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Summary. — In this paper, after a short theoretical introduction, we are going to
discuss the application of matter-wave interferometry to the precise measurement of
two important physical constants: the Newtonian gravitational constant G and the
fine-structure constant α. This capability of determining the strength of so different
fundamental interactions (gravity and electromagnetism) makes such technique one
of the most versatile investigation methods available.

PACS 37.25.+k – Atom interferometry techniques.
PACS 06.20.-f – Metrology.

1. – Introduction

Nowadays interference with matter waves [1] is a rich branch of atomic physics and
quantum optics. Starting from the first matter-wave interferometers based on slow neu-
trons diffracted by crystal planes [2], such technique has evolved over the years towards
the use of cold atomic samples manipulated by light fields. The first proof-of-principle
experiment of such scheme was realized in 1991 by the group of Steven Chu in Stanford [3]
measuring the local gravity acceleration; eight years later it was improved in accuracy
and sensitivity by the same group [4], reaching astonishing precision levels, comparable to
if not better than, state of the art classical instruments. From this seminal work several
kinds of gravity and inertial-force–based measurements have been performed, in particu-
lar: Earth gravity gradient [5,6], local gravity curvature [7], rotations [8] and Newtonian
gravitational constant G [9-11]. In parallel, an apparatus devoted to non-gravitational
experiments has been conceived and realized especially concerning the fine-structure
constant α [12, 13]. The basic ingredient of all these instruments lies in the realization
of the so-called Mach-Zehnder interferometer. Such kind of scheme is achieved using
a π/2-π-π/2 sequence of three Raman pulses in counterpropagating configuration that
couples the two hyperfine ground states (labeled as a and b, see fig. 1) of an alkali atom
(usually Cs or Rb) and trasfers at the same time a momentum �keff , where keff is the
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Fig. 1. – Basic Mach-Zehnder–type atom interferometer without gravity. Initially the atomic
wave packet is put into a superposition of hyperfine ground states using stimulated Raman
transitions (π/2 pulse). During this process a momentum �keff is also transferred to the atom,
thus realizing a beam splitter for matter waves; at a time t = T a second pulse (π pulse) redirects
the wave packets performing a state inversion, playing the role of a mirror; finally, at t = 2T ,
the final π/2 pulse recombines the wave packts producing the interference. Phase terms due to
light interaction are indicated on each path and fictitious path separation has been introduced
for illustrative purposes. Internal states are indicated with different shades of gray.

Raman lasers wave vectors. In this picture the π/2 and π pulses realize respectively
the beam-splitters and mirrors of the interferometer (see fig. 1). At the interferometer
output, the probability of detecting the atoms in the given internal state |a〉 is given by
Pa = (1 + cos(φ))/2, where φ represents the phase difference accumulated by the wave
packets along the two interferometer arms. Such quantity can be theoretically evaluated
and different approaches have been developed for this purpose. Here we are going to
consider the one that makes use of the path integral formalism [14]. According to this
last description φ is given by the sum of three contributions:

(1) φ = φF + φI + φS

The first one is obtained calculating the classical Lagrangian action SF =
∫

Ldt along
each interferometer path (labeled here with A and B) and evaluating

(2) φF =
1
�
(SB

F − SA
F ).

The second term takes into account the additional phase shifts due to the interactions
with the light fields:

(3) φI =
∑

PathB

ϕj −
∑

PathA

ϕi,

where ϕi(j) is the local Raman phase at which an atom along a given path is subjected
at the interrogation instant. Finally the third term is associated to the fact that the two
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wave packets going through two arms of the interferometer may not overlap perfectly:

(4) φS =
p · Δr

�
,

here p is the average atomic momentum at the interferometer output and Δr is the
spatial separation of the two wave packets. Applying these calculations to a free particle
in constant gravity field we have

(5) φ = (keffg − β)T 2,

where g, T and β are respectively the local gravity acceleration, the free evolution time
and the Raman lasers frequency chirp rate to compensate the Doppler frequency shift.
The overall phase shift comes only from the φI contribution, while φF and φS are equal
to zero. The g value can be inferred from the β value that leads to φ = 0 for every T
value.

In more involved cases where the Lagrangian L contains high-order terms in position
and/or in momentum, the above procedure can be mathematically very complex to pur-
sue. If we can express L as the sum of an unperturbed term L0 and a L1 term containing
all the high-order terms and the condition |L1/L0| � 1 holds along the particle trajec-
tory, a perturbative approach can be employed [14] yielding to an extra phase shift φpert

given by

(6) φpert =
1
�

∫
Γ0

L1dt,

where Γ0 is the unperturbed particle path. Now, having in mind this theoretical back-
ground, we are going to present two successful applications of atom interferometry, the
measurement of the gravitational constant G and the fine structure constant α, briefly
discussing the different schemes implemented over the years. Technical details of the
experiments will be omitted.

2. – Measurement of the Newtonian gravitational constant

Nowadays most of the physical constants are known within a few parts per billion,
in the worst cases some parts per million. One of the few exceptions is the gravitational
constant G, introduced for the first time by Newton in 1665 to describe the attractive
force between all bodies with mass. Despite

(7) F = −G
m1m2

r3
r

being one of the best known among all physical laws, the last CODATA-recommended
value of G has still a relative uncertainty of 120 ppm. Besides the purely metrological
interest, there are several reasons why a more precise determination of G is important:
in astronomy, the factor GM of astronomical objects can be determined extremely well
and thus a better knowledge of G leads to a better knowledge of M , which in turn leads
to a better physical understanding of celestial bodies; in geophysics, uncertainties of
density and elastic parameters of the Earth are directly related to the uncertainties on
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Fig. 2. – (a) Atomic gravity gradiometer in vertical configuration. Two vertical displaced atomic
samples are interrogated by vertical Raman beams in counterpropagating configuration in or-
der to realize two simultaneous interferometers. External source masses are positioned in two
different configurations (I and II) and the induced phase shift is measured as a function of mass
positions. (b) Atomic gravity gradiometer in horizontal configuration. Again, two horizontal
displaced atomic samples are simultaneously interrogated by horizontal Raman beams in coun-
terpropagating configuration. The Raman light propagates in free space through both sensors
and reflects from a corner cube defining in this way two transversal regions for the π/2 and π
pulses. The horizontal gradient is produced adding source masses (configuration II) between
the sensors.

G; in theoretical physics, spatial variations of G are predicted by some theories; more-
over, string theory assumes additional dimensions rolled up at small distances, causing
a breakdown of the inverse square law of gravity. The reasons for the difficulties in the
determination of G can be found in the completely different nature of the gravitational
force: gravity cannot be shielded or compensated for and its weakness allows other forces
to contribute with big systematic effects in laboratory experiments. Secondly, the ma-
jority of the experiments performed so far are based on macroscopic suspended masses:
parasitic couplings in suspending fibers are not well understood and could be responsible
for the observed discrepancies. Instead, using microscopic masses as neutral atoms to
probe the gravitational field generated by a well characterized source mass can solve this
kind of problems. For all these reasons, atom interferometry represents an alternative
and powerful method.

In fig. 2 two kinds of experimental implementations devoted to this purpose are de-
picted. Both are gravity gradiometers, one of them is vertical, the other horizontal [15].
The measurement principle is basically the same, so in the following we will describe in
detail the first solution and afterwards we will put in evidence some special features of
the second scheme. A gravity gradiometer can be obtained by two vertically displaced
Mach-Zehnder interferometers, realized by Raman interrogation of two free falling atomic
samples. Each gravity sensor measures the local acceleration with respect to the common
reference frame identified by the wavefronts of the Raman lasers. Therefore, even in pres-
ence of a strong phase noise that completely washes out the atom interference fringes, the
signals simultaneously detected on the upper and lower accelerometers remain coupled
and preserve a fixed-phase relation. As a consequence, when the trace of the upper ac-
celerometer is plotted as a function of the lower one, experimental points distribute along
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a Lissajous ellipse. The differential phase shift Φ = φup − φdw, which is proportional
to the gravity gradient, is then obtained from the eccentricity and the rotation angle of
the ellipse best fitting the experimental data [16]. In order to modulate the actual value
of the gravity gradient, a set of source masses are vertically displaced in two different
configurations, in order to reduce it (configuration I) and enhance it (configuration II).
The induced phase shift is thus measured as a function of masses positions, realizing in
this way a double differential scheme, suitable to isolate the effect of source masses from
others biases of acceleration difference between the two clouds (Earth’s gravity gradient,
Coriolis forces, etc.). Knowing all the geometric parameters of the atomic sample and
source masses distribution, the value of G can be determined, being directly proportional
to the differential angle

(8) ΔΦ = ΦII − ΦI .

This value can indeed be numerically evaluated using eq. (6), leaving in this way G as
the unique free parameter.

After some proof-of-principle measurements [9,10], recently the described solution has
lead to a precision measurement with 150 ppm of relative uncertainty [11], which is for
the first time comparable with that of the current CODATA value.

An alternative approach, described for the first time in [15], is the use of a grav-
ity gradiometer in horizontal configuration. The measurement protocol is almost the
same: again, two simultaneous, horizontally displaced Mach-Zehnder interferometers are
realized by Raman pulse interrogation. This time the keff vector is perpendicular with
respect to the gravity and consequently to the atomic parabolic motion. For this reason it
is necessary to create two vertically separated interrogation zones, one for the π/2 pulses
(clouds ascension and fall) and the other for the π pulse at the trajectories apogee. A cor-
ner cube reflector guarantees the parallelism of the two beam levels. The quantity ΔΦ
is retrieved measuring the gradiometer phase with (configuration II) and without (con-
figuration I) the presence of source masses between the two accelerometers. Preliminary
measurements demonstrated a statistical relative uncertainty on G of 3× 10−4, forecast-
ing a final sensitivity down to 1 × 10−6 with appropriate technical updates. Finally it
is important to underline that in such scheme the gradiometer phase shift is totally due
to the source masses only, while in a vertical gradiometer a consistent portion of the
phase comes from the gravity gradient. This characteristic makes the horizontal setup
superior in performing test of the Newton’s Inverse Square Law by directly measuring the
spatial dependence of the gravitational field. New experiments devoted to improve the
state-of-art constraints on Yukawa-type force in the 10 cm range appear to be feasible.

3. – Measurement of the ratio h/m and the determination of the fine-
structure constant

The fine-structure constant, commonly denoted α, is a fundamental physical constant,
namely the coupling constant characterizing the strength of the electromagnetic inter-
action between elementary charged particles. It plays a central role in Physics, mainly
for three reasons: it represents the most accurate test of theories such as quantum elec-
trodynamics (QED) [17], it is a valid benchmark for testing the stability of fundamental
constants [18] and its value can be a key ingredient in the redefinition of the kilogram in
the international system of units (SI) [19]. In 1994 the group of S. Chu has developed a
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Fig. 3. – (a) Symmetric Ramsey-Bordé interferometer. After the first π/2 pulse pair, wave
packets along interferometer arms are in the same momentum state, enabling the possibility to
accelerate them using, for istance, Bloch oscillations. (b) Asymmetric Ramsey-Bordé interfer-
ometer. Internal states are indicated with different shades of gray. Paths that do not interfere
at the final light pulse are prematurely truncated, in order to highlight the two pairs which do
interfere.

new measurement method, based on the determination of the ratio h/mX , between the
Planck constant h and the atomic mass mX . This ratio is related to α by

(9) α2 =
2R∞

c

Ar(X)
Ar(e)

h

mX
.

The Rydberg constant R∞ is known with an accuracy of 5×10−12 [20] while the quantities
Ar(e) (the relative atomic mass of the electron) and Ar(e) (the relative atomic mass of a X
element) are known with uncertainties below 10−10 (if X = Rb or Cs [21,22]), leaving h

mX

the factor with the largest error. The ratio h/m is deduced from the measurement of the
recoil velocity of an alkali atom, usually 133Cs or 87Rb, which absorbs or emits a photon,
and the frequency of the photon involved. Atom interferometry can be implemented
in order to perform such kind of experiment. Here we will present two interferometer
geometries, both of them based on a π/2-π/2-π/2-π/2 pulses sequence.

The first one, called Symmetric Ramsey-Bordé interferometer, can be thought of as a
generalization of the Mach-Zehnder scheme where the central π pulse is substituted by
two π/2 pulses temporally spaced by a time T ′ (see fig. 3, left part). The resulting phase
shift, considering a free particle in a constant gravity field, is thus

(10) φ = (keffg − β)(T + T ′)T + (keffΔv + Δω)T,

where the term Δv allows for any non-gravitational velocity variation of the two in-
terferometer arms between the second and the third pulses, Δω is the frequency jump
needed to keep the Raman lasers at resonance with the atoms. Also in this case only φI

contributes to the phase.
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Bloch oscillations in a one-dimensional lattice [23] is the privileged technique to pro-
duce a well-controlled velocity change

(11) Δv = 2Nvr

with vr the velocity recoil of the atom in the lattice and N the oscillations number. Again,
imposing the condition φ = 0 for each (T, T ′) couple, we can determine Δω = −Δvkeff

and finally

(12)
h

m
=

−Δω

2Nkeffklattice
.

Such combination of Raman interferometry and Bloch oscillations, together with several
precautions in order to reduce systematic effects, has lead to a determination of the fine
constant with a relative accuracy of 0.66 ppb [24].

The second geometry, the asymmetric Ramsey-Bordé interferometer, proposed in [25]
and experimental demonstrated for the fist time in [12], presents some special features
that need to be highlighted. In this case the second pair of Raman π/2 pulses are keff

reversed, in order to close simultaneously two interferometer paths, as described in fig. 3,
right part. Thus, the expression of the phase shift for the upper (φ+) and the lower (φ−)
interferometer becomes

(13) φ± = (keffg − β)(T + T ′)T + (keffΔv± + Δω±)T ± φF ,

where this time φF = 2EkinT/h = �k2
effT/m � 8ωrT differs from zero, because of the

difference in kinetic energy Ekin between the interferometer arms. Moreover, considering
the quantity Φ = φ+ − φ−, it is possible to get rid of the gravitational contribution,
bringing down systematic effects. Moreover, the simultaneous interrogation of two inter-
ferometers can suppress the phase noise, as discussed in the previous section. Similarly
to the symmetric case, to gain sensitivity on the recoil frequency ωr, it should be con-
venient to enhance the Δv± term by accelerating upward/downward the upper/lower
interferometer. Unfortunately in this condition the Raman beams cannot address both
the them at the same time, losing one of the main advantages of the asymmetric con-
figuration. A possible trivial solutions to this issue can be the introduction of a second
Raman beams pair. Also alternating in time the realization of the two interferometers
can be effective, even if the simultaneity of the interrogation is lost.

Recently an updated version of such scheme, based on multi-photon Bragg transi-
tions to maximize the wave-packets separation [26] and Bloch oscillations to obtain a
large Δv term, has been developed by the group of H. Müller at Berkeley University.
Preliminary measurements have already demonstrated an accuracy level of 2.0 ppb [27]
and a sensitivity of 0.33 ppb after 6 hours of integration [28] paving the way towards a
new determination of the fine-structure constant.

4. – Conclusion and outlooks

In this paper we have briefly described schemes and recent results about precision
measurements of the Newtonian gravitational constant G and the fine-structure con-
stant α by cold-atom interferometry, pointing out the unique ability of such technique
to probe gravity as well as key features of the electromagnetic interaction. Further
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improvements in the accuracy level of both the constants are envisaged [15,28], yielding
potentially to significant advantages in metrology and fundamental physics. Finally it is
worth mentioning that many other results are expected from ongoing atom interferometry
experiments, ranging from new verifications of the Weak Equivalence Principle [29,30] to
short-distance tests of Newton’s 1/r2 Law [15]. Moreover future ambitious setup devoted
to the gravitational waves detection has been also proposed [31].
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