Colloquia: IFAE 2014

J/ψ and $\psi(2S)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ with ALICE at the LHC

M. LEONCINO for the ALICE COLLABORATION INFN and University, Torino, Italy

received 7 January 2015

Summary. — The ALICE Collaboration has studied the inclusive J/ψ and $\psi(2S)$ production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, at the CERN LHC. The J/ψ measurement is performed in the $\mu^+\mu^-$ and in the e^+e^- decay channels, down to zero $p_{\rm T}$. The results are in fair agreement with theoretical predictions. The $\psi(2S)$ measurement has also been performed. In particular, a smaller $\psi(2S)$ nuclear modification factor, with respect to the J/ψ one, has been observed.

PACS 25.75.-q – Relativistic heavy-ion collisions. PACS 12.38.Mh – Quark-gluon plasma. PACS 14.40.Pq – Heavy quarkonia.

1. – Introduction

The suppression of charmonia, bound states of c and \bar{c} quarks, is considered a clean signature of Quark-Gluon Plasma (QGP) formation in heavy-ion collisions [1]. In addition to the color screening mechanism, other effects may contribute to the charmonium production in Pb-Pb collisions. In particular, one can expect a recombination of c and \bar{c} pairs from the medium (favoured by the large $c\bar{c}$ multiplicity typical at the LHC energies [2]). Furthermore, cold nuclear matter (CNM) effects, like shadowing [3,4] and initial state parton energy loss [5], are expected to play a role. It is thus important to study the production of charmonia in proton-nucleus collisions in order to disentangle the suppression contribution related to CNM from the one associated to the formation of a QGP.

2. – The ALICE detector and the p-Pb run

The ALICE detector consists of a central barrel dedicated to particle tracking and identification (in the range $|\eta| < 0.9$) and a forward spectrometer used for the detection of muons (in the interval $-4 < \eta < -2.5$). More details about the experimental setup can be found in [6]. The J/ ψ resonance is detected both in the dielectron decay channel (using the central barrel detectors) and in the dimuon decay channel (using the forward

© CERN on behalf of the ALICE Collaboration

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

Fig. 1. – Inclusive J/ψ nuclear modification factor as a function of rapidity. Open boxes are uncorrelated systematic uncertainties, filled area indicate partially correlated uncertainties and the gray box at one the global uncertainty due to the $T_{\rm pPb}$. Theoretical models based on shadowing/energy loss [9-11] and CGC [12] are also shown.

muon spectrometer), while, with the present statistics, the $\psi(2S)$ can be studied only in the dimuon decay channel. Due to the energy asymmetry of the LHC beams in p-Pb collisions the nucleon-nucleon center-of-mass system is shifted by $\Delta y = 0.465$ in the direction of the proton beam. Data have been collected in two beam configurations with inverted beam directions, resulting in the following rapidity coverages: $-4.46 < y_{\rm cms} < -2.96$ at backward rapidity, $-1.37 < y_{\rm cms} < 0.46$ at midrapidity and $2.03 < y_{\rm cms} < 3.53$ at forward rapidity.

3. – Results

The nuclear effects on J/ψ production in p-Pb collisions are quantified by means of the nuclear modification factor, which is defined by: $R_{\rm pPb} = Y_{\rm J/\psi}/\langle T_{\rm pPb}\rangle \cdot \sigma_{\rm pp}^{\rm J/\psi}$, where $Y_{\rm J/\psi}$ is the efficiency corrected J/ψ yield, $\sigma_{\rm pp}^{\rm J/\psi}$ is the production cross section in pp collisions in the same kinematical range at the same energy and $T_{\rm pPb}$ is the nuclear thickness function estimated through the Glauber model [7]. Since pp data at $\sqrt{s} = 5.02$ TeV are not available, the reference $\sigma_{\rm pp}^{\rm J/\psi}$ is obtained with an interpolation procedure [8]. The results are reported in fig. 1: at mid and forward rapidity, the inclusive J/ψ production is suppressed with respect to that in pp collisions, whereas it is unchanged at backward rapidity. Models containing shadowing and/or energy loss [9-11] are in agreement with ALICE data (within uncertainties), while the CGC-based model [12] overestimates the suppression.

Since the Bjorken x-values in the Pb nucleus in p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ are similar to the ones in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ and assuming a factorization of shadowing effects, an expectation for the R_{AA} based on the R_{pA} can be derived by comparing $R_{pPb}^{forward} \times R_{pPb}^{backward}$ with R_{PbPb} (fig. 2). At low transverse momentum data suggest a contribution from regeneration while, at higher transverse momenta, the suppression contribution starts to be dominant. The $\psi(2S)$ analysis has been performed analogously to the J/ψ one. In fig. 3 (left) the double ratio $[\psi(2S)/J/\psi]_{pPb} / [\psi(2S)/J/\psi]_{pp}$ is shown as a function of rapidity and is compared with the PHENIX result in d-Au collisions at $\sqrt{s_{NN}} = 0.2 \text{ TeV}$. ALICE results show a similar trend compared with PHENIX data at midrapidity [13] indicating a suppression in the $\psi(2S)$ production with respect to

Fig. 2. – In the left plot the $J/\psi R_{pPb}^{backward} \times R_{pPb}^{forward}$ is compared to the $R_{PbPb}^{forward}$. In the right plot the J/ψ is compared $\left(R_{pPb}^{midrapidity}\right)^2$ with $R_{PbPb}^{midrapidity}$.

Fig. 3. – Left: the double ratio $[\psi(2S)/J/\psi]_{pPb}/[\psi(2S)/J/\psi]_{pp}$. PHENIX data at $\sqrt{s_{NN}} = 0.2$ TeV at midrapidity is also shown. Right: the $R_{pPb}^{\psi(2S)}$ compared to $R_{pPb}^{J/\psi}$.

p-p collisions. This suppression is further investigated in fig. 3 (right) where the $R_{\rm pPb}^{\psi(2S)}$ is presented as a function of rapidity and is compared to $R_{\rm pPb}^{J/\psi}$. The $\psi(2S)$ is more suppressed with respect to the J/ ψ . These results are compared to theoretical calculations used for the J/ ψ [9-11], which should hold for the $\psi(2S)$. The available theoretical predictions do not describe the $\psi(2S)$ suppression, indicating that other mechanisms are required to explain it.

REFERENCES

- [1] MATSUI T. and SATZ H., Phys. Lett. B, 178 (1986) 416.
- [2] ANDRONIC A., BRAUN-MUNZINGER P. et al., J. Phys. G, 38 (2011) 124081.
- [3] DE FLORIAN D. and SASSOT R., Phys. Rev. D, 69 (2004) 074028.
- [4] HIRAI M., KUMANO S. and NAGAI T. H., Phys. Rev. C, 76 (2007) 065207.
- [5] ARLEO F. and PEIGNE S., Phys. Rev. Lett., 109 (2012) 122301.
- [6] AAMODT K. et al. (ALICE COLLABORATION), JINST, 3 (2008) S08002.
- [7] ALICE COLLABORATION, Phys. Rev. Lett., 110 (2013) 082302.
- [8] ALICE and LHCB COLLABORATIONS, ALICE-PUBLIC-2013-002 LHCb-CONF-2013-013.
- [9] ALBACETE J. et al., Int. J. Mod. Phys. E, 22 (2013) 1330007.
- [10] VOGT R., private communications.
- [11] ARLEO F. and PEIGNE S., JHEP, 03 (2013) 122.
- [12] FUJII H. and WATANABE K., Nucl. Phys. A, 915 (2013) 1.
- [13] ADARE A. et al. (PHENIX COLLABORATION), Phys. Rev. Lett., 111 (2013) 202301.