, Cov(%), as a function of the Na2MoO4 concentration. The concentration axis is 

logarithmic for clarity. The scale bars in (a) – (d) are 200 μm and in the insets 50 μm. 

Αt low levels of precursor concentration (< 2 mg/mL), the flakes are isolated and randomly 

oriented on the SiO2 substrate as shown in Figure 3(a). In Figure 3(b) an AFM topography 

image is presented for a monolayer crystal fabricated with a precursor concentration of 1.67 

mg/mL. The darker region in the top left corner of the image is the SiO2 substrate while the 

rest is a SL-MoS2 covered with numerous epilayers that grow all over its surface. Their shape 

has predominantly a three point-star motif, but the most noticeable point is that these secondary 

formed crystals are all highly oriented along the same direction. 
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Figure 3 (a) Isolated MoS2 monolayers as grown on SiO2 for precursor concentration of 0.2 

mg/mL (scale bar 100 μm). (b) AFM topography of monolayer MoS2 on SiO2 (1.67 mg/mL). 

The darker region in the top left corner of the image is the SiO2 substrate. Epilayer seed crystals 

have grown on the surface of the monolayer (scale bar 10 μm). (c) Polar directional histogram 

that shows the dominant directions of the epilayers on MoS2 monolayer (black squares) and 

the lack of any preferred orientation of the MoS2 monolayers on amorphous SiO2 (red circles). 

A more quantitative analysis was conducted through digital image processing in order to 

investigate the orientation motif of the produced crystals (see supporting information and 

Figure S7). The polar directionality histograms of the epilayers in Figure 3(b) are presented 

as black squares in Figure 3(c). The histogram reveals the presence of three preferred 

directions at 25.4°, 86.6° and 147.2°, which differ by almost 60° reflecting the hexagonal 

symmetry of the MoS2 crystals. This phenomenon was found to occur in all MoS2 monolayers 

where additional layers (epilayers) grew on top of them (see Figure S8 for another example). 

It has been observed that when MoS2 crystals are grown on single-crystalline substrates, such 
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as sapphire, they tend to grow with specific crystallographic orientations [62]. As mentioned 

above, monolayers that grew on SiO2 were found to be randomly oriented as shown in red 

circles in Figure 3(c). This is an expected outcome since the SiO2 layer on the top of Si wafers 

is amorphous. On the other hand, since the secondary layers were grown above the crystalline 

SL-MoS2, their consistent crystallographic orientation reflects the high crystallinity of the 

underlying MoS2 layer, as was further verified by TEM measurements. 

 
Figure 4 (a-c) High resolution imaging of the folded edges of MoS2 film from a sample 

fabricated by 6 mg/mL precursor concentration. The folded edge exposes (002) lattice fringes, 

spaced by 0.61 nm. (d) Electron diffraction pattern acquired on the internal part of the film in 

(a), showing hexagonal reflections corresponding to MoS2 crystal structure along the (002) 

direction of observation. (-120) and (010) reflections, corresponding respectively to 0.158 nm 

and 0.273 nm spaced families of crystal planes. 

Figure 4(a)-(c) shows high-resolution TEM images of the folded edges from regions of the 

film with different thicknesses, reflecting the growth of additional layers for 6 mg/mL 

precursor concentration. The investigation of the (002) lattice fringes at the folds (highlighted 

by the white arrows) reveals that the local film thickness varies from 1 to 4 layers, and the 

additional layers grow epitaxially. Electron diffraction analysis of spectra obtained from 
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different regions of the crystals confirmed the epitaxial growth. Figure 4(d) shows an electron 

diffraction pattern from the internal (not folded) region of the flake shown in Figure 4(a). The 

pattern reveals an individual set of reflections, arranged in a hexagonal system with specific 

distances compatible with an individual MoS2 crystal, with layers stacked without rotational 

defects. 

The produced crystals were further investigated by optical spectroscopic techniques such as PL 

and Raman which have been successfully employed to extract information concerning, among 

others, the number of layers [63], defects [64], mechanical or thermal strain [65-69], thermal 

conductivity [70] doping effects [71], stacking order [72] and structural stability [73]. In Figure 

5(a) an optical microscope image of a supported CVD MoS2 crystal (Mo precursor 

concentration of 1.67 mg/mL) is shown, exhibiting two well-defined regions of different 

optical contrast, assigned as I and II. The PL intensity map of the direct A exciton (see below) 

near 1.80 eV for this crystal is presented in Figure 5(b). Two regions, exhibiting high and low 

PL intensities can be clearly distinguished, corresponding to regions-I and II of Figure 5(a). 

High PL emission in the visible range is a characteristic feature of the direct bandgap present 

in monolayer MoS2, while low PL intensity is indicative of an indirect bandgap few-layered (2 

to 6 Layers) or even bulk MoS2 crystal [74]. For freestanding monolayer MoS2 an enhancement 

in luminescence efficiency by a factor of 102 and 104 compared to bilayer and bulk counterparts 

has been observed [75]. Representative spectra from these regions are depicted in Figure 5(c). 

The individual PL spectra from both regions contain a pronounced peak near 1.80 eV 

associated with the direct excitonic transitions at the K and K´ points of the Brillouin zone [74]. 

The valence band of MoS2 is split in two bands at K/K´ due to the notable spin-orbit coupling 

arising from the metal d-orbitals [76]. Therefore, two distinct optical transitions assigned as A 

and B excitons occur in MoS2 with the former one located -in freestanding samples- at 1.88 eV 

and the latter located at 2.05 eV [74, 77]. The PL spectrum from region-II contains another 
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spectral feature near 1.40 eV, absent from the spectrum of region-I (see inset in Figure 5(b)). 

This peak, assigned as the I-exciton, is associated with the indirect gap of few-layered or bulk 

MoS2 coming from optical transitions located at the middle point between the high symmetry 

points Κ/K´ and Γ in the Brillouin zone [74, 78]. Therefore, these observations verify that 

region-I corresponds to monolayer MoS2. Moreover, the exploration of the morphology by 

means of AFM, of a similar crystal located at the same substrate showed that region-II 

corresponds essentially to an MoS2 bilayer (see Figure S9). Note that the epilayer coverage of 

the crystal in Figure 5 is significantly higher than the average epilayer coverage of crystals 

fabricated with 1.67 mg/mL precursor concentration (about 11%) as shown in Table S1. 

However, it was chosen for reasons of clarity. 

A histogram of the PL peak positions (~1000 spectra) for region I (monolayer) is presented in 

Figure 5(d). The mean value of the PL peak position is 1.78 eV. We found that the PL peak 

position for many monolayer samples fabricated by the CVD method presented here, is about 

1.80 eV, regardless of the Mo precursor concentration (see Table S2). This value is about 40 

meV redshifted relative to the one reported for exfoliated monolayer MoS2 on SiO2 [53, 77]. It 

is well documented that freestanding MoS2 is undoped and as a result the Ao neutral exciton 

(~1.88 eV) dominates the PL emission spectrum. On the other hand, MoS2 monolayers 

supported on SiO2 are n-doped and the PL emission is dominated by the recombination of 

negative trions (A-) (~ 1.84 eV) [53, 75, 77]. 
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Figure 5 (a) Optical microscope image of a CVD MoS2 crystal obtained with a precursor 

concentration of 1.67 mg/mL, where regions I and II of different thickness are denoted. (b) PL 

Intensity map of the region enclosed by the black rectangle in (a). (c) Representative PL spectra 

from regions-I (red) and -II (black) where the A and B exciton emission peaks are visible. The 

inset shows the spectral region where the I-exciton emission peak is visible at 1.4 eV only for 

region-II. (d) PL peak position histogram from region I. The scale bars in (a) and (b) are 50 μm 

and 20 μm, respectively. 

In Figure 6(a), a map of the Δω value – i.e. the frequency difference between the A1´and E´ 

Raman modes of SL - MoS2 – of the above-mentioned MoS2 crystal is presented (see 

supporting information). The single- and bilayer - MoS2 regions exhibit an average Δω value 

of 21.8 cm-1 and 23.9 cm-1, respectively. The reported Δω values for exfoliated SL-MoS2 range 

between 18.4 cm-1 – 19.5 cm-1 while, for bilayer- and trilayer - MoS2 the Δω values concentrate 
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close to 21.5 cm-1 and 23.5 cm-1, respectively [53, 63]. Comparing the Δω values of exfoliated 

MoS2 with those obtained in the present study for CVD MoS2 crystals, a significant deviation 

is noted and will be explained later. Another characteristic example of a CVD MoS2 crystal 

exhibiting similar spectral features is presented in Figure S11. Note that in that case, the 

epilayer seeds did not merge and as a result no continuous epilayer formed, yet the spectral 

response is similar in both cases. 

Additional evidence supporting the assignment of regions I and II as a single- and bi-layer 

MoS2, respectively, can be given by correlating the Raman scattering intensity of the 

underlying silicon substrate, I(Si), to the number of MoS2 layers (N). Due to optical interference 

effects, the dependence of I(Si) vs N is non-trivial (see supporting information). Our 

calculations show that for N ≤ 3 and a SiO2 layer thickness of 90 (300) nm, the I(Si) is found 

to decrease roughly by 15% (17%) per MoS2 layer, while, for 20 nm SiO2 thickness I(Si) is 

practically constant (Figure S12(b)). These results are consistent with the experimental data 

presented in Figure S13 and S14, were a decrease of I(Si) by (20 ± 4) % and (20 ± 2) % was 

observed for CVD MoS2 on 90 nm SiO2 and for exfoliated MoS2 on 300 nm SiO2, respectively. 

Besides, for CVD MoS2 crystals grown on 20 nm SiO2 layer no measurable change in I(Si) 

was detected Figure S15. 
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Figure 6 (a) Raman image and (b) histogram of the Δω value (i.e. the frequency difference 

between the A1´and E´ Raman modes of MoS2) of the crystal presented in Figure 5(a). The 

scale bar in (a) is 20 μm. 

The spectral differences between CVD and exfoliated MoS2 monolayers reflect the effect of 

growth conditions and the interaction between the CVD grown crystal and the substrate. This 

interaction is capable of straining or doping the 2D-crystals with excess charges [79-82]. 

Moreover, the thermal expansion coefficient (TEC) mismatch between MoS2 and the Si/SiO2 

substrate can also strain the overlying crystal during the cooling stage [67]. The strain transfer 

can be influenced due to oxygen dangling bonds present on the SiO2 surface, which act as 

anchoring centers for the MoS2 crystals [83]. It is well documented that mechanical strain can 

have a measurable impact on both the phonon frequencies [68, 84] as well as the electronic 

band structure of MoS2 [66, 85]. This makes Raman and PL spectroscopies suitable non-

destructive probes of strain that may be present in 2D-MoS2 crystals. Additionally, changes in 

carrier concentration affect both the Raman modes of MoS2 [71] and its PL response as well 

[75]. Recently, we have undertaken a systematic study to quantify strain and unintentional 

doping effects in MoS2 samples grown or transferred on Si/SiO2 substrate assuming reasonably 

that both effects are decoupled from each other at relatively low doping levels (<1%). More 

specifically, we have shown that it is feasible to quantify local mechanical strain (ε) and doping 

(n) levels in a SL-MoS2 crystal, by correlating the Pos(A1´) – Pos(E´) values obtained in a 

detailed Raman mapping [53]. 
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In Figure 7(a) the Pos(A1´) vs Pos(E´) plot for a series of representative SL-MoS2 samples 

fabricated by CVD or micromechanically exfoliated on different substrates (SiO2 and PMMA), 

is presented. Additionally, in the same figure, the strain- charge density (ε-n) axes are drawn. 

Each point in the plot corresponds to the average values for the E´ and A1´ phonon mode 

frequencies, extracted from intensive Raman maps collecting hundreds up to a few thousand 

spectra. The error bars represent the standard deviation of the corresponding dataset. The data 

presented graphically in Figure 7 are summarized in Table S2 in the supporting information. 

The shape of the points (square or circle) is indicative of the underlying substrate (SiO2 or 

PMMA) while the color (black, red, or blue) represents the sample’s fabrication method (CVD, 

exfoliated or transferred-CVD). It should be noted that the exfoliated onto SiO2 sample has 

been considered as a reference for the ε-n axes, since, in absence of an undoped and unstrained 

sample, only strain and carrier concentration differences are meaningful [53].  

At first glance, it is evident that all samples experience similar doping levels -0.5 to -1.0x1013 

electrons/cm2, except for the SL-MoS2 crystal exfoliated on SiO2 substrate which was found to 

be more n-doped. The exfoliated samples, regardless of substrate, experience similar amounts 

of strain roughly between ±0.05%. The strain and doping levels of the CVD samples are 

concentrated around 0.3 % and -0.8 x 1013 electrons/cm2, respectively. We found that 

transferring the CVD samples (blue points) releases the accumulated strain to values in the 

range of 0.0 to -0.2 %. As a consequence, the Δω value is decreased from 21.7 cm-1 in as 

fabricated samples to about 19.0 cm-1 in transferred CVD samples. These strain and doping 

differences are also responsible for the aforementioned increased Δω values of the CVD MoS2 

crystals relative to the exfoliated crystals – 18.4 cm-1 and 19.7 cm-1 for the SL-MoS2 exfoliated 

on SiO2 and PMMA, respectively. It must be noted that the transferring of a 2D crystal is a 

sample sensitive, multiple step procedure. As a result, despite that strain relaxation occurred in 
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all transferred CVD samples, the final states can be different. This is reflected by the presence 

of the two CVD MoS2 transferred on PMMMA points (blue circles) in Figure 7(a). 

More evidence that support the claim that the CVD-MoS2 crystals are subjected to relatively 

tensile strain are found in Figure 7(b). There, the average PL peak position for the Aο exciton 

(solid shapes) and A- trion (open shapes) for the samples (see Table S2) presented in Figure 

7(a) are plotted against the average relative strain that was calculated from the Raman 

mappings. The data lie roughly on a line with a slope of (-0.16±0.01) eV/% and (-0.14±0.01) 

eV/% for the Ao and A- peaks, respectively. This is very close to the calculated value of the 

deformation potential of SL-MoS2 for biaxial strain [86, 87] as well as a very recent 

experimental measurement [85]. Representative PL spectra for each sample type used in this 

work are presented in Figure S16. It must be noted that since exfoliated SL-MoS2 crystals on 

SiO2 are known to be n-doped, no measurable neutral exciton peak was found in the PL signal 

of our corresponding sample. However, both the A- as well as the Ao components were detected 

in the PL response of the SL-MoS2 crystal which was exfoliated onto PMMA. For the two 

exfoliated samples the negative trion is found to be roughly at 1.83 eV, supporting the 

conclusion that these particular samples experience similar amounts of mechanical strain, as 

inferred from Raman spectroscopy. The presence of the neutral exciton in the sample exfoliated 

on PMMA is another indication that this crystal has a lower electron concentration than the one 

exfoliated on SiO2. Again, the same result is concluded from the Raman analysis in Figure 

7(a). 
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Figure 7 (a) Pos(A1´) vs Pos(E´) correlation plot for samples fabricated by different methods 

and/or supported on different substrates. (b) The average PL peak position of these samples 

plotted against the relative strain measured from the ε – n space in (a). The shape of 

experimental points (square/circle) indicates the substrate (SiO2/PMMA) and the colour 

(Black, Red, Blue) indicates the fabrication method (CVD, Exfoliated or transferred CVD). 

Conclusions 

A novel, controlled and eco-friendly, scalable CVD method for the production of 2D-MoS2 is 

developed. Two dimensional MoS2 crystals are fabricated on Si/SiO2 substrates through the 

reaction of Na2MoO4 and elemental sulfur at high temperature (800 °C) and atmospheric 

pressure. Two different growth regimes were observed depending on precursor concentration. 

Isolated single layer MoS2 crystals were produced with controllable mean lateral size for 

concentrations lower than 1.67 mg/mL, while continuous single layers films with few layer 

domains are epitaxially fabricated for higher concentrations. The method provides 

homogeneously distributed crystals on the substrate at large scales and control of the monolayer 

and epilayer areas by varying the Na2MoO4 solution concentration. The epilayers were found 

to be highly oriented, a phenomenon that was attributed to the high crystallinity of the 

underlying single layer MoS2. 

The CVD crystals exhibit optical spectral differences with respect to their exfoliated 

counterparts, including higher Δω values and redshifted PL peak positions. It was made 
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possible to interpret these peculiarities via a strain – doping (ε – n) correlation plot. The CVD 

crystals were found to experience tensile strain (~ 0.3 %) relative to the exfoliated ones, while 

a release of 0.6 % strain was observed when these CVD crystals were transferred to another 

plastic substrate. Moreover, the neutral exciton and negative trion peak positions of the 

fabricated crystals varied linearly with biaxial strain in excellent agreement with previous 

theoretical and experimental studies. Therefore, the correlation of PL and Raman 

spectroscopies and the relative high level of mechanical stain induced by growth and transfer 

enabled an indirect measurement of the deformation potential of the direct optical transition of 

MoS2 under biaxial strain. The measured deformation potentials were found equal to -0.16 

eV/% and -0.14 eV/% for Ao and A- transitions, respectively, indicating a significant impact of 

the fabrication method on the optical properties of SL-MoS2. 
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