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Summary. — The Boltzmann distribution is one of the most significant results
of classical physics. Despite its importance and its wide range of application, at
high school level it is mostly presented without any derivation or link to some basic
ideas. In this contribution we present an approach based on the chemical potential
that allows to derive it directly from the basic idea of thermodynamical equilibrium.

1. – Introduction

The Boltzmann distribution, first derived by Maxwell for the velocities of gas
molecules at a given temperature, is one of the most important results of the molecular-
kinetic approach, which has since become a cornerstone of statistical physics. Despite
its historical and cultural relevance, there are only a few attempts to introduce suitably
this result in high school teaching. Textbooks generally introduce the Boltzmann dis-
tribution without deriving it from some basic ideas, stating only the final result with
some pictures that illustrate the situation together with some details about probabilities
and mean values. The reason of this situation may be that Boltzmann distribution is
considered one of the main results of the theory of statistical physics, and therefore well
beyond the reach of secondary school ambitions.

This contribution proposes an alternative approach, which can be traced back to an
idea expressed by Einstein in a paper dated July 1914 (what a lucky coincidence for the
symposium!) [Einstein, 1914], in which he considered an ideal gas consisting of molecules
in different excitation states as an equilibrium mixture of distinct substances, each one
characterized by its own excitation energy. Moreover, the description of elementary
processes of statistical physics as reactions between particles of such substances allows
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the use of the chemical potential and its basic dependence on concentration and excitation
energy. In this way, the condition for thermodynamical equilibrium makes it possible to
derive the Boltzmann distribution.

In the second part we are going to sketch how it is possible to extend this approach
to other issues. As an example we’ll discuss the contribution of the vibrations to the
specific heat of bi-atomic gases.

As a conclusion, we shall briefly outline the general validity of this approach, indicat-
ing how, introducing the idea of free and occupied states as well as the quantum rules of
occupation of energy levels, the same approach will lead to the Fermi-Dirac as well as to
the Bose-Einstein distribution.

2. – The basic idea: a gas as a mixture of several substances

The basic idea is expressed by A. Einstein in a paper he presented at the session of
the German Physical Society, July 24th, 1914. Taking a gas into consideration, Einstein
adopted the following point of view:
“I take the liberty to consider two molecules chemically distinct, i.e. in principle separable
by means of semi-permeable walls, if their resonator energies εσ and ετ are different. By
doing so I can view the gas that was originally seen as uniform as also a mixture of
different gases whose constituents are characterized by different values εσ.”

We generalize this point of view taking into account even the translational motion of
the molecules as a kind of excitation. For the sake of simplicity, let us consider a dilute
monatomic gas, so that the “molecules” can be regarded as pointlike particles as in the
Newtonian mechanical model and their translational kinetic energy as excitation energy.

To parameterize the velocity of the molecules, we divide the velocity space into
“cubic cells of volume [Δv]3”, where each cell centre is identified by a triple of inte-
gers (nx, ny, nz) (fig. 1)
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In what follows we will refer to the molecules that belong to such a cell as to the
�n-substance. Generalizing Einstein’s suggestion, we interpret the physical system “gas”
as a mixture of those different gaseous �n-substances. The kinetic energy of such molecules
can be seen as the excitation energy of such a partial gas.

Fig. 1. – Individuating a cell centre in the velocity space.
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3. – Chemical potential and equilibrium

With this image in mind, we ask how we can describe the equilibrium condition
between all these substances. What we need is an intensive quantity, which can describe
the tendency of one of the substances to transform into other ones. A suitable quantity
for this purpose exists, and it is known under the name of chemical potential introduced
1876 by Josiah Willard Gibbs [Job, 2006], [Job, 2011].

This quantity accounts for the tendency of a given substance

• to react with other substances forming new ones;

• to transform into another state of aggregation, configuration, etc.;

• to migrate to another place.

Experimental data show that in general the value of the chemical potential depends on

• the kind and the state of aggregation of the substance;

• the physical “milieu” (temperature, pressure, concentration);

• the chemical “milieu” (in case of solutions or mixtures: on the kind and on the
proportions of the components, on the acidity, etc.).

4. – Gas molecules velocity distribution

In order to go further we focus on two points: first, the concentration dependence of
the chemical potential, and second the excitation energy that is characteristic for each
of the different gaseous �n-substances. About the first point, we can assume that the gas
maintains a constant temperature, so that a model that gives us a convenient description
exhibits the usual logarithmic dependence on the concentration

(2) μ(c) = μ0 + RT ln
( c

c◦

)
,

where

c◦ is the reference concentration (1 mol/L);
c is the actual concentration;
μ0 represents the value of the chemical potential at the temperature T by a gas

concentration that equals the chosen reference concentration.

We will refer to this relation as to the mass action equation.
The second step allows us to express the excitation equation: the value of chemical

potential of the molecules that belong to a particular “�n-substance” is obtained by simply
adding the molar kinetic energy to the ground value μ0

(3) μ0,�n = μ0,�0 + NAε�n.

Since our partial gases all belong to the same chemical species, it is not necessary to
distinguish their μ0-values.
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We can now express the chemical potential for the �n-substances by their actual
concentration c�n

(4) μ�n(c�n) = μ0,�0 + NA ε�n + R T ln
(c�n

c◦

)
= μ0,�0 +

1
2

Mv2
�n + R T ln

(c�n

c◦

)
,

where M represents the molar mass of the considered gas.
At equilibrium the chemical potential of the �n-substances all possess the same value.

This can be expressed by the following relation:

(5) μ�n(ceq
�n ) = μ�0(c

eq
�0

),

so that we obtain

(6) μ0,�0 +
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2
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)
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or

(7) ln
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�n
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)
= −M v2

�n

2R T
.

Solving explicitly, we get the final result for the rates of the equilibrium concentrations:

(8)
ceq
�n

ceq
�0

= exp
(
−Mv2

�n

2R T

)
= exp

(
− m v2

�n

2 kB T

)
.

This is essentially the Boltzmann distribution of the gas molecules velocities.
An impression of this distribution might be gained by imagining a small amount

of gas, possibly about 1μm3, whose particles are allowed to escape into a vacuum by
suddenly removing the walls enclosing it. The positions the particles have reached after
about 30μs are then marked producing an image as in fig. 2. The position reached by
a particle simultaneously characterizes the direction and absolute value of the particle’s
velocity vector �v.

Fig. 2. – Velocity distribution for nitrogen molecules at 298 K.
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Fig. 3. – Velocity distribution along the vx-axis: a) for finite velocity intervals; b) after perform-
ing the limit to infinitesimal intervals (Δv → 0): the right inflection point of the bell-shaped
curve is marked with a circle (◦).
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Fig. 4. – Velocity distribution for N2 molecules at different temperatures. The point cloud
(fig. 2) expands with rising temperature in all three spatial directions proportional to T 1/2 and

the equilibrium concentration of particles with zero velocity decreases correspondingly as T−3/2

(provided the velocity interval Δv is small but finite).

We can also plot the relative concentration distribution of the velocities along the
vx-axis: the graphs can be seen as the result of cutting the “cloud” in the velocity
space along the vx-axis for finite velocity intervals (fig. 3(a)) or after performing the
limit to infinitesimal intervals (fig. 3(b)), so that we recover the well-known Gaussian
distribution(1).

As a concrete example, fig. 4 illustrates the situation of nitrogen molecules in the
same sample at two temperatures.

5. – How could this approach be extended?

Let us now sketch how it is possible to extend this approach. Indeed the previous
procedure can be applied to many other systems, provided that the energy values and the
possible occupation number of each excited energy level are properly taken into account.

(1) Traditionally, for the Boltzmann distribution in books we find another formula than (8) and
other pictures than those of figs. 3 and 4. In the appendix we will show how to link the two
different presentations explicitly.
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It is worthwhile pointing out that in 1914 Einstein, in connection with the Planck
radiation distribution formula, used this approach in order to obtain the well-known
average energy of the 1-dimensional resonator

(9) ε̄ =
hν

ehν/kBT − 1
.

In what follows we try to make the above statement clearer by discussing the contribution
of the vibrations to the specific heat of bi-atomic gases [Job, 2007].

Let us consider all the gas particles that are in the same vibrational state with the
quantum number j to be molecules of the substance B(j). As in the previous example,
the entire gas is intended to be an equilibrium mixture of such j-substances.

On the basis of the experimental results, molecular vibrations can be considered to be
approximately harmonic and independent of other kinds of movements of the molecule
so that the excited energy values of the individual vibrational levels are assumed to form
the well-known harmonic spectrum:

(10) ε(j) = h ν · j,

where the quantity hν represents the energy interval between two neighbourly excited
energy levels. As long as this approximation is valid, the excitation equation gives us the
chemical potential of the individual substance B(j):

(11) μ0(j) = μ0(0) + NA h ν · j for j = 0, 1, 2, 3 . . . .

In this way, taking into account the concentration dependence, i.e. the mass action equa-
tion, we can express the chemical potential for the j-substance at the c(j) concentration:

(12) μ(j) = μ0(0) + NA h ν · j + RT ln
(

c(j)
c◦

)
for j = 0, 1, 2, 3 . . . .

Again, at equilibrium, the value reached by all the chemical potentials of the j-substances
is the same:

(13a) μeq(j) = μeq(0) = μeq,

or explicitly:

(13b) μ0(0) + NA h ν · j + RT ln
(

ceq(j)
c◦

)
= μ0(0) + RT ln

(
ceq(0)

c◦

)
,

so that, with a little algebra, the different j-concentrations can be calculated:

(14a) ceq(j) = ceq(0)
[
exp

(
− hν

kB T

)]j

= ceq(0) qj ,

where

(14b) ceq(0) = c◦ exp
(

μeq − μ0(0)
R T

)
and q = exp

(
− hν

kB T

)
< 1.



AN ALTERNATIVE APPROACH TO THE BOLTZMANN DISTRIBUTION ETC. 7

Since the sum of all these values must correspond to the actual concentration of the
gas, we obtain a relation between the partial concentrations c(j) and the actual gas
concentration c.

(15) c =
∑

j

ceq(j).

With the well-known property of the geometrical series we obtain in this way a relation
between the actual gas concentration, the chemical potential and the temperature

c =
∑

j

ceq(j)(16)

= ceq(0)
∑

j

qj = ceq(0)
1

1 − q
= c◦ exp

(
μeq − μ0(0)

R T

)
· 1
1 − e−h ν/kBT

.

Notice that the last term in the last equation is nothing else than the vibrational partition
function of the 1-dimensional harmonic oscillator.

Recalling further that the value of the chemical potential μ(c) of the gas must obvi-
ously coincide with the one assumed at equilibrium by each of the individual j-substances:

(17) μ(c) = μeq ,

relation (16) then shows us how to get the chemical potential of the gas at this concen-
tration c. Solving for μ(c), we obtain

(18) μ(c) = μ0(0) + R T ln
( c

c◦

)
+ R T ln

(
1 − e−hν/kBT

)
︸ ︷︷ ︸

μvib

,

where the last term μvib represents the contribution of vibrations to the chemical
potential: it is interesting to note that this term depends on temperature T but is
independent of both concentration c and pressure p.

This result provides us with the answer to our initial question: indeed, from the
thermodynamics we know that the first derivative of the chemical potential with respect
to the temperature at constant pressure yields the molar entropy Sm

(19) Sm = −
(

∂μ

∂T

)
p

,

while the second derivative of the chemical potential with respect to the temperature,
again at constant pressure, yields molar heat capacity Cp,m

(20) Cp,m = − T

(
∂2μ

∂T 2

)
p

.

Without discussing the details of the calculation, we just indicate here the final result
for the contribution of vibrations to the molar heat capacity of bi-atomic gases:

(21) Cvib = − T
∂2μvib

∂T 2
= R

[h ν/kB T ]2 ehν/kB T[
ehν/kB T − 1

]2 .
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Fig. 5. – The contribution of molecular vibrations to the molar heat capacity of I2-vapour.

The example in fig. 5 refers to the I2-vapour. The characteristic temperature of vibration
can be determined from spectroscopic measurements:

(22) Tvib = h ν/kB = 305K.

6. – Conclusion and outlook

In this paper we have proposed an alternative approach to introduce the Boltzmann
distribution based on general ideas that students meet in other contexts of science.
Starting from:

• the concept of the chemical potential,

• the mass action equation,

• the excitation equation,

• the equilibrium condition

students are indeed no longer just faced, as is usually the case in textbooks, with the final
result and some typical pictures based on probabilities and mean values, but they can
deduce the Boltzmann distribution, extending to statistical physics problems the same
kind of modeling they used for hydraulic, mechanical, electrical, thermal or chemical
processes. Moreover, they could test the theoretical results experimentally, as we show,
calculating the vibrational contribution to the heat capacity for bi-atomic gases.

The same approach can be applied in order to discuss quantitatively many other issues,
such as the Planck radiation formula, the barometric formula, the sedimentation in a
centrifuge, the contribution to heat capacity for poly-atomic molecules (vibrational and
rotational), some simple nuclear reactions, redox and acid-base reactions, etc. [Job, 2007].

Furthermore, if we look at states of a system as sites that can be free or occupied, this
approach allows us to discuss also the Debye T 3-law, the single or multi-layer adsorp-
tion, the electron gas in metals and semi-conductors, the Fermi-Dirac and Bose-Einstein
distribution and gas degeneration, and many, many other questions.
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Appendix

Equation (A.1) shows us a typical formulation of the Maxwell-Boltzmann distribution
of the speed v of the molecules:

(A.1) d f(v) = 4π
[

m

2π kBT

]3/2

exp
(
− mv2

2kB T

)
v2 dv,

where f(v) is the fraction of all molecules with a speed smaller than v. Figure 6 reports
typical illustrations we generally find in books: on the left we see the temperature de-
pendence, while on the right we have the result for different molecular masses.

They look very different from those we have discussed and perhaps it is worthwhile
to link the previous formulation to these ones. This is achieved when we look for the
fraction of particles df(v) having the absolute value of the velocity within a spherical
shell of radius v and thickness dv (fig. 7).

df(v) is proportional to both the “volume” 4πv2dv of the shell and to the concentra-
tions c(v) of the partial gases that belong to this shell. c(v) is the same function for all
our �n-substances. Indicating with γ the proportionality factor, we get

(A.2) d f(v) = γ c(v) 4π v2 dv.

Inserting the result of eq. (8) we then find

(A.3) df(v) = γ c(0) exp
(
− mv2

2kB T

)
4π v2dv.

Obviously, the integration of all the contributions df(v) from v = 0 to ∞ gives 1, so that

(A.4) 1 =

∞∫
0

d f(v) = γ 4π c(0)

∞∫
0

exp
(
− mv2

2kB T

)
v2 dv = γ c(0)

[
2π kBT

m

]3/2

,

Fig. 6. – Usual illustration to the Maxwell-Boltzmann distribution of the speed of the gas
molecules.
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Fig. 7. – Spherical shell in the velocity space (2-dimensional representation).

while for the last equality we used the well-known result

(A.5)

∞∫
0

x2 exp(−ax2) dx =
√

π

4
a−3/2.

After getting γ c(0) as

(A.6) γ c(0) =
[

m

2π kBT

]3/2

,

we then find the relation (A.1) we are looking for.
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