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Summary. — Investigation of chaotic motions and cooperative systems offers a
magnificent opportunity to involve modern physics into the basic course of mechan-
ics taught to engineering students. In the present paper it will be demonstrated
that Zeeman Machine can be a versatile and motivating tool for students to get
introductory knowledge about chaotic motion via interactive simulations. It works
in a relatively simple way and its properties can be understood very easily. Since
the machine can be built easily and the simulation of its movement is also sim-
ple the experimental investigation and the theoretical description can be connected
intuitively. Although Zeeman Machine is known mainly for its quasi-static and
catastrophic behaviour, its dynamic properties are also of interest with its typical
chaotic features. By means of a periodically driven Zeeman Machine a wide range
of chaotic properties of the simple systems can be demonstrated such as bifurcation
diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper
is the presentation of an interactive learning material for teaching the basic features
of the chaotic systems through the investigation of the Zeeman Machine.

1. — Introduction

This work is organically linked to our website [1] where the electronic materials (read-
ing PDF files, simulation programs and videos) could be downloaded (the elements of the
electronic material will be denoted by #). The theoretical background of the simulations
will be summarized here only shortly because it can be found in our previous paper [2]. In
the present paper it will be demonstrated that the Zeeman Catastrophe Machine can be
a versatile and motivating tool for students to get introductory knowledge about chaotic
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motion via interactive simulations. For the numerical investigations we have used the
Dynamics Solver which can be downloaded freely from website [3] and on our website [1]
a short description of the program is also available (# ds_brief_tutorial.pdf).

Ever since Edward Lorenz has discovered that simple nonlinear systems can produce
inherently unpredictable behaviour, which is called chaotic motion, the interest in the
theory of it has risen rapidly, and much effort has been invested in integrating it into
the graduate as well as the undergraduate curricula. Excellent introductory monographs
are available which explain the basic ideas and concepts [4], and in which a wide variety
of simple mechanical systems producing chaotic behaviour are deployed [5-7]. Maybe, in
the light of these, it seems to be a superfluous effort to increase the number of examples
of the simple chaotic systems. Although the scepticism is reasonable, we think that the
Zeeman Machine got exceptional advantages as a teaching material. It will be proven
that in spite of its simplicity, by investigating it, a broad range of characteristics of
chaotic motion can be covered which generally needs the discussion of several different
systems. The machine was originally prepared for the demonstration of the catastrophe
phenomenon which is a result of a quasi-static process. However, applying a periodic
driving force it produces chaotic motion which can be easily studied both theoretically
and experimentally. Initial enthusiasm and motivation of students are often lost, when
they are unable to understand the theory behind chaotic behaviour. The Zeeman Machine
provides an easily understandable theoretical background of various chaotic features, and
gives an insight into the dynamics of chaotic motion. Simulations of the motion help us
to avoid too mathematical or abstract teaching, and interactive programs support the
exploratory activities of the students. Therefore a very important requirement for the
electronic material is that the software should be easily usable by the student. Software
available for the simulations of the dynamics of physical systems can be classified into
three categories:

e high level programming languages: Pascal/Delphi, C/C++, java, python, etc.,
e programs for general purpose: Maple, MathCad, Mathematica, MatLab, etc.,

e user programs for special purpose (in our case programs which are modelling
dynamic systems): Dynamics Solver, E&F Chaos, Phaser, XPP, Pyndamics, etc.

Searching the adequate program for the simulation of the Zeeman system programs were
investigated according to the following point of view:

e availability (and expenditure),

e programming skills needed and the estimated programing time of the simulation,
e validity and reliability,

e speed and accuracy.

To illustrate this procedure software was chosen from all three groups and with the use
of them the same problem was solved. (A stroboscopic map was produced for a damped
pendulum the suspension point of which is moving uniformly on a vertical circle.)

Table I shows the extremely good properties of the Dynamics Solver. These properties
are combined with high flexibility in modelling physical systems.

We have applied the Dynamics Solver both in university teaching and in our research
work successfully. The only disadvantage of it is that it can be used only at Windows
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TABLE 1. — Comparison of the programs.

Pascal Maple Dynamics Solver
Availability free downloadable exists very expensive free
(e.g. FreePascal)
Preliminary advanced  programming basic level program- programming skills
knowledge knowledge needed, to ming skills needed, are not necessary,
write a simulation pro- to produce a work- one or two hours
gram requires more hours sheet requires some are sufficient to pro-
hours. duce a simulation
Validity the program is based built in programs high level, validity
on the programmer’s own guarantee the high and reliability are.
routines therefore the va- level
lidity cannot be decided
generally.
Speed and It is very speedy the ac- very slow, but it is very rapid and
accuracy curacy should be checked extremely accurate accurate.

due to the number repre-
sentation used in it

due to the number
representation used

platform (although it runs at Linux, Unix and Mac platforms at the free WINE compat-
ible platform which is in our opinion is a reliable possibility).

2. — Catastrophe phenomenon and Zeeman’s Machine

Those systems whose temporal evolution (dynamics) is defined uniquely by rules are
called deterministic systems. Catastrophe theory deals with the description of the quasi-
static motion of those deterministic systems in which small, continuous changes in one or
more parameters cause abrupt, discontinuous, dramatic changes in the equilibrium state
of the system. The Catastrophe Machine bearing his name was created by E. C. Zeeman
in the 1970’s to illustrate and study catastrophe phenomena [8]. The device is very
simple (anyone can build it) and can easily be studied quantitatively. Fix a flat disk
of radius R with an axle at a point of a rigid sheet. Take two identical rubber strings
with an unstretched length of Lg, fasten one end of one of the rubber strings to the
circumferential point P of the disk and the other end of the string, slightly stretching
it, in point A(—A4,0) of the sheet. Fasten one end of the other string at point P of the
disk, and let the other end hang free. In our experiments, we will move this end B in
the plane of the sheet. For the quantitative description, establish a coordinate system
in the plane of the sheet, whose origin is the centre of the disc, its X-axis is a straight
line through points A and O (fig. 1), and its Y-axis is perpendicular to this straight line.

Let us study the behaviour of the system by slowly moving the end B of the Lo
rubber string parallel to the Y-axis towards the X-axis starting from different B(Xy, Yp)
points. In most cases, we find that the position of the end B clearly defines the ®
angle, which changes constantly as B is moved. By nearing the string end B towards
the X-axis, then crossing it and moving away from it in the opposite direction, the
absolute value of ® decreases, changes sign when crossing the axis and increases while
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Fig. 1. — (a) Zeeman’s catastrophe machine. (b) Bifurcation area and hysteresis.

moving away from it. However, a strange area bounded by four curved lines, which
can be well designated experimentally, constitutes an exception. At any internal point
of this area, the sign of the angle ® which belongs to the equilibrium can be either
positive or negative. This area is called bifurcation area (fig. 1(b)). The experiments
show that in the bifurcation area, the change in the angle determining the equilibrium
is direction-dependent according to the movement of the point B, the change happens
differently when going from right to left than in the other way around. The change in the
angle exhibits hysteresis. Hysteresis is an essential feature in the behaviour of nonlinear
systems.

To begin the use of the Dynamics Solver let us start the #zeeman_animation.ds
simulation file. The theoretical background of the Zeeman catastrophe machine and
a suggested way for the use of the simulation can be found in the reading file
#1_prologue_Zeeman_catastrophe-machine. pdf.

3. — Dissipative chaos

In catastrophe theory, we study the quasi-static properties of the Zeeman Machine and
the abrupt changes in its equilibrium state [9]. However, the dynamics of the machine
moving due to an external force also produce results showing very interesting chaotic
properties [10].

The equation of motion of the Zeeman Machine can be derived from the Lagrangian
equation [11]. The phase space of the system is only two-dimensional (with the variables
angle and angular velocity), which is known to be too “tight” for the chaotic motion
to emerge. Much more interesting type of motion can be created if a periodic driving
force is applied at the B(X,Y) end of the second rubber string. The excitation of the
system has been investigated using a driving force of period T}, applied at the B end
of the second string (we define ® = QT—:t phase variable of driving). The dissipative

system described by these equations starting from arbitrary initial condition (®g,wq)
will reach an equilibrium position due to the continuous energy loss. Henceforth each
quantities with dimension of length will be expressed with the R radius of the disc, that
is dimensionless variables denoted by lowercase letters will be used: A = a- R, X =
- R Y=y R, Lo=1lyp-R, Ly =0 -R, Ly =1y R, and ¢ = %j'k is a dimensionless
parameter. The introduction of the periodic driving force increases dimension of the
phase space from two to three, and as it is well known in systems with three dimensional
phase space chaotic motion can be occurred.
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Fig. 2. — The bifurcation diagram of the system with (®o = 0,wo = 0,00 = 0).

As we show in Appendix of the #2_dissipative_chaos.pdf the equations of motion are

%:fl(cb,ug@):w,
dw o=l (12 () — lo)
" E—fg(@,(ﬂ,@)—c 7 sin ® + 1 (©)
x(y(@)-cos‘b—x(@)-sin@)}—w,
doe 2m
E:fé(q)awv@)zﬁa

where:

L = \/(cosq) +a)® + (sin®)?,
2 (©) = \/(x (©) — cos @) + (y (©) — sin ®)*

and where the angular velocity w = d®/dt.

As it was mentioned earlier the B end of the second rubber string undergoes simple
harmonic motion in the direction of the Y-axis with a centre at (x¢,0) point. The period
and amplitude are T),, and yo, respectively. It means that in egs. (1) the variables of
2(©) and y(©), should be replaced by z¢ and yo - sin(O), respectively. The system was
investigated at ¢ = 10; a = 6; Iy = 3; yo = 0.6; T}, = 3 fixed parameters as a function of
the zg control parameter.

The bifurcation diagram of the system and the trajectories in the phase space can be
displayed by simulation files #harmonically_driven_zeeman_bifurcation_diagram.ds and
#harmonically_driven_zeeman_phase_space.ds, respectively. The suggested way for the
use of the simulations can be found in the reading file #2_dissipative_chaos.pdf.

The bifurcation map shown in fig. 2 is a typical example for that of chaotic systems.
The sequence denoted by a corresponds to a limit cycle consisting of only one point on
the stroboscopic map. The sequence denoted by b represents a limit cycle consisting of
two points on the stroboscopic map; range ¢ represents a four point limit cycle and so on.
The development of such type of bifurcation series is a typical precursor of the chaotic
behaviour. Bifurcation diagram at d and e refers to a chaotic zone of motion belonging
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Fig. 3. — The trajectories of motion in phase plane with (®¢o = 0,wo = 0,00 = 0).

to the control parameters given. Without going in the details of the chaotic zone it is
only mentioned that the chaotic zone is a finite one and after it the periodic behaviour
appears again (f).

Using the bifurcation diagram we can find proper values of the control parameter
where the trajectories are worth depicting. The diagrams in fig. 3 show the trajectories
in the ®-w phase plane, and are labelled by the same letters as the corresponding regions
of the bifurcation diagram in fig. 2.

Figure 3 shows a very strange and important feature of the motion of the Zeeman
Machine. Attractors shown in figs. 3(e) and 3(f) are centrally symmetric to the origin
of the ®-w phase plane, while those represented in figs. 3(a)-3(d) are not. The Zeeman
Machine itself has also a symmetry axis (the X-axis in fig. 1) and its equation of motion
also holds this symmetry consequently eq. (1) is invariant to the change of the variables
of ® - —P, y —» —y and w — —w. It is very strange that there are equilibrium positions
of the system which do not keep the symmetry of the equation of motion. This behaviour
is called spontaneous symmetry breaking. This is one of the most exciting phenomena of
modern physics, inter alia, it is the basis of the Higgs mechanism by which the mass of the
elementary particles in the standard model is interpreted [12,13]. The symmetry breaking
and the Psychological conditioning give an obvious possibility for the manipulation of
our brain. On website [14] there is a spinning-cat animation, which can be seen rotate
clockwise or anticlockwise randomly. Video #ypm_manip.avi [15] presents a brilliant and
amusing example of how our brain can be governed with symmetry breaking to form a
predetermined opinion in an important question.

A more exact picture of the chaotic attractor can be obtained by applying a
stroboscopic mapping with using #harmonically_driven_zeeman_stroboscopic.ds (the
suggested way for the use of the simulation can be found in the reading file
#2_dissipative_chaos.pdf ).

Figure 4 shows stroboscopic representation of the attractor exhibited in fig. 3(e) at
s = 0. In figs. 4(b) and 4(c) the magnification of the territory bordered by dashed line
in figs. 4(a), and 4(b), can be seen, respectively (the procedure of the magnification can
be found #ds_brief_tutorial.pdf file of the folder Tools of our electronic material). These
diagrams demonstrate perfectly the scale property of the chaotic attractor and show its
Cantor fiber-like structure.
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Fig. 4. — The fractal-structure of chaotic attractor (zo = 6,38642).
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Fig. 5. — Deviation of 10000 neighbouring phase points (zo = 6, 38642).

The sensitivity of the time evolution of a system on the initial conditions is also
investigated customarily in chaotic systems. To study this effect let us start a system
with different but very close initial values and follow the deviation of the trajectories.
This study can be visualized by the phase drop methods.

In figs. 5(a) and 5(b) the position of 10000 neighbouring phase points located initially
in a square domain of size 0.01 around the origin of the ®-w plane can be seen after
30 and 300 time steps, respectively (the control parameter is xg = 6,38642). This phe-
nomenon can be investigated by program #harmonically_driven_zeeman_phase_domain.ds
(the suggested way for the use of the simulation can be found in the reading file
#2_dissipative_chaos.pdf ).

It is well observable that points which are originally of immediate vicinity of each
other are diverging very quickly. The small initial “phase drop” (phase domain) spreads
out strongly already after 30 time steps, and after 300 time steps it covers essentially the
whole chaotic attractor.

Edward Lorenz expressed this extreme sensitivity with an example taken from
meteorology. His famous question: “Does the flap of a butterfly’s wings in Brazil set off
a tornado in Texas?” was a title one of his lectures in 1972. This question led to name
the extreme sensitivity of a system on initial conditions as butterfly effect, which is a
very equivocal and remiss notion. The video #butterfly-effect_Lorenz.flv [16] shows the
butterfly effect in the famous Lorenz model, while video # butterfly-effect_parody.mov [17]
gives a caricature of this frequently cited effect.
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(a) t=0 - 5200 (b) t=5200 - 10400

Fig. 6. — The transient chaos.
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Fig. 7. — Stroboscopic map of the transient chaos.

4. — Transient chaos

Permanent chaos studied in the previous chapter can exist for an arbitrarily long
time period. Contrast to it transient chaos is interim chaotic motion occurring at finite
time interval after which the motion becomes periodic. Of course in case of transient
chaos chaotic attractors do not exist but a non attracting chaotic saddle can be found
which has zero measure and which can be approached arbitrarily closely by trajectories.
Trajectories can permanently stay at its neighbour. Chaotic saddle is embodied by those
trajectories which exhibit chaotic behaviour for a relatively long time. The basic new
feature here is the finite lifetime of chaos.

The theoretical background and a suggested way for the use of the simulation files
can be found in the reading file #3_transient_chaos.pdf. Figure 6 shows the trajectory of
the system. In fig. 6(a) the first 5200 time steps, in fig. 6(b) the second 5200 ones can
be seen. It can be observed that at the first stage the motion is chaotic, but at the later
second stage it is periodic. It means that the motion of these parameter exhibits the
transient chaos.

Figure 6(b) clearly shows a limit cycle (closed curve), but what is the order of it?
The stroboscopic map reflects a more demonstrative way these features of the motion:
an n-cycle appears as a set of n distinct points mapped onto each other, and each one
returns to its initial position after n steps. Stroboscopic map of the first stage of the
motion outlines almost perfectly the chaotic attractor, while subsequent stage displays
five discrete points corresponding to a five-cycle motion (see fig. 7).
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Fig. 8. — The coupled Zeeman Machines.

The stroboscopic pictures can be investigated with the file #harmoni-
cally_driven_zeeman_transient_strob.ds (a suggested way for the use of the simulation
files can be found in the reading file #3_transient_chaos.pdf.).

5. — Conservative chaos

Zeeman machine discussed in previous chapters is a dissipative system so it is not
appropriate for studying the chaotic behaviour of conservative systems. Although the
original version of the Zeeman machine is frictionless and therefore conserves the energy
its two dimensional phase space is not wide enough to produce chaotic motion. An
external driving force had to be introduced to increase the number of dimension of the
system. However, it seems to be a plausible idea, it is still a novelty, to use coupled
Zeeman machines for the investigation of chaotic behaviour of conservative systems.
Figure 8 shows two coupled frictionless Zeeman Machines which forms a conservative
system with four dimension phase space.

The theoretical background of the coupled Zeeman catastrophe machines and a
suggested way for the use of the simulation files can be found in the reading file
#4_conservative_chaos. pdf.

In conservative systems there are no attractors the character of motion depends on
the initial conditions [4]. In order to get an overview of the system’s behaviour Poincaré
maps belonging to the same energy, but corresponding to different initial conditions
should be plotted. From the four initial conditions (®1g, P2g,w10,w20) only three can
be chosen freely, the fourth one should be determined from the expression of the energy

£0

(a) Phase plane ®; — m; (b) Phase plane @ — ®,

Fig. 9. — Poincaré maps with (Ip = 3,a =6,b=6),(x = 12,y = 1) and energy e = 60.
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e =w?+w2+ (I —1o)?+ (2 — lo)* + (I3 — ly)?, where the sum of the kinetic and potential
energy e scaled in units of %kRQ.

In fig. 9 Poincaré maps of the motion are shown on the ®;-w; and ®,-P, phase planes
at a given energy value. The maps are representing well the conservative chaos and they
show fat fractal like big chaotic areas with periodic isles in them.

6. — Conclusion

It was demonstrated that in spite of its simplicity the Zeeman Catastrophe Machine
can be a versatile and motivating tool for students to get introductory knowledge about
chaotic motion via interactive simulations. Studying the dynamics of the machine a
broad range of characteristics of chaotic motion can be covered which generally needs the
discussion of several different systems. The work is organically linked to our website [1]
where the electronic materials (reading PDF files, simulation programs and videos) could
be freely downloaded.
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