Colloquia: LaThuile15

# Solving the muon $(g-2)_{\mu}$ anomaly in two higgs doublet models

Eung Jin Chun

Korea Institute for Advanced Study - Seoul 130-722, Korea

received 2 October 2015

**Summary.** — Updating various theoretical and experimental constraints on the four different types of two-Higgs-doublet models (2HDMs), we find that only the "lepton-specific" (or "type X") 2HDM can explain the present muon (g-2) anomaly in the parameter region of large  $\tan \beta$ , a light CP-odd Higgs boson, and heavier CP-even and charged Higgs bosons which are almost degenerate. The severe constraints on the models come mainly from the consideration of vacuum stability and perturbativity, the electroweak precision data, B physics observables like  $b \to s\gamma$  as well as the 125 GeV Higgs boson properties measured at the LHC.

## 1. – Outline

Since the first measurement of the muon anomalous magnetic moment  $a_{\mu} = (g-2)_{\mu}/2$ by the E821 experiment at BNL in 2001 [1], much progress has been made in both experimental and theoretical sides to reduce the uncertainties by a factor of two or so establishing a consistent  $3\sigma$  discrepancy

(1) 
$$\Delta a_{\mu} \equiv a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = +262\,(85) \times 10^{-11},$$

which is in a good agreement with the different group's determinations. Since the 2001 announcement, there have been quite a few studies in the context of 2HDMs [2-4] restricted only to the type-I and -II models. However, the type X model [5] has some unique features in explaining the  $a_{\mu}$  anomaly while evading all the experimental constraints.

Among many recent experimental results further confirming the Standard Model (SM) predictions, the discovery of the 125 GeV Brout-Egnlert-Higgs boson, which is very much SM-like, particularly motivates us to revisit the issue of the muon g - 2 in favor of the type X 2HDM.

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

The key features in confronting 2HDMs with the muon g - 2 anomaly can be summarized as follows [6-9].

- The Barr-Zee two loop [10] can give a dominant (positive) contribution to the muon g-2 for a light CP-odd Higgs boson A and large tan  $\beta$  in the type-II and -X models.
- In the type-II model, a light A has a large bottom Yukawa coupling for large  $\tan \beta$ , and thus is strongly constrained by the collider searches which have not been able to cover a small gap of 25 (40) GeV  $< M_A < 70$  GeV at the 2 (1)  $\sigma$  range of the muon (g-2) explanation [3].
- In the type-II (and Y) model, the measured  $\bar{B} \to X_s \gamma$  branching ratio pushes the charged Higgs boson  $H^{\pm}$  high up to 480 (358) GeV at 95 (99)% C.L. [11], which requires a large separation between  $M_A$  and  $M_{H^{\pm}}$  putting a strong limitation on the model due to the  $\rho$  parameter bound [4].
- Consideration of the electroweak precision data (EWPD) combined with the theoretical constraints from the vacuum stability and perturbativity requires the charged Higgs boson almost degenerate with the heavy Higgs boson H [12] (favoring  $M_{H^{\pm}} > M_H$ ) and lighter than about 250 GeV in "the SM limit";  $\cos(\beta - \alpha) \rightarrow 0$ . This singles out the type-X model in favor of the muon g - 2 [6].
- In the favored low  $m_A$  region, the 125 GeV Higgs decay  $h \to AA$  has to suppressed kinematically or by suppressing the trilinear coupling  $\lambda_{hAA}$  which is generically order-one. This excludes the 1  $\sigma$  range of the muon g 2 explanation in the SM limit [6].

However, the latest development [7-9] revealed more interesting possibilities in the "wrong-sign" domain (negative *hbb* or  $h\tau\tau$  coupling) of 2HDMs [13].

- A cancellation in  $\lambda_{hAA}$  can be arranged to suppress arbitrarily the  $h \to AA$  decay only in the wrong-sign limit with the heavy Higgs masses in the range of  $M_{H^{\pm}} \sim M_H \approx 200-600 \text{ GeV}$  [7].
- The lepton universality affected by a large  $H^+ \tau \nu_{\tau}$  coupling turns out to severely constrain the large  $\tan \beta$  and light  $H^{\pm}$  region of the type-X (and II) model and thus only a very low  $M_A$  and  $\tan \beta$  region is allowed at 2  $\sigma$  to explain the  $a_{\mu}$  anomaly [8].

# 2. – Four types of 2HDMs

Non-observation of flavour changing neutral currents restricts 2HDMs to four different classes which differ by how the Higgs doublets couple to fermions [14]. They are organized by a discrete symmetry  $Z_2$  under which different Higgs doublets and fermions carry different parities. These models are labeled as type I, II, "lepton-specific" (or X) and "flipped" (or Y). Having two Higgs doublets  $\Phi_{1,2}$ , the most general  $Z_2$  symmetric scalar potential takes the form:

(2) 
$$V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_1 \Phi_2^{\dagger}) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} \left[ (\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_1 \Phi_2^{\dagger})^2 \right],$$

TABLE I. - The normalized Yukawa couplings for up- and down-type quarks and charged leptons.

|                             | $y_u^A$                                                                | $y_d^A$                             | $y_l^A$                            | $y_u^H$                                                            | $y_d^H$                                                                                            | $y_l^H$                                                                                               | $y_u^h$                                                                                             | $y_d^h$                                                                                                                                                   | $y_l^h$                                                                                                                                           |
|-----------------------------|------------------------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Type I<br>Type II<br>Type X | $\begin{vmatrix} \cot \beta \\ \cot \beta \\ \cot \beta \end{vmatrix}$ | $-\cot\beta\\\tan\beta\\-\cot\beta$ | $-\cot\beta\\\tan\beta\\\tan\beta$ | $\frac{\sin \alpha}{\sin \beta}$ $\frac{\sin \alpha}{\sin \alpha}$ | $\frac{\sin \alpha}{\sin \beta}$ $\frac{\cos \alpha}{\cos \beta}$ $\frac{\sin \alpha}{\cos \beta}$ | $\frac{\sin \alpha}{\sin \beta} \\ \frac{\cos \alpha}{\cos \beta} \\ \frac{\cos \alpha}{\cos \alpha}$ | $\frac{\cos \alpha}{\sin \beta}$ $\frac{\cos \alpha}{\sin \beta}$ $\frac{\cos \alpha}{\cos \alpha}$ | $     \frac{\frac{\cos \alpha}{\sin \beta}}{-\frac{\sin \alpha}{\cos \beta}}     \frac{\frac{\cos \alpha}{\cos \beta}}{\frac{\cos \alpha}{\cos \alpha}} $ | $     \frac{\frac{\cos \alpha}{\sin \beta}}{-\frac{\sin \alpha}{\cos \beta}}     \frac{-\frac{\sin \alpha}{\cos \beta}}{-\frac{\sin \alpha}{2}} $ |
| Type Y                      | $\cot \beta$                                                           | aneta                               | $-\cot eta$                        | $\frac{\sin \beta}{\sin \alpha}$                                   | $\frac{\cos \alpha}{\cos \beta}$                                                                   | $\frac{\sin \beta}{\sin \beta}$                                                                       | $\frac{\sin \beta}{\sin \beta}$                                                                     | $-\frac{\sin \beta}{\cos \beta}$                                                                                                                          | $\frac{\cos \beta}{\sin \beta}$                                                                                                                   |

where a (soft)  $Z_2$  breaking term  $m_{12}^2$  is introduced. Minimization of the scalar potential determines the vacuum expectation values  $\langle \Phi_{1,2}^0 \rangle \equiv v_{1,2}/\sqrt{2}$  around which the Higgs doublet fields are expanded as

(3) 
$$\Phi_{1,2} = \left[\eta_{1,2}^+, \frac{1}{\sqrt{2}}\left(v_{1,2} + \rho_{1,2} + i\eta_{1,2}^0\right)\right].$$

The model contains the five physical fields in mass eigenstates denoted by  $H^{\pm}$ , A, H and h. Assuming negligible CP violation,  $H^{\pm}$  and A are given by

(4) 
$$H^{\pm}, A = s_{\beta} \eta_1^{\pm,0} - c_{\beta} \eta_2^{\pm,0}$$

where the angle  $\beta$  is determined from  $t_{\beta} \equiv \tan \beta = v_2/v_1$ , and their orthogonal combinations are the corresponding Goldstone modes  $G^{\pm,0}$ . The neutral CP-even Higgs bosons are diagonalized as

(5) 
$$h = c_{\alpha} \rho_1 - s_{\alpha} \rho_2, \quad H = s_{\alpha} \rho_1 + c_{\alpha} \rho_2$$

where h(H) denotes the lighter (heavier) state.

The gauge couplings of h and H are given schematically by  $\mathcal{L}_{\text{gauge}} = g_V m_V (s_{\beta-\alpha}h + c_{\beta-\alpha}H)VV$  where  $V = W^{\pm}$  or Z. When h is the 125 GeV Higgs boson, the SM limit corresponds to  $s_{\beta-\alpha} \to 1$ . Indeed, LHC finds,  $c_{\beta-\alpha} \ll 1$  in all the 2HDMs confirming the SM-like property of the 125 GeV boson [15].

Normalizing the Yukawa couplings of the neutral bosons to a fermion f by  $m_f/v$  where  $v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}$ , we have the following Yukawa terms:

$$(6) \quad -\mathcal{L}_{\text{Yukawa}}^{\text{2HDMs}} = \sum_{f=u,d,l} \frac{m_f}{v} \left( y_f^h h \bar{f} f + y_f^H H \bar{f} f - i y_f^A A \bar{f} \gamma_5 f \right) \\ + \left[ \sqrt{2} V_{ud} H^+ \bar{u} \left( \frac{m_u}{v} y_u^A P_L + \frac{m_d}{v} y_A^d P_R \right) d + \sqrt{2} \frac{m_l}{v} y_l^A H^+ \bar{\nu} P_R l + \text{h.c.} \right]$$

where the normalized Yukawa coupligs  $y_f^{h,H,A}$  are summarized in table I for each of these four types of 2HDMs.

Let us now recall that the tau Yukawa coupling  $y_{\tau} \equiv y_l^h$  in Type X ( $y_b \equiv y_d^h$  in type-II) can be expressed as

(7) 
$$y_{\tau} = -\frac{s_{\alpha}}{c_{\beta}} = s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$$



Fig. 1. – The parameter space allowed in the  $M_A$  vs.  $\Delta M_H = M_H - M_{H^{\pm}}$  plane by EW precision constraints. The green, yellow, gray regions satisfy  $\Delta \chi^2_{\rm EW}(M_A, \Delta M) < 2.3, 6.2, 11.8,$  corresponding to 68.3, 95.4, and 99.7% confidence intervals, respectively.

which allows us to have the wrong-sign limit  $y_{\tau} \sim -1$  compatible with the LHC data [13] if  $c_{\beta-\alpha} \sim 2/t_{\beta}$  for large tan  $\beta$  favoured by the muon g-2. Later we will see that a cancellation in  $\lambda_{hAA}$  can be arranged only for  $y_{\tau}^h < -1$  to suppress the  $h \to AA$  decay.

## 3. – Electroweak constraints

Let us fist consider the constraints arising from EWPD on 2HDMs. In particular, we compare the theoretical 2HDMs predictions for  $M_W$  and  $\sin^2 \theta_{\text{eff}}^{\text{lept}}$  with their present experimental values via a combined  $\chi^2$  analysis. These quantities can be computed perturbatively by means of the following relations:

(8) 
$$M_W^2 = \frac{M_Z^2}{2} \left[ 1 + \sqrt{1 - \frac{4\pi\alpha_{\rm em}}{\sqrt{2}G_F M_Z^2}} \frac{1}{1 - \Delta r} \right].$$

(9) 
$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = k_l \left( M_Z^2 \right) \sin^2 \theta_W,$$

where  $\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$ , and  $k_l(q^2) = 1 + \Delta k_l(q^2)$  is the real part of the vertex form factor  $Z \to l\bar{l}$  evaluated at  $q^2 = M_Z^2$ . We than use the following experimental values:

(10) 
$$M_W^{\text{EXP}} = 80.385 \pm 0.015 \,\text{GeV},$$
$$\sin^2 \theta_{\text{eff}}^{\text{lept,EXP}} = 0.23153 \pm 0.00016.$$

The results of our analysis are displayed in fig. 1 confirming a custodial symmetry limit of our interest  $M_A \ll M_H \sim M_{H^{\pm}}$  (or  $M_H \ll M_A \sim M_{H^{\pm}}$ ) [12].

# 4. – Theoretical constraints on the splitting $M_A$ - $M_{H^+}$

Although any value of  $M_A$  is allowed by the EW precision tests in the limit of  $M_H \sim M_{H^{\pm}}$ , a large separation between  $M_{H^{\pm}}$  and  $M_A$  is strongly constrained by theoretical



Fig. 2. – Theoretical constraints on the  $M_A$ - $M_{H^{\pm}}$  plane. The darker to lighter gray regions in the left panel correspond to the allowed regions for  $\Delta M \equiv M_H - M_{H^{\pm}} = \{20, 0, -30\}$  GeV and  $\lambda_{\max} = \sqrt{4\pi}$ . The allowed regions in the right panel correspond to  $\lambda_{\max} = \{\sqrt{4\pi}, 2\pi, 4\pi\}$  and vanishing  $\Delta M$ .

requirements of vacuum stability, global minimum, and perturbativity:

(11) 
$$\lambda_{1,2} > 0, \ \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \ |\lambda_5| < \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2}$$

(12) 
$$m_{12}^2(m_{11}^2 - m_{22}^2\sqrt{\lambda_1/\lambda_2})(\tan\beta - (\lambda_1/\lambda_2)^{1/4}) > 0,$$

(13) 
$$|\lambda_i| \lesssim |\lambda_{\max}| = \sqrt{4\pi}, 2\pi, \text{ or } 4\pi$$

Taking  $\lambda_1$  as a free parameter, one can have the following expressions for the other couplings in the large  $t_{\beta}$  limit [9]:

(14) 
$$\lambda_2 v^2 \approx s_{\beta-\alpha}^2 M_h^2$$

(15) 
$$\lambda_3 v^2 \approx 2M_{H^{\pm}}^2 - (s_{\beta-\alpha}^2 + s_{\beta-\alpha}y_\tau)M_H^2 + s_{\beta-\alpha}y_\tau M_h^2,$$

(16) 
$$\lambda_4 v^2 \approx -2M_{H^{\pm}}^2 + s_{\beta-\alpha}^2 M_H^2 + M_A^2$$

(17) 
$$\lambda_5 v^2 \approx s_{\beta-\alpha}^2 M_H^2 - M_A^2,$$

where we have used the relation (7) neglecting the terms of  $\mathcal{O}(1/t_{\beta}^2)$ .

Consideration of all the theoretical constraints mentioned above in the SM limit corresponding to  $s_{\beta-\alpha} = y_{\tau} = 1$  gives us fig. 2. One can see that for a light pseudoscalar with  $M_A \lesssim 100 \text{ GeV}$  the charged Higgs boson mass gets an upper bound of  $M_{H^{\pm}} \lesssim 250 \text{ GeV}$ .

### 5. – Constraints from the muon g-2

Considering all the updated SM calculations of the muon g - 2, we obtain

(18) 
$$a_{\mu}^{\rm SM} = 116591829\,(57) \times 10^{-11}$$

comparing it with the experimental value  $a_{\mu}^{\text{EXP}} = 116592091 (63) \times 10^{-11}$ , one finds a deviation at  $3.1\sigma$ :  $\Delta a_{\mu} \equiv a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = +262 (85) \times 10^{-11}$ . In the 2HDM, the one-loop contributions to  $a_{\mu}$  of the neutral and charged Higgs bosons are

(19) 
$$\delta a_{\mu}^{^{2\text{HDM}}}(1\text{loop}) = \frac{G_F m_{\mu}^2}{4\pi^2 \sqrt{2}} \sum_j \left(y_{\mu}^j\right)^2 r_{\mu}^j f_j(r_{\mu}^j),$$

EUNG JIN CHUN

where  $j = \{h, H, A, H^{\pm}\}, r_{\mu}^{j} = m_{\mu}^{2}/M_{j}^{2}$ , and

(20) 
$$f_{h,H}(r) = \int_0^1 \mathrm{d}x \, \frac{x^2(2-x)}{1-x+rx^2},$$

(21) 
$$f_A(r) = \int_0^1 \mathrm{d}x \, \frac{-x^3}{1 - x + rx^2},$$

(22) 
$$f_{H^{\pm}}(r) = \int_0^1 \mathrm{d}x \, \frac{-x(1-x)}{1-(1-x)r}.$$

These formula show that the one-loop contributions to  $a_{\mu}$  are positive for the neutral scalars h and H, and negative for the pseudo-scalar and charged Higgs bosons A and  $H^{\pm}$  (for  $M_{H^{\pm}} > m_{\mu}$ ). In the limit  $r \ll 1$ ,

(23) 
$$f_{h,H}(r) = -\ln r - 7/6 + O(r),$$

(24) 
$$f_A(r) = +\ln r + 11/6 + O(r),$$

(25) 
$$f_{H^{\pm}}(r) = -1/6 + O(r),$$

showing that in this limit  $f_{H^{\pm}}(r)$  is suppressed with respect to  $f_{h,H,A}(r)$ . Now the twoloop Barr-Zee type diagrams with effective  $h\gamma\gamma$ ,  $H\gamma\gamma$  or  $A\gamma\gamma$  vertices generated by the exchange of heavy fermions gives

(26) 
$$\delta a_{\mu}^{\text{2HDM}}(2\text{loop} - \text{BZ}) = \frac{G_F m_{\mu}^2}{4\pi^2 \sqrt{2}} \frac{\alpha_{\text{em}}}{\pi} \sum_{i,f} N_f^c Q_f^2 y_{\mu}^i y_f^i r_f^i g_i(r_f^i),$$

where  $i = \{h, H, A\}$ ,  $r_f^i = m_f^2/M_i^2$ , and  $m_f$ ,  $Q_f$  and  $N_f^c$  are the mass, electric charge and number of color degrees of freedom of the fermion f in the loop. The functions  $g_i(r)$  are

(27) 
$$g_i(r) = \int_0^1 \mathrm{d}x \, \frac{\mathcal{N}_i(x)}{x(1-x)-r} \ln \frac{x(1-x)}{r} \, dx$$

where  $N_{h,H}(x) = 2x(1-x) - 1$  and  $N_A(x) = 1$ .

Note the enhancement factor  $m_f^2/m_{\mu}^2$  of the two-loop formula in eq. (26) relative to the one-loop contribution in eq. (19), which can overcome the additional loop suppression factor  $\alpha/\pi$ , and makes the two-loop contributions may become larger than the one-loop ones. Moreover, the signs of the two-loop functions  $g_{h,H}$  (negative) and  $g_A$  (positive) for the CP-even and CP-odd contributions are opposite to those of the functions  $f_{h,H}$ (positive) and  $f_A$  (negative) at one-loop. As a result, for small  $M_A$  and large  $\tan\beta$  in type-II and X, the positive two-loop pseudoscalar contribution can generate a dominant contribution which can account for the observed  $\Delta a_{\mu}$  discrepancy. The additional 2HDM contribution  $\delta a_{\mu}^{2\text{HDM}} = \delta a_{\mu}^{2\text{HDM}}(1\text{loop}) + \delta a_{\mu}^{2\text{HDM}}(2\text{loop} - \text{BZ})$  obtained adding eqs. (19) and (26) (without the h contributions) is compared with  $\Delta a_{\mu}$  in fig. 3.

Finally, let us remark that the hAA coupling is generically order one and thus can leads to a sizable non-standard decay of  $h \to AA$  which should be suppressed kinematically or by making  $|\lambda_{hAA}/v| \ll 1$  to meet the LHC results [7-9]. Using eq. (14), one gets the hAA coupling,  $\lambda_{hAA}/v \approx s_{\beta-\alpha}[\lambda_3 + \lambda_4 - \lambda_5]$ , and thus

(28) 
$$\lambda_{hAA}v/s_{\beta-\alpha} \approx -(1+s_{\beta-\alpha}y_{\tau})M_H^2 + s_{\beta-\alpha}y_{\tau}M_h^2 + 2M_A^2,$$



Fig. 3. – The  $1\sigma$ ,  $2\sigma$  and  $3\sigma$  regions allowed by  $\Delta a_{\mu}$  in the  $M_A$ -tan $\beta$  plane taking the limit of  $\beta - \alpha = \pi/2$  and  $M_{h(H)} = 126$  (200) GeV in type-II (left panel) and type-X (right panel) 2HDMs. The regions below the dashed (dotted) lines are allowed at  $3\sigma$  (1.4 $\sigma$ ) by  $\Delta a_e$ . The vertical dashed line corresponds to  $M_A = M_h/2$ .

where we have put  $s_{\beta-\alpha}^2 = 1$  [9]. It shows that, in the SM limit of  $s_{\beta-\alpha}y_{\tau} \to 1$ , the condition  $\lambda_{hAA} \approx 0$  requires  $M_H \sim M_h$  which is disfavoured, and thus one needs to have  $M_A > M_h/2$ . On the other hand, one can arrange a cancellation for  $\lambda_{hAA} \approx 0$  in the wrong-sign domain  $s_{\beta-\alpha}y_{\tau} < 0$  if the tau Yukawa coupling satisfies

(29) 
$$y_{\tau}s_{\beta-\alpha} \approx -\frac{M_H^2 - 2M_A^2}{M_H^2 - M_h^2}$$

#### 6. – Summary

The type-X 2HDM provides a unique opportunity to explain the current ~  $3\sigma$  deviation in the muon g-2 while satisfying all the theoretical requirements and the experimental constraints. The parameter space favourable for the muon g-2 at  $2\sigma$  is quite limited in the SM limit:  $\tan \beta \gtrsim 30$  and  $M_A \ll M_H \sim M_{H^{\pm}} \lesssim 250 \,\text{GeV}$ . However, consideration of the  $h \to AA$  decay and lepton universality [8] rules out this region. On the other hand, in the wrong-sign limit of  $y_{\tau} \sim -1$ , a cancellation for  $\lambda_{hAA} \approx 0$  can be arranged for  $M_H$  up to about 600 GeV [7,9] opening up more parameter space.

Such a light CP-odd boson A and the extra heavy bosons can be searched for at the next run of the LHC mainly through  $pp \to AH, AH^{\pm}$  followed by the decays  $H^{\pm} \to \tau^{\pm}\nu$  and  $A, H \to \tau^{+}\tau^{-}$  [8,9].

## REFERENCES

- BROWN H. N. et al. (Muon g-2 Collaboration), Phys. Rev. Lett., 86 (2001) 2227, [hep-ex/0102017]; BENNETT G. W. et al. (Muon g-2 Collaboration), Phys. Rev. D, 73 (2006) 072003, [hep-ex/0602035].
- [2] DEDES A. and HABER H. E., JHEP, 0105 (2001) 006, [hep-ph/0102297]; CHEUNG K. M., CHOU C. H. and KONG O. C. W., Phys. Rev. D, 64 (2001) 111301, [hep-ph/0103183]; KRAWCZYK M., hep-ph/0103223; LARIOS F., TAVARES-VELASCO G. and YUAN C. P., Phys. Rev. D, 64 (2001) 055004, [hep-ph/0103292].
- [3] KRAWCZYK M., Acta Phys. Polon. B, 33 (2002) 2621, [hep-ph/0208076].
- [4] CHEUNG K. and KONG O. C. W., Phys. Rev. D, 68 (2003) 053003, [hep-ph/0302111].
- [5] CAO J., WAN P., WU L. and YANG J. M., Phys. Rev. D, 80 (2009) 071701, [arXiv:0909.5148 [hep-ph]].

- [6] BROGGIO A., CHUN E. J., PASSERA M., PATEL K. M. and VEMPATI S. K., JHEP, 1411 (2014) 058, [arXiv:1409.3199 [hep-ph]].
- [7] WANG L. and HAN X. F., arXiv:1412.4874 [hep-ph].
- [8] ABE T., SATO R. and YAGYU K., arXiv:1504.07059 [hep-ph].
- CHUN E. J., KANG Z., TAKEUCHI M. and SMING TSAI Y.-L., JHEP, 1511 (2015) 099 [arXiv:1507.08067 [hep-ph]].
- [10] BARR S. M. and ZEE A., Phys. Rev. Lett., 65 (1990) 21, (Erratum Phys. Rev. Lett., 65 (1990) 2920); ILISIE V., arXiv:1502.04199 [hep-ph].
- [11] MISIAK M., ASATRIAN H. M., BOUGHEZAL R., CZAKON M., EWERTH T., FERROGLIA A., FIEDLER P., GAMBINO P. et al., arXiv:1503.01789 [hep-ph].
- [12] GERARD J.-M. and HERQUET M., Phys. Rev. Lett., 98 (2007) 251802, [hep-ph/0703051 [HEP-PH]].
- [13] FERREIRA P. M., GUNION J. F., HABER H. E. and SANTOS R., *Phys. Rev. D*, **89** (2014) 11, 115003, [arXiv:1403.4736 [hep-ph]]; FERREIRA P. M., GUEDES R., SAMPAIO M. O. P. and SANTOS R., *JHEP*, **1412** (2014) 067, [arXiv:1409.6723 [hep-ph]].
- [14] GUNION J. F. and HABER H. E., *Phys. Rev. D*, 67 (2003) 075019, [hep-ph/0207010];
   BRANCO G. C., FERREIRA P. M., LAVOURA L., REBELO M. N., SHER M. and SILVA J. P., *Phys. Rept.*, 516 (2012) 1, [arXiv:1106.0034 [hep-ph]].
- [15] ATLAS COLLABORATION, ATLAS-CONF-2014-010, http://cds.cern.ch/record/1670531; CHOWDHURY D. and EBERHARDT O., arXiv:1503.08216 [hep-ph].