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Tilted and standard ring solitons in shallow water
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Summary. — The propagation of nonlinear multiring soliton structures in a shal-
low water is theoretically investigated. To study this problem, we have derived a
cylindrical (or concentric) Korteweg-deVries equation (cKdVE) for an incompress-
ible, inviscid, and irrotational fluid. The cKdVE has been solved analytically and
numerically to describe, respectively, the localized multiring structures with tilted
and standard boundary conditions.

PACS 92.10.Hm – Ocean waves and oscillations.
PACS 05.45.Yv – Solitons.
PACS 02.30.Jr – Partial differential equations.

1. – Introduction

Water waves exhibit some basic features which can be rarely matched by other kinds of
waves that are found in nature. They can be perceived qualitatively with attentive naked
eyes. It is also a remarkable fact that several mathematical techniques used to analyze
and solve the nonlinear partial differential equations have been developed for the first
time in water wave physics. Later on, they were transferred to the other disciplines, such
as nonlinear optics, plasma physics, condensed matter physics, electrical transmission
lines, etc. Valuable examples are the very massive applications of nonlinear equations,
such as Korteweg-de Vries equation (KdVE), nonlinear Schrödinger equation (NLSE) and
Kadomtsev-Petviashvili equation (KPE), to the above disciplines [1-6]. Furthermore, it
is worth noting that water wave physics in the nonlinear regime is related not only to the
natural occurrence of extreme events [7,6], such as the rogue wave [8,9] and the tsunami
generation [10], but it includes also the study of artificially produced nonlinear wave
phenomena [11] that are of great interest in physical oceanography and environmental
risk studies [6].
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In this paper, we present a theoretical investigation on the nonlinear propagation
of ring-type multisoliton in shallow water that has been recently carried out [12]. We
consider the model of an incompressible, inviscid, irrotational water described by the
set of Euler’s fluid equations. In cylindrical geometry and using a method of multiple
scales for weakly nonlinear and dispersive waves, this set of equations is suitably reduced
to the cylindrical (i.e. concentric) Korteweg-de Vries equation (cKdVE) that governs
the propagation of nonlinear ring waves. We look for both analytical and numerical
localized solutions that result from the free fall of an initially given multiring soliton in
shallow water. The analytical solutions satisfy “tilted” boundary conditions, i.e. they
are localized structures living on an oblique asymptote. The numerical solutions satisfy
“standard” boundary conditions, i.e. they are localized structures whose wings vanish
asymptotically in the space-like domain. We provide a (1 + 1)D representation and
adopt a pair of spatiotemporal dimensionless coordinates, say R and T , that represent
the space-like propagation coordinate and the time, respectively [13]. Then, we express
these solutions by means of a (2 + 1)D representation, where R is expressed in terms of
the Cartesian horizontal coordinates, say, X and Y (R =

√
X2 + Y 2), while the time-like

variable is still T [13].

2. – Model description

The water is regarded as an incompressible, irrotational, inviscid fluid, with a zero
surface tension and with density ρ. It lies on an impermeable bed, with constant depth
and with a constant atmospheric pressure at the free surface. One can reduce the set
of fluid equations in cylindrical symmetry to the following cylindrical (or concentric)
Korteweg-de Vries equation (cKdVE) using the method of multiple scales (for details,
see refs. [14,15]):

∂H0

∂s
+

3
2
H0

∂H0

∂ζ
+

1
6

∂3H0

∂ζ3
+

H0

2s
= 0,(1)

where ζ and s are the dimensionless stretched space-like and time-like variables,
respectively, and H0 is the rescaled leading order term of the elevation expansion (for
details see ref. [14]). Note that, the last term of eq. (1), i.e., H0/2s comes from the
cylindrical geometry adopted in our description. If we formally remove this term, eq. (1)
reduces to the planar KdVE (pKdVE) (see eq. (4)).

We perform the following transformation:

ζ(R, T ) = R − T, s(R, T ) = T, and v(R, T ) = H0(ζ(R, T ), s(R, T )),(2)

where T and R (0 < T < ∞, 0 ≤ R < ∞) play the role of the time and the space-like
coordinates, respectively. The latter conforms to the propagation (or, more precisely, to
the expansion) along the radial direction [13], respectively. Using these transformations,
we reduce eq. (1) in the following form [12]:
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2
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∂3v
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+

v

2T
= 0.(3)

Equation (3) governs the spatiotemporal evolution of cylindrical, ring-type, multisoliton
solutions in the (R, T ) domain.
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3. – Analytical multisoliton solution of cKdVE

A class of analytical solutions of cKdVE has been obtained from the solutions of
KdVE by employing the appropriate transformations of variables [12]. Let us write the
pKdVE for the leading order term of the elevation expansion, say, η0 as the following
form:

∂η0

∂τ
+

3
2

η0
∂η0

∂ξ
+

1
6

∂3η0

∂ξ3
= 0.(4)

If η0(ξ, τ) is solution of eq. (4), then the function

H0(ζ, s) = s−1
[
η0

(
ξ = s−1/2ζ, τ = −2s−1/2

)
+ ζ/3

]
(5)

is solution of eq. (1) [16,17]. By using the transformations (2), H0(ζ, s) easily becomes:

v (R, T ) =
1
T

[
η0

(
R − T

T 1/2
,− 2

T 1/2

)
+

R − T

3

]
.(6)

Since we are also going to show the solution v in the form of a ring structure through
the horizontal variables X,Y at each time T , eq. (6) can be cast as

v (X,Y, T ) =
1
T

[
η0

(√
X2 + Y 2 − T

T 1/2
,− 2

T 1/2

)
+

√
X2 + Y 2 − T

3

]
,(7)

where we have used the relation R =
√

X2 + Y 2. Note that, if η0 satisfies the standard
boundary conditions, i.e. η0 (ξ, τ) → 0 when ξ → ±∞, then it is obvious from eq. (6)
that v (R, T ) is the superposition of a localized structure and a straight line in the (R, T )
domain. The straight line, which also plays the role of asymptote, is given by: R/3T−1/3;
then its slope decreases as 1/T . Consequently, at each T , v (R, T ) is a localized structure
whose wings fit to the oblique asymptote: v = R/3T − 1/3; then, we refer v to as tilted
localized structure because it satisfies the tilted boundary conditions. It is worth noting
that, for T → ∞, we have v → −1/3, i.e. as the time increases, the tilted soliton
gradually flattens, reaching a flat profile for asymptotic times.

3.1. One-soliton solution. – To follow the above procedure, we find the analytical one-
soliton solution of eq. (1) as the image of the one-soliton solution of the KdVE, given by
η0(ξ, τ) = um0 sech2

[√
3um0/4 (ξ − V0τ)

]
, where V0 = um0/2. Therefore, we call tilted

soliton the corresponding solution of cKdVE. Therefore, a tilted one-soliton solution of
eq. (1) is given by [16,17]

H0(ζ, s) =
1
s

{
ζ

3
+ um0 sech2

[√
3um0

4 s
(ζ + um0)

]}
,(8)

where um0 is the maximum amplitude of the corresponding planar soliton. Then, we
rewrite the solution (8) in terms of the new variables R and T , obtaining

v(R, T ) =
1
T

{
1
3

(R − T ) + um0 sech2

[√
3um0

4T
[(R − T ) + um0]

]}
.(9)
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Fig. 1. – Analytical spatial profile of the ring-type bright soliton in (X, Y, T ) domain at fixed
values of T and um0 = 3.5.

Figure 1 shows the spatiotemporal evolution of the tilted ring-type bright soliton in
the (X,Y, T ) domain at fixed values of T . We observe that, as T increases, the pulse
profile propagates circularly outward and, according to eq. (9), as T increases, both the
amplitude of the soliton pulse and the slope of the oblique asymptote decrease; whilst,
the width of the pulse increases. However, the pulse preserves its soliton shape during
this evolution.

3.2. Two- and three-soliton solutions. – By applying the same transformations (2) to
the two- and three-soliton solutions of KdVE, we also easily find the analytical tilted
solutions of eq. (3) in the form of bright two- and three-tilted solitons, respectively:

v(R, T ) =
1
T

[
R − T

3
+ (um2 − um1)

P ′ + Q′

S′2

]
,(10)

v(R, T ) =
1
T

[
R − T

3
+ P ′ − (um2 − um3)

W ′(
um1−um2

S′ − um3−um1
T ′

)2

]
,(11)

where

S′ =
√

um1 tanh

[√
3um1

4T
(R − T + um1)

]
−√

um2 coth

[√
3um2

4T
(R − T + um2)

]
,

P ′ = um1 sech2

[√
3um1

4T
(R − T + um1)

]
, Q′ = um2 cosech2

[√
3um2

4T
(R − T + um2)

]
,

W ′ =
(um2 − um1) (P ′ + Q′)

S′2 +
(um3 − um1) (R′ − P ′)

T ′2 ,

R′ = um3 sech2

[√
3um3

4T
(R − T + um3)

]
,

T ′ =
√

um3 tanh

[√
3um3

4T
(R − T + um3)

]
−√

um1 tanh

[√
3um1

4T
(R − T + um1)

]
.

Figures 2 and 3 display the spatiotemporal evolution of the two-tilted and three-tilted
soliton solution, respectively, in the (X,Y, T ) domain, at fixed values of T , according to
eq. (7).
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Fig. 2. – Analytical spatial profile of the ring-type two-soliton in (X, Y, T ) domain at fixed values
of T and um1 = 3.0, um2 = 5.5.

Fig. 3. – Analytical spatial profile of the ring-type three-soliton in (X, Y, T ) domain at fixed
values of T and um1 = 2.0, um2 = 4.0, um3 = 6.0.

As T increases, their profiles evolve as ring-type multisoliton pulses. They propagate
outward (divergent rings) in the (X,Y, T ) domain.

We note that all the above tilted ring-type multisolitons can be thought as the super-
position of conic-shaped water surface and standard ring-type multisoliton. In figs. 1–3,
we see that cylindrical solitons are affected by a temporal decay of their amplitudes. This
intrinsic effect happens due to the geometrical character of these solutions. Therefore, we
refer it to as the physiological decay of the cylindrical solitons. The physiological decay
of a cylindrical soliton is always accompanied by the temporal growth of the pulse width.
Here, we refer it to as the physiological spreading of the cylindrical solitons. Physiological
decay and physiological spreading (flattening) are always complementary effects. From
the solutions (9)–(11), we show that each ring amplitude decays as 1/T and the pulse
width increases as

√
T . On the basis of these two temporal laws, the amplitude-width

complementarity is ruled by the following law: um(T )σ(T )2 = constant, where um(T )
and σ(T ) are the instantaneous amplitude and width of soliton at any time, respectively.
Since eq. (3) reduces to the pKdVE for very large T , this law asymptotically recovers the
well-known constancy of the product um σ2 (fixed by the coefficients of the pKdVE) that
holds for planar solitons. According to eqs. (9)–(11), all multiring solitons move outward
circularly with the same speed in the (X,Y, T ) domain. Accordingly, we have never ob-
served in the case of two and three solitons that a higher pulse overcomes a smaller one
as it typically occurs in the case of the pKdV solitons. As a result, we conclude that
the velocity of each soliton pulse or ring is independent of its amplitude. We have also
never observed the breakup of a tilted localized structure (single or multisoliton) into
two or more pulses and the enhancement of pulses during the spatiotemporal evolution.
Nevertheless, our analytical tilted multipulse/multiring structures behave in such a way
that each initial pulse/ring preserves its soliton-like shape, although the physiological
variation takes place.
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Fig. 4. – Elevation v of the numerical ring-type one-soliton solution of eq. (3) in the (X, Y, T )
domain at fixed values of T satisfying the initial condition (12) and the standard boundary
conditions (13). n = 0, um0 = 0.8, R0 = 8, and Tmin = 2.0.

4. – Numerical multisoliton solution of cKdVE

Equation (3) has been solved by imposing both a multisoliton profile at the initial
time T = Tmin > 0, and the standard boundary conditions in (R, T ) domain [12]. Then,
we express the multisoliton solution v with the form of ring in the (X,Y, T ) domain.

4.1. One-soliton solution. – For one-soliton, eq. (3) has been solved using the initial
conditions

v (R, Tmin) = Rn um0 sech2

[√
3um0

4
(R − R0)

]
, n = 0, 4,(12)

where R0 is an arbitrary positive constant for n = 0, 4. As we have used a finite-sized
computational box, the standard boundary conditions are

v(R = 0, T ) = v(R = Rmax, T ) = 0,
dv(R, T )

dR

∣∣∣∣
R→0

=
dv(R, T )

dR

∣∣∣∣
R→Rmax

= 0(13)

for Rmax sufficiently large. Figure 4 shows the spatiotemporal evolution of the numerical
ring-type one-soliton solution of eq. (3) that corresponds to the initial condition (12) with
n = 0 and R0 = 8 and the boundary condition (13) in the (X,Y, T ) domain at different
values of T . Furthermore, in fig. 5, we show the spatiotemporal evolution of the soliton
solution in the form of multiplet that satisfies the initial condition (12) with n = 4 and
R0 = 0.5 and the boundary condition (13) in the (R, T ) domain at different values of T .

4.2. Two- and three-soliton solutions. – Further numerical localized solutions of eq. (3)
have been found with the boundary conditions (13) and the following two- and three-
soliton–like initial conditions, respectively, i.e.,

v(R, Tmin) = (um2 − um1)
P + Q

S2
,(14)

v(R, Tmin) = P − um2 − um3(
um1−um2

S − um3−um1
L

)2

×
[
(um2 − um1)(P + Q)

S2
+

(um3 − um1)(F − P )
L2

]
,(15)
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Fig. 5. – Elevation v of the numerical solution of eq. (3) vs. R at fixed values of T satisfying the
initial condition (12) and the standard boundary conditions (13). n = 4, um0 = 1.0, R0 = 0.5,
and Tmin = 3.0.

where

P = um1 sech2

[√
3um1

4
(R − R1)

]
, Q = um2 cosech2

[√
3um2

4
(R − R2)

]
,

S =
√

um1 tanh

[√
3um1

4
(R − R1)

]
−√

um2 coth

[√
3um2

4
(R − R2)

]
,

L =
√

um3 tanh

[√
3um3

4
(R − R3)

]
−√

um1 tanh

[√
3um1

4
(R − R1)

]
,

F = um3 sech2

[√
3um3

4
(R − R3)

]
.

In the equations above, um1, um2, um3, R1, R2 and R3 are positive arbitrary constants.
Figures 6 and 7 show the spatiotemporal evolution of numerical ring-type two-soliton and
three-soliton solution of eq. (3), respectively, in the (X,Y, T ) domain at the fixed values
of T . The numerical results displayed in figs. 4–7 can be summarized as follows. In
figs. 4, 6, and 7, single or multiring pulses propagate outward (divergent rings) circularly
in the (X,Y, T ) domain, and in fig. 5, they propagate to the right in the (R, T ) domain.
For any time T > Tmin, these initial profiles evolve as the result of their free fall and
according to eq. (3). We have seen that a set of ripples appeared in the form of water
wake. According to the terminology of the nonlinear waves, one may refer this effect to
as the radiation of the solitonlike structures. As T increases, the amplitudes of soliton
pulses decrease gradually, while the radiation tail or wake becomes longer, with increas-
ing number of ripples. Note that the amplitude of water wake appears limited during
the evolution. The amplitudes of soliton-like structures decay as T increases, but they
preserve the soliton-like behavior until their amplitude is reduced almost to the same
order of magnitude of the water wake. We also refer this effect to as the physiological
decay of the pulse. The physiological spreading (or flattening) of pulses has been observed
as T increases. Therefore, numerical results also show the complementary effects (i.e.,
the greater amplitude the smaller width, and vice versa). In fig. 5, we show that one-
soliton–like pulse, within an initially given soliton pulse, that is multiplied by powers of
R, breaks up into three secondary pulses. We refer to such initial pulse as father pulse.
We see that the father pulse has been transformed into the dominant secondary pulse
(in terms of amplitude) after splitting from the smaller secondary pulses. After that,
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Fig. 6. – Elevation v of the numerical ring-type two-soliton solution of eq. (3) in the (X, Y, T )
domain at fixed values of T satisfying the initial condition (14) and the standard boundary
conditions (13). um1 = 0.8, um2 = 3.0, R1 = 11.0, R2 = 6.0, and Tmin = 2.0.

Fig. 7. – Elevation v of the numerical ring-type three-soliton solution of eq. (3) in the (X, Y, T )
domain at fixed values of T satisfying the initial condition (15) and the standard boundary
conditions (13). um1 = 1.0, um2 = 2.5, um3 = 5.0, R1 = 17.0, R2 = 11.0, R3 = 7.0, and
Tmin = 2.0.

it becomes more sharper since a part of it has created smaller pulses. During breakup
process, the dominant secondary pulse becomes sufficiently sharp to enhance its am-
plitude which exceeds the height of the initial father pulse. This is caused due to the
maximum amplitude-width complementarity. In figs. 6 and 7, we have seen that a higher
pulse overcomes the smaller pulse. According to the above investigations, we see that
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Fig. 8. – um σ2 vs. T for different Tmin. The initial profile corresponds to eq. (12) for n = 0,
R0 = 8.0, and um0 = 0.8. Plots from bottom to top correspond to Tmin ranging from 0.1 to 8.0.

the speed of single soliton is directly proportional to its maximum amplitude as in the
planar case. All the numerical multiring solitons show the solitonlike behavior apart from
the wake during the evolution. A more significant analysis has been made on the basis
of single soliton solution in fig. 8. This figure displays the product um(T )σ2(T ) of the
instantaneous soliton maximum amplitude, i.e., um(T ), and the instantaneous soliton
width to the square, i.e., σ2(T ), for several values of Tmin. For sufficiently large T , it is
evident that the product um σ2 becomes independent of T . This limit recovers the usual
complementarity between um and σ of the planar case. However, during the early times,
roughly, for times not exceeding T = 10 − 15, the cylindrical character of the solution
is manifested through a violation of the constancy of this product. Of course, for large
times the cKdVE reduces to the pKdVE and the constancy of the product is consistent
with this limit. It turns out that σ increases when um decreases and viceversa, indicating
the complementarity behaviour of these two quantities. Nevertheless, in the cylindrical
regime, the complementary variation of these two functions do not compensate each other
as in the planar case. This analysis shows the limits of previous investigations [18, 19]
which did not predict the behaviour of the above product when the cylindrical character
of the soliton solution is dominant during its evolution. These early works showed only
the constancy of the product um σ2, which is actually verified for larger times, only.

5. – Conclusions

In this paper, the spatiotemporal evolution of an initially given ring-type multisoliton
structures in shallow water has been presented, regarding the water as inviscid, irrota-
tional and incompressible. The spatiotemporal evolution occurs under the free fall of the
initial water distribution and it is governed by the cKdVE, that has been solved both
analytically and numerically. Then, the solutions have been expressed in the (R, T ) do-
main. We have followed the evolution of localized structures along the radial direction.
The solutions have also been expressed in the horizontal plane (X,Y ) at each time T as
3D ring-type nonlinear waves (the vertical direction being the one of the wave elevation,
i.e., v). The analytical ring-type localized structures can be thought as formed on a water
surface that is not initially horizontal. However, ring-type multisolitons evolve radially
preserving their soliton character and the flattening of both the water surface and the
pulses within the multisoliton packets takes place asymptotically. As well, ring-type mul-
tisoliton structures have been found numerically. They also evolve radially, but exhibit
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a dynamics that differs substantially from the one observed for the analytical solutions.
The spatiotemporal analytical multisoliton-like structures: do not exhibit overlapping
of the individual pulses, because they are propagating with the same speed (this means
that there is no a relationship between the pulse height and its speed); do not show any
pulse splitting into two or more secondary pulses; are not accompanied by water wakes
behind or ripples at the front. Conversely, the numerical multisoliton packets exhibit
an internal nonlinear dynamics, very similar to the one existing in the pKdVE. Such
dynamics is governed by a monotonic relationship between a soliton-like pulse and its
speed. Therefore, the nonlinear character is manifested through the overcoming of a
pulse of a given amplitude by the higher ones, the pulse overlapping, the pulse splitting,
and the pulse radiation for the diverse initial conditions.

∗ ∗ ∗
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