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Summary. — We present exact results in the (3 + 1)-dimensional Skyrme model.
First of all, it will be shown that, in the Pionic sector, a quite remarkable phe-
nomenon for a non-integrable (3+1)-dimensional field theory appears: a non-linear
superposition law is available allowing the composition of solutions in order to gener-
ate new solutions of the full field equations keeping alive, at the same time, the inter-
actions terms in the energy-density. Secondly, it will be shown that the generalized
hedgehog ansatz can be extended to suitable curved backgrounds. Interestingly, one
can choose the background metric in such a way to describe finite-volume effects
and, at the same time, to simplify the Skyrme field equations. In this way, it is
possible to construct the first exact multi-Skyrmionic configurations of the (3 + 1)-
dimensional Skyrme model with arbitrary high winding number and living at finite
volume. Last but not least, a novel BPS bound (which is sharper than the usual one
in term of the winding number) will be derived which can be saturated and reduces
the field equations to a first-order equation for the profile.

1. – Introduction

One of the main teaching of Prof. Vilasi which has been extremely important through
all my research career is the search of beauty in theoretical physics: one should only
publish papers in which nice mathematical patterns are disclosed. Especially when only
few experiments are available, this is the most reasonable guide in our field and often
such nice patterns have a deep physical meaning.

One of the model in which the search for mathematical beauty has produced some
of the most remarkable physical results is the one introduced by Skyrme long ago [1].
Indeed, the Skyrme theory is one of the most important model of theoretical physics due
to its wide range of applications. Skyrme [1] introduced his famous term to allow the
existence of static soliton solutions with finite energy representing Fermionic degrees of
freedom (despite the fact that the basic field of the Skyrme theory are scalars). Moreover,
these Fermionic topological solitons called Skyrmions turn out to be suitable to describe
nucleons (see [2-8] and references therein).

Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0) 1



2 FABRIZIO CANFORA

It is worth to emphasize that the topic of bosonization in which one is able to make
up Fermions from Bosonic degrees of freedom became very popular in the ’80 (see, for
two detailed reviews [9, 10]). However, most of the examples of that period were in low
dimensions. In fact, Skyrme already in the early sixties had this idea but in (3 + 1)
dimensions.

A characteristic of the Skyrme model which, until very recently, basically prevented
the construction of non-trivial analytical configurations in which the non-linear effects of
the Skyrme term were manifest is the fact that, unlike what happens for instance in the
case of monopoles and instantons in Yang-Mills-Higgs theory (see, for instance, [2,3,11]),
the Skyrme-BPS bound on the energy in term of the winding number cannot be saturated
for non-trivial spherically symmetric Skyrmions. In other words, it seems to be impossible
to reduce the Skyrme field equations to a first-order equation keeping alive, at the same
time, non-trivial topological charges.

A fundamental theoretical challenge is to construct exact configurations of the Skyrme
model in which the non-linear effects are explicitly present. This would shed considerable
light on the peculiar interactions of the Skyrme model. In particular, a very interesting
issue is to explain how, in a non-linear and non-integrable theory such as the Skyrme
model in four dimensions, nice crystal-like structures (see [13] and references therein)
are able to appear. These beautiful configurations, which have been constructed numeri-
cally, look almost like non-trivial super-positions of “elementary solutions” but, at a first
glance, it appears to be impossible to accommodate both non-linear effects and (any sort
of) superposition law.

On the other hand, in the mathematical literature, the concept of non-linear super-
position law is already known since Lie (which to the best of the author’s knowledge
was the first to formulate this idea). Unfortunately, all the examples constructed so far
(for a nice review see [12]) correspond to systems of ordinary differential equations which
are cooked up in such a way to possess such remarkable property (which will be defined
more precisely in the next sections). Examples of systems of partial differential equations
(PDEs henceforth) arising from realistic non-linear field theory models are still missing.

In the present paper, it will be shown that using the generalized hedgehog ansatz
introduced in [14-17] for SU(2)-valued scalar fields (which recently has also been ex-
tended to the SU(N) case in [18]) one can show that a remarkable phenomenon takes
place: a non-linear superposition law appears which allows to combine two or more
“elementary” configurations (whose profile depends in a non-trivial way on all the space-
like coordinates) into a new exact composite configuration representing an interacting
cloud of Pions. Despite the explicit presence of non-linear effects, the interaction energy
between the moduli of elementary configuration can be computed exactly. Moreover the
same formalism allows [17] the construction of multi-Skyrmions at finite volume: namely,
exact solutions of the Skyrme model representing interacting elementary Skyrmions with
a non-trivial winding number, in which finite-volume effects can be explicitly taken into
account. The way to do this is to write the system in a modified “cylinder-like” met-
ric whose curvature is parametrized by a length R0. The ground state of such multi-
Skyrmions has the remarkable property that although the BPS bound in term of the
winding cannot be saturated, a new topological charge exists leading to a different BPS
bound which instead can be saturated allowing to reduce the second-order field equations
to a first-order equation in a genuine BPS-style.

This paper is organized as follows: in the second section, the generalized hedgehog
ansatz as well as the non-linear superposition law will be presented. In the third section,
how the generalized hedgehog leads to the first multi-Skyrmionic configurations living
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at finite volume will be described. In the fourth sections some conclusions as well as
interesting directions for future investigation will be discussed.

2. – Generalized hedgehog and non-linear superposition law

The action of the SU(2) Skyrme system in four-dimensional space-times is

SSkyrme =
K

2

∫
d4x

√
−gTr

(
1
2
RμRμ +

λ

16
FμνFμν

)
, K > 0, λ > 0,(1)

Rμ := U−1∇μU = Rj
μtj , Fμν := [Rμ, Rν ] , � = 1, c = 1,

where the Planck constant and the speed of light have been set to 1, g is the determinant
of the metric, the coupling constants K and λ are fixed by comparison with experimental
data (see for instance [7]) and the tj are the basis of the SU(2) generators

tj = −i
σj

2

(where the Latin index j corresponds to the group index and σj are the Pauli matrices).
The Skyrme field equations are

(2) ∇μRμ +
λ

4
∇μ[Rν , Fμν ] = 0,

where ∇μ corresponds to the derivative operator. In this section the following flat back-
ground metric will be considered:

ds2 = −dt2 + dx2 + dy2 + dz2.

The standard parametrization of the SU(2)-valued scalar U(xμ) will be adopted

U±1(xμ) = Y 0(xμ)1 ± Y i(xμ)ti,
(
Y 0

)2
+ Y iYi = 1,(3)

Y 0 = cos α, Y i = n̂i sin α,(4)
n̂1 = sin Θ cos Φ, n̂2 = sin Θ sin Φ, n̂3 = cos Θ,(5)

where α, Φ and Θ can depend, in principle on all the four space-time coordinates(1)

(6) α = α (xμ) , Θ = Θ (xμ) , Φ = Φ(xμ) .

Since the parametrization in eqs. (3), (4) and (5) corresponds to the most general element
of SU(2), by replacing it into the action in eq. (1) as well as into the equations of motion
in eq. (2) the SU(2) Skyrme theory can be interpreted as a theory of three interacting
scalar fields α, Φ and Θ. Usually, the scalar field α is called profile while Φ and Θ
describe the orientation within isospin space.

(1) For instance, on flat spaces in spherical coordinates, when α = α(r), Θ = θ and Φ = ϕ one
gets back the usual hedgehog ansatz for the spherycally symmetric Skyrmion.
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One of the main features of the well known hedgehog ansatz introduced by Skyrme
to describe his topological solitons (which however is rarely emphasized in the textbooks
and papers on the subject) is that, with a suitable ansatz for Φ and Θ, it reduces a
coupled system of PDEs for α, Φ and Θ to just one non-linear equation for the profile
α (see, for instance, [2]). This is a quite remarkable property since usually Φ and Θ
are chosen a priori to have non-trivial topological charge and, at the same time, a
spherically symmetric energy-density. In this way one is left with just one free degree
of freedom (namely, the profile α) but still three field equations to solve and yet the
system is consistent. The above property define the generalized hedgehog ansatz [14-16]:
namely under which conditions on α, Φ and Θ the full system of field equations of the
Skyrme theory reduces to just one equation for the profile α. Interestingly enough,
such formalism can also be applied to the coupled Einstein-Skyrme system: interesting
cosmological applications have been investigated in [19,20].

In the Pionic sector [14-16] such conditions(2) read

Y 0 = cos α, Y i = n̂i sin α,(7)
n̂1 = cos Φ, n̂2 = sin Φ, n̂3 = 0, (∇μα) (∇μΦ) = 0,(8)

with Φ a linear function of the coordinates. This is called Pionic sector since the winding
number vanishes identically.

As it has been discussed in [16] a very convenient choice is to take Φ in such a way
that

(9) (∇μΦ) (∇μΦ) = (∇Φ)2 = const �= 0,

since the system becomes rather trivial when (∇Φ)2 vanishes (in which case the field
equation for α linearizes and, mainly, the energy-momentum tensor becomes quadratic
in α so that the non-linear effects disappear). Thus when eq. (9) is satisfied, as one can
check directly, the full Skyrme field equations eq. (2) (which are a coupled system of
non-linear partial differential equations for α, Φ and Θ) reduce to the following single
scalar non-linear partial differential equation for the Skyrmion profile α:

0 =
(
1 + λ (∇Φ)2 sin2 α

)
�α +

λ (∇Φ)2 (∇α)2

2
sin (2α) − (∇Φ)2

2
sin (2α) = 0,(10)

� = ∇μ∇μ,

while the t-t component of the energy-momentum (which represents the energy-density)
reads

Ttt = K

{
(∇tα)2 + sin2 α (∇tΦ)2 − gtt

2

[
(∇α)2 + sin2 α (∇Φ)2

]
(11)

+λ sin2 α
(
(∇Φ)2 (∇tα)2 + (∇α)2 (∇tΦ)2

)
− λgtt

2
sin2 α

(
(∇Φ)2 (∇α)2

)}
.

(2) There are also two further technical conditions which become trivial on flat spaces [15].
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The class of exact time-periodic solutions (denoted as “periodic Skyrmions”) corre-
sponds to the following choices of the profile of the hedgehog α and of the function Φ:

α = α(x, y, z), (∇α)2 = (∂xα)2 + (∂yα)2 + (∂zα)2,(12)
Φ = ωt, ω ∈ R, (∇Φ)2 = −ω2.(13)

The ansatz in eq. (13) describes Skyrmions with a profile α which depends on all the
space-like coordinates. On the other hand, the internal vector n̂i which describes the
orientation of the Skyrmion in the internal SU(2) space oscillates in time with frequency
ω between the first and the second generators of the SU(2) algebra: the description of
this dynamical situation would be impossible with the usual spherical hedgehog ansatz.

With the above choice of α and Φ, the full Skyrme field equations eq. (2) reduce
consistently to (see [14-16]) the following scalar elliptic non-linear partial differential
equation for the Skyrmion profile

(14) 0 =
(
1 − λω2 sin2 α

)
�α +

ω2

2
sin(2α) − λω2 sin(2α)

2
(∇α)2,

where � is the flat three-dimensional Laplacian.
It is possible to define a convenient change of variable in eq. (14) which discloses one

of the very intriguing effects mentioned in the introduction. In terms of the function
H(α) of the profile α

H (α) =
∫ α

ds
√

1 − λω2 sin2 s ⇒ �H√
1 − λω2 sin2 α

(15)

=
[
�α − λω2

2
sin(2α)(∇α)2

1 − λω2 sin2 α

]
,

eq. (14) can be written as

(16) �H +
ω2 sin(2α)

2
√

1 − λω2 sin2 α
= 0,

where one should express α in terms of H inverting the elliptic integral in eq. (15). A very
surprising phenomenon is now apparent: if

(17) ω = ω∗ = ± 1√
λ

,

then eq. (14) with the change of variable in eq. (15) reduces to the following (linear! )
Helmholtz equation

(18) �H +
1
λ

H = 0, α = arcsin H.

which, as it will be discussed below, allows to define an exact non-linear superposition
law. The energy-density (defined in eq. (11)) in terms of H becomes

(19) Ttt = K

{
1
2λ

H2 +
1
2

(
1 + H2

1 − H2

)
(∇H)2

}
.
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The explicit presence of non-linear effects in the energy-momentum tensor in eq. (19)
despite the fact that H satisfies the linear Helmholtz equation is related to the breaking
of the homogeneous scaling symmetry. Unlike what happens in free field theories, the
energy-density does not scale homogeneously under the rescaling

H → ρH, ρ ∈ R.

In particular, by definition (see eqs. (18) and (7)), |H| cannot be larger than 1 and,
moreover, from the energetic point of view, it may be very “expensive” for |H| to get
close to 1 as it is clear from eq. (19). Therefore, one can multiply a given solution H(0)

for a constant ρ only provided the (absolute value of the) new solution ρH(0) of the
Helmholtz equation does not exceed 1.

The non-analytic dependence of the energy density in eq. (19) on the Skyrme coupling
λ clearly shows both the non-perturbative nature of the present effect and the fact that it
is closely related to the Skyrme term. Here only the cases in which eq. (18) has a unique
solution up to integration constants (which play the role of moduli of the Skyrmions)
will be considered since they allow a more transparent physical interpretation (but more
general situations can be analyzed as well). The periodic Skyrmions corresponding such
unique solution will be denoted as elementary Skyrmions.

Let us consider the case in which the soliton profiles depend on three space-like
coordinates x, y and z. Periodic boundary conditions (with periods 2πLi) in the spatial
directions will be considered. Let

Hi = H (−→x −−→x i) = Ai (sin μ1 (x − xi) sin μ2 (y − yi) sinμ3 (z − zi)) ,(20)

1
λ

=
3∑

i=1

μ2
i , μi =

1
Li

, −→x i = (xi, yi, zi) , αi = arcsin Hi,(21)

where H (−→x −−→x i) is the solution of eq. (18). As one can check in eq. (19), the positions
of the peaks in the energy density in eq. (19) corresponding to the elementary Skyrmions
αi = arcsin Hi are determined by −→x i which therefore plays the role of the moduli of
αi since −→x i identifies the “position” of the elementary Skyrmion. On the other hand,
the overall constant Ai strictly speaking does not represent a moduli of the elementary
Skyrmion since, when one replaces the expression in eq. (20) into eq. (19), one can see
that the total energy depends on Ai while it does not depend on −→x i.

The most natural way to define a continuous composition of N elementary Skyrmions
αi = arcsin Hi with moduli −→x i (defined in eqs. (20) and (21)) with the property that,
when all the Hi are small, the profile of the sum reduces to the sum of the profiles is

α1+2+...+N = arcsin (H1 + H2 + . . . + HN ) , if |H1 + H2 . . . + HN | ≤ 1,(22)

α1+2+...+N =
π

2
, if H1 + H2 . . . + HN > 1,(23)

α1+2+...+N = −π

2
, if H1 + H2 . . . + HN < −1,(24)

where one must take into account that arcsin x is only defined when |x| ≤ 1. At a first
glance, in the cases in which |H1 + H2 + . . .| > 1, discontinuities in the first derivatives of
the composite Skyrmion can appear. In fact, it is unlikely that such non-smooth solutions
can survive since they are very expensive energetically (since the corresponding gradient
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would be unbounded). Hence, the non-linear superposition of elementary Skyrmions
is only allowed when they satisfy |H1 + H2 + . . .| < 1 otherwise it is not energetically
convenient to combine the elementary Skyrmions into the composite Skyrmion.

As far as the appearance of ordered patterns is concerned, from eqs. (11) and (19)
one can see that the energy-density of the composition α1+2+...+N of N elementary
Skyrmions (whose integral represents the interaction energy between the N elementary
Skyrmions and can be computed in principle for any N) depends in a complicated way
on the moduli −→x i. However, one can observe in eqs. (11) and (19) that, in the expression
of the energy-density of the composition α1+2+...+N , in order to find configurations of
the −→x i which are favorable energetically, one should minimize with respect to the moduli
−→x i quadratic sums of the following type:

Ψ =

(
N∑

i=1

H (−→x −−→x i)

)2

.

In all the cases in which H (−→x ) involves trigonometric functions, the theory of interfer-
ence in optics(3) can be applied to minimize sums of the type appearing in the above
equation since one can interpret Ψ as the interference of many elementary waves. Hence,
placements in which the −→x i follow patterns of negative interference are always favorable
energetically (although other local minima of the total energy appear as well). In the
cases in which H (−→x ) involves a different basis of functions (such as the Bessel functions
which naturally appear when analyzing the Helmholtz equation in unbounded domains)
the known results in optics cannot be applied directly, but it is reasonable to expect that
also in those cases the −→x i follow patterns associated to “negative interference of Bessel
functions”.

It is worth emphasizing that the present remarkable non-linear composition phe-
nomenon in a non-integrable theory such as the four-dimensional Skyrme model depends
crucially on the (square of the gradient of) the field Φ (as it is clear from eq. (13)) as
in eq. (17). It is natural to wonder whether the corresponding energy scale defined in
eq. (17) has actually a deeper physical meaning or the appearance of such phenomenon
is just a “coincidence”. This very interesting question is under investigation.

Thus, from the above analysis, one can conclude that it is not true (as one could
naively think) that the Skyrme term always makes the field equations more complicated
than the one of the non-linear sigma model (namely, its λ = 0 limit). It is precisely
because of the presence of the Skyrme term that the such non-linear composition law
appears. Besides its relations with the appearance of ordered patterns, this shows that
the Skyrme term is also very relevant in the Pionic sector where the winding number
vanishes.

3. – Exact multi-Skyrmions at finite volume

In this section, the construction of analytic multi-Skyrmionic configurations at finite
volume in the SU(2) case [17] will be described.

(3) Namely, if one considers sums such as
PN−1

j A exp(iξj) one can show that it vanishes when

ξj − ξj−1 is equal to 2π/N for any j. In the present case, the difference between the arguments
in the summands is related to the distance between peaks of neighboring Skyrmions.
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Firstly however, it is necessary to emphasize why it is important to analyze finite-
volume effects in the Skyrme model. One of the most important open problems in
Skyrme theory is related with the compression modulus (see for instance [21]) which is
an experimental measurable quantity related to the second derivative of the total energy
with respect to the volume of a system possessing many Skyrmions (therefore, one needs
to put Skyrmions within a finite volume in order to analyze this issue). It has been argued
(see for instance, [22]) that the Skyrme model is unable to produce a theoretical value
for the compression modulus close to the experimental one. On the other hand, such
argument was proposed in a situation in which there were still no analytic configurations
of the original Skyrme model with non-vanishing winding number. Moreover, it appeared
that to find analytic solutions with high winding numbers living at finite volume was even
more difficult than in the usual case. In fact, it will be now shown how one can construct
analytic multi-Skyrmionic configurations living at finite volumes with a suitable choice
of the background metric.

As in the previous section, the parametrization of the SU(2)-valued scalar U(xμ) in
eqs. (3), (4) and (5) will be adopted. In order to describe a spherically symmetric field
configuration we use the hedgehog ansatz:

Y 0 = cos α, Y i = n̂i sin α, α = α(x, t),(25)
n̂1 = sin θ cos ϕ, n̂2 = sin θ sin ϕ, n̂3 = cos θ.(26)

The key idea of [17] for the SU(2) case (which has been recently extended to the
SU(N) case in [18]) is that in order to mimic finite-volume effects without loosing the
nice symmetries of the hedgehog ansatz one can analyze the Skyrme theory on a suitable
curved background of finite volume. The best choice is the following curved background

ds2 = −dt2 + dx2 + R2
0(dθ2 + (sin θ)2dϕ2), −L

2
≤ x ≤ L

2
,(27)

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,(28)

where L is the length of the x-interval. The total volume of space is V = 4πR2
0L. As one

can check directly, the above ansatz for the Skyrme configuration in eqs. (25) and (26)
satisfies the generalized hedgehog property (defined in the previous section). Namely,
with the above ansatz for the Skyrme field, the full Skyrme field equations on the metric
in eq. (27) reduce consistently to just one equation for the profile α. This geometry
describes three-dimensional cylinders whose sections are S2 spheres, so that parameter
R0 plays the role of the (finite) diameter of the transverse sections of the tube. The
fact that this parameter replaces the radial variable r in the metric also leads, as we will
see, to considerable simplification of the equations of motion, even allowing to find exact
solutions in the SU(2) case. The main reason behind the simplifications is that, unlike
what happens in the case of the flat metric in polar coordinates, the determinant of the
metric in eq. (27) does not depend on x.

Moreover, the curvature of this metric is proportional to (R0)
−2. The explicit presence

of this parameter in eq. (27) allows to define a smooth flat limit in which R0 → ∞ and
so all the effects of the curvature disappear (however, the global topology of the space
remains cylindrical even in the flat limit and so it differs from the trivial S3 topology of
flat static unbounded Skyrmions). In the present context, “flat limit” really means

(29) R0 � 1 fm,
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so that, from the practical point of view, already when R0 is around 100 fm all the
effects of the curvature are negligible compared, for instance, with QCD corrections.
Consequently, even in the flat limit in eq. (29) finite-volume effects will not disappear. It
is also worth to emphasize that the well known result that elementary Skyrmions should
be quantized as Fermions (which originally was derived on flat spaces) has been extended
to space-times with compact orientable three-dimensional spatial sections in [23] (and
the metric in eq. (27) belongs to this class).

One may wonder whether it would be possible to start from the very beginning with
a flat metric. In fact, as it has been shown in [17], the background metric in eq. (27)
is a very suitable tool to take into account finite-volume effects (since the total spatial
volume is finite) without breaking relevant symmetries of the hedgehog ansatz, with
the additional advantage of simplifying the field equations. Therefore, it is much more
convenient to analyze the Skyrme theory first within the background metric in eq. (27),
and take the flat limit only later.

With the above ansatz the Skyrme field equations reduce in the static case to the
following scalar differential equation for the Skyrmion profile α [17]:

(
1 +

2λ

R2
0

sin2 α

)
··
α − sin(2α)

R2
0

(
1 − λ

[
·
α

2
− sin2α

R2
0

])
= 0,(30)

dα

dx
=

·
α.

Here the advantage of the choice of the background metric in eq. (27) is apparent:
although the above equation has a very similar structure to the usual one (see, for
instance, [2]) it is an autonomous equation for α (namely, no explicit dependence on the
independent variable x appears). As it will be shown in a moment, this allows to solve
the above equation by quadratures.

The winding number W for such a configuration reads:

(31) W = − 1
24π2

∫
εijkTr

(
U−1∂iU

) (
U−1∂jU

) (
U−1∂kU

)
= − 2

π

∫ ( ·
α sin2 α

)
dx.

In the present case, the natural boundary conditions correspond to the choice:

(32) α

(
L

2

)
− α

(
−L

2

)
= nπ, n ∈ Z.

and with these boundary conditions the winding number takes the integer value n. These
boundary conditions are unique in that they ensure U(−L

2 ) = (−1)nU(L
2 ), which corre-

spond to Bosonic and Fermionic states for even and odd n, respectively.
It will be now shown that smooth solutions exist for any n satisfying the above

boundary conditions for a finite range (−L/2, L/2). In particular multi-soliton solutions
exist, which represent Skyrmions with winding number n living in a finite spatial volume
V = 4πR2

0L. It is worth to remark that the large n limit in the present context is quite
natural since we want to consider thermodynamical properties of the multi-Skyrmions
system and n is the baryon number: obviously, a thermodynamical analysis only makes
sense in the cases in which the particles number is very large.
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The first step to achieve this goal is to observe that the energy density (which is the
0-0 component of the Tμν) derived from the Skyrme action reads

(33) T00 =
KF (α)

2

[
·
α ∓

(
2G(α)
F (α)

)1/2
]2

±
√

2K [F (α)G(α)]1/2 ·
α.

In the above equations, F and G are defined as

(34) F (α) =
(

1 +
2λ

R2
0

sin2 α

)
, G(α) =

sin2 α

R2
0

(
1 +

λ

2R2
0

sin2 α

)
.

It is worth to note that the second term on the right hand side of eq. (33) is a total
derivative.

The second step is to observe that, by multiplying eq. (30) by
·
α, one can easily see

that it can be reduced to a quadrature:

(35)
( ·
α
)2

=
I + 2G(α)

F (α)
,

where I is an integration constant (of dimensions lenght−2). Equation (35) is suitable
to discuss the boundary conditions in eq. (32) are realized. In particular, one can find a
closed equation which determines the dependence of the integration constant I in terms
of the parameters of the model:

(36)
L

n
= ±

∫ π

0

dz

⎡⎣ 1 + 2λ
R2

0
sin2 z

I + 2 sin2 z
R2

0

(
1 + λ

2R2
0

sin2 z
)

⎤⎦1/2

,

where n is the winding number. From the above relation one can easily see that, in order
to have n Skyrmions at finite volume I must be positive. Moreover, for fixed volume
(namely, fixed L and R0) and very large n one gets that I is proportional to n2. The
other interesting limit is L and n both large but L/n fixed (which is the relevant region
of parameters for the compression modulus): in this case I only depends on the ratio
L/n (as well as R0). In particular, within this region one can find a range of values for
the integration constant I which makes the theoretical compression modulus close to the
experimental one [17].

Moreover, from the explicit expression of the energy density, one can derive a novel
BPS bound for the total Energy Etot:

Etot = 4πR2
0K

∫
T00dx ≥ |Q| ,(37)

Q =
√

24πR2
0K

∫ (
[F (α)G(α)]1/2 dα

dx

)
dx.(38)

Clearly, the term Q in eq. (38) is a boundary term and is therefore invariant under
continuous deformations of the fields in the bulk, as suits a topological invariant. The
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above BPS bound can be saturated when α satisfies the following first-order differential
equation:

(39) α′ = ±
(

2G(α)
F (α)

)1/2

.

It is worth to note that the above BPS equation does imply the field equation as it can
be explicitly seen from eq. (35). If one chooses I = 0 in eq. (35) one obtains exactly the
BPS equation (39). Hence, the present Skyrmions have two type of topological charges.
The first one is the winding and the second one is the Q charge defined in eq. (38).
It can be seen that the topological charge Q is bounded from below, |Q| > |W |. The
configurations which saturate the bound in eq. (37) necessarily have winding number
n = ±1 (consequently, they correspond to Fermions) and live in an unbounded domain:
namely, L → ∞ in eq. (27). To the best of author’s knowledge, this is the first non-trivial
example in which the full Skyrme field equations can be reduced to first order in terms
of the novel topological charge defined in eq. (38).

Hence, this analysis shows that although the BPS bound in terms of the winding
number cannot be saturated different BPS bounds can exist which allow to reduce the
field equations to first order in genuine BPS style. It is also worth emphasizing that this
strategy to adapt the geometry to the field equation can be very effective. In particular,
it is quite surprising that it is not the flat metric the one to simplify the most the Skyrme
field equations.

4. – Conclusions and perspectives

In the present paper, the generalized hedgehog ansatz for the SU(2) Skyrme model in
(3 + 1) dimensions has been described through two of its most interesting applications.

First of all, it has been shown that even in the Pionic sector with vanishing winding
number, the Skyrme term plays a fundamental role. In particular, it gives rise to a quite
remarkable phenomenon for a non-integrable four-dimensional field theory: a non-linear
superposition law appears which allows composing solutions in order to generate new
solutions of the full field equations keeping alive, at the same time, the interactions terms
in the energy-density. This intriguing phenomenon is closely related to the appearance
of ordered patterns in the Skyrme theory.

Secondly, it has been shown that the generalized hedgehog ansatz can be extended
to suitable curved backgrounds. In particular, one can choose the background metric in
such a way to describe finite-volume effects and, at the same time, to simplify the Skyrme
field equations. In this way, it is possible to construct the first exact multi-Skyrmionic
configurations of the (3 + 1)-dimensional Skyrme model with arbitrary high winding
number and living at finite volume. Moreover, a novel BPS bound (which is sharper than
the usual one in terms of the winding number) has been derived which can be saturated
and reduces the field equations to a first-order equation for the profile. Such multi-
Skyrmionic configurations allow to derive an analytic expression for the compression
modulus in good agreement with experiments.

It is worth emphasizing that, from the point of view of the theory of PDEs, these
multi-Skyrmionic configurations made of n elementary Skyrmions are very different from
the solutions arising in the Pionic sector in which the non-linear composition law appears.
In the Fermionic case in which the winding number n is non-vanishing, no matter how
large n is, the multi-Skyrmionic configurations defined implicitly in eq. (35) only have



12 FABRIZIO CANFORA

one non-trivial integration constant (namely I). In the Pionic sector corresponding to the
non-linear superposition law, by composing many elementary solutions one can get a new
solution characterized by many integration constants. Thus, in a sense, the Fermionic
sector is more rigid.

There are many interesting ways to extend the above results. First of all, one can try
to extend such formalism to the SU(N) case. The results obtained recently in [18] are
very promising in this respect. It is also very interesting to try to extend the above results
in the presence of a non-vanishing chemical potential. In [24,25] it has been shown that
one can introduce an isospin chemical potential in the Skyrme model by simply replacing
the ordinary derivative with a suitable covariant derivative. In [26,27] this formalism has
been successfully applied to the usual Skyrme solitons. It would be very interesting to
see whether the above results obtained with the generalized hedgehog ansatz also hold
in the presence of a non-vanishing chemical potential using [24-27]. One could try to see
if the energy scale at which the non-linear superposition law appears has some deeper
physical meaning related with Pions physics. Last but not least, it is very natural to
wonder wether the present strategy to search for exact non-trivial configurations of the
Skyrme model in (3+1) dimensions can be extended to the Einstein-Skyrme system. This
issue is very interesting as the present analysis clearly shows the prominent role of the
geometry within the present framework. Moreover, it is an extremely important issue in
itself to analyze self-gravitating topological solitons since, until very recently, there were
no analytic examples of self-gravitating objects possessing a discrete topological charge
similar to the Skyrmions. At a first glance, such a goal could appear over-ambitious as
already the Skyrme field equations are very hard to solve by themselves. Hence, one could
think that to solve the coupled Einstein-Skyrme system is much more difficult. In fact,
in [28] the first analytic family of globally regular self-gravitating Skyrmions in (3 + 1)
dimensions have been constructed. These configurations offer the unique opportunity to
study in details the physical consequences of a discrete conserved charge in a realistic self-
gravitating system together with the fact that, already at a classical level, the Skyrmions
have a characteristic size.

Therefore, one can conclude that the search for mathematical beauty pays off with
the appearance of patterns rich of physical implications.
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