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Summary. — A review is made of the basic tools used in mathematics to define a
calculus for pseudodifferential operators on Riemannian manifolds endowed with a
connection: existence theorem for the function that generalizes the phase; analogue
of Taylor’s theorem; torsion and curvature terms in the symbolic calculus; the two
kinds of derivative acting on smooth sections of the cotangent bundle of the Rieman-
nian manifold; the concept of symbol as an equivalence class. Physical motivations
and applications are then outlined, with emphasis on Green functions of quantum
field theory and Parker’s evaluation of Hawking radiation.
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1. – Introduction

In the course of studying partial differential equations on R
n, one discovers one can

consider operators whose action is defined, at least formally, by the integral

(1) (Pu)(x) ≡ (2π)−
n
2

∫
Rn

eiξ·xp(x, ξ)û(ξ)dξ,

where dξ is the Lebesgue measure on R
n, p(x, ξ) is the amplitude of the operator P ,

ξ · x = 〈x, ξ〉 is its phase function, and

(2) û(ξ) = (2π)−
n
2

∫
Rn

e−iξ·xu(x)dx
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is the Fourier transform of u. These operators are said to be pseudodifferential and form
a class large enough to contain the differential operators, the Green operators and the
singular integral operators that are used to solve partial differential equations. They also
contain, for each elliptic operator, its parametrix, i.e. an approximate inverse up to an
operator of lower order (see below).

To understand how pseudo-differential operators can be used in solving inhomoge-
neous partial differential equations, let us begin by considering, for n ≥ 3 and a smooth
function f with compact support, i.e. f ∈ C∞

0 (Rn), the inhomogeneous equation
�u = f , where

� ≡
n∑

k=1

∂2

∂x2
k

is minus the Laplacian (with our convention, � is defined in the standard way, but the
Laplacian has symbol given by

∑n
k=1(ξk)2 = |ξ|2). Upon taking the Fourier transform

of both sides, one finds

(3) −|ξ|2û(ξ) = f̂(ξ),

and hence, for the inverse operator Q of �, or fundamental solution, we can write [1, 2]

u(x) = (Qf)(x) = −(2π)−
n
2

∫
Rn

eiξ·x f̂(ξ)
|ξ|2 dξ(4)

= −
Γ

(
n
2 − 1

)
4π

n
2

∫
Rn

f(y)
|x − y|n−2

dy.

If, instead of the Laplacian on R
n, we deal with a general partial differential oper-

ator with constant coefficients which can be written as a polynomial P = p(D), where
D ≡ −i

(
∂

∂x1
, . . . , ∂

∂xn

)
, so that

(5) p(D)u = f ∈ C∞
0 (Rn),

the solution can be formally expressed as

(6) u(x) = (Qf)(x) = (2π)−
n
2

∫
Rn

eiξ·xq(ξ)f̂(ξ)dξ,

where the amplitude q(ξ) is the inverse of the symbol p(ξ) of p(D), and the integration
contour must avoid the zeros of p(ξ). However, if the operator P has variable coefficients
on a subset U of R

n, i.e.

(7) P = p(x,D) =
∑

α:|α|≤k

aα(x)Dα
x , aα ∈ C∞(U),

one can no longer solve the equation Pu = f by Fourier transform. One can however
freeze the coefficients at a point x0 ∈ U and consider P as a perturbation of p(x0,D),
which is hence a differential operator with constant coefficients. In this way the amplitude
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of P reduces to q(ξ) = 1
p0(x0,ξ) , and if we let x0 vary in U , we obtain the approximate

solution operator

(8) (Qf)(x) = (2π)−
n
2

∫
Rn

eiξ·xq(x, ξ)f̂(ξ)dξ

with amplitude q(x, ξ) = p(x, ξ)−1, for x ∈ U, f ∈ C∞
0 (Rn).

However, to solve the inhomogeneous equation Pu = f , we do not strictly need the
full inverse operator or fundamental solution, but, as we said before, it is enough to know
a parametrix, i.e. a quasi-inverse modulo a regularizing operator. One can provide a
first example of parametrix by reverting to the study of constant coefficient operators.
A parametrix Q can then be constructed by choosing its amplitude [1] as

(9) q(ξ) =
χ(ξ)
p(ξ)

,

where χ(ξ) is a suitably chosen C∞(Rn) function which is identically zero in a disk about
the origin and identically 1 for large ξ. In this way the integral formula

(10) (Qf)(x) = (2π)−
n
2

∫
Rn

eiξ·xq(ξ)f̂(ξ)dξ,

is not affected by the convergence problems that would be met if the amplitude were
taken to be just p(ξ)−1. If Q is the integral operator in (10) it is no longer true that
PQ = QP = I, but we have [1]

PQf = f + Rf, f ∈ C∞(U),(11)

(Rf)(x) ≡ (2π)−
n
2

∫
Rn

r(x − ξ)f(ξ)dξ,(12)

where the Fourier transform of r is χ − 1. Thus r is a smooth function and R turns out
to be a smoothing operator. Such a class of smoothing operators is fully under control,
and hence a parametrix Q serves just as well as a full fundamental solution, for which R
vanishes identically.

In the following we will see how to extend the theory of pseudodifferential operators
on R

n to more general pseudodifferential operators defined on compact manifolds. In
particular, we will outline some basic symbolic calculus for such operators. In the last
two sections of this paper, some applications to physics will be shown.

2. – Pseudodifferential operators on manifolds

First, note that the material in the appendix can be re-expressed by saying that a
pseudodifferential operator A acting on functions in C∞

0 (Rn) has a symbol given by

(13) σA(x, ξ) = e−iξ·xAeiξ·x ⇐⇒ σA(x0, ξ) =
[
Aeiξ·(x−x0)

]∣∣∣
x=x0

,
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and hence formal application of Taylor’s formula yields

(14) e−iξ·xAf(x)eiξ·x =
∑

k1...kn

i−(k1+...+kn)

k1! . . . kn!

(
∂k1

∂ξk1
1

...
∂knσA

∂ξkn
n

)(
∂k1

∂xk1
1

...
∂knf

∂xkn
n

)
,

the sum being taken over all values of the multi-index k = (k1, . . . , kn). The symbol of
the product AB of two pseudodifferential operators A and B is then defined by

σAB(x, ξ) = e−iξ·xABeiξ·x = e−iξ·xAeiξ·xe−iξ·xBeiξ·x(15)
= e−iξ·xAeiξ·xσB

=
∑

k1...kn

i−(k1+...+kn)

k1! . . . kn!

(
∂k1

∂ξk1
1

...
∂knσA

∂ξkn
n

)(
∂k1

∂xk1
1

...
∂knσB

∂xkn
n

)
.

Note here the crucial role played by the function

(16) l(x0, ξ, x) = ξ · (x − x0) =
n∑

l=1

ξl(xl − xl
0)

which, for each x0, is linear in x and ξ. Its derivative with respect to x is ξ, while its
derivative with respect to ξ is x − x0.

On going from R
n to compact manifolds, we look for a real-valued function

l : T ∗M × M → R

(v, x) �→ l(v, x),

which generalizes the function (16). Linearity in ξ becomes linearity in v on each fiber
of the cotangent bundle of M , but linearity in x has no obvious counterpart. However, if
there exists a connection ∇ on T ∗M , linearity at x0 can be defined by stating that, for
all integer k ≥ 2, the symmetrized k-th covariant derivative vanishes at x0. The desired
linear function is then a real-valued function l ∈ C∞(T ∗M × M) such that the image
l(v, x) is, for fixed x, linear in each fiber of T ∗M , and such that, for each v ∈ T ∗M ,

(17) ∂kl(v, x)|x=π(v) =

{
v, if k = 1,

0, otherwise.

With this notation, ∂k is the symmetrized k-th covariant derivative with respect to x,
while π is the projection map π : T ∗M → M .

Once a connection ∇ is assigned, a definition of symbol of a pseudodifferential operator
A on C∞(M) is provided by [3]

(18) σA(v) =
[
Aeil(v,x)

]∣∣∣
x=π(v)

,

which is a generalization of formula (13). However, the function l(v, x), whose existence
will be proved in the next section, is not uniquely determined by the linearity conditions
above. Therefore, different functions l would lead to different symbol maps. On the other
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hand, it can be proved [3] that the difference between any two symbol maps corresponding
to different choices of functions l belongs to a certain class of functions, therefore the
symbol of a pseudodifferential operator will be actually defined as an element of a quotient
space suitably defined.

3. – Existence theorem for the function l

Following our main source [3], we are now going to prove that there exists a function
l ∈ C∞(T ∗M×M) with the properties listed above. Indeed, we have the following result.

Proposition 3.1. [3] There exists a function l ∈ C∞(T ∗M × M) such that l(·, x) is,
for each x ∈ M , linear on the fibers of T ∗M and such that, for each cotangent vector
v ∈ T ∗M , eq. (17) holds.

Proof. The desired function l is first constructed locally. If U is a coordinate neigh-
bourhood in M with local coordinates xi and an m-th order covariant tensor τi1...im

, its
covariant derivative is given by

(19) τi1...im;i =
∂

∂xi
τi1...im

−
∑

ν

Γj
iiν

τi1...iν−1jiν+1...im
,

where Γj
ik is the standard notation for Christoffel symbols. Thus by induction, for any

scalar function f , one has

(20) f;i1...;ik
=

∂kf

∂xi1 · · · ∂xik
+

∑
j:|j|<k

γi1...ikj
∂jf

∂xj
,

where j are multiindices and γ’s are polynomials in the derivatives of Christoffel symbols.
This implies that, for k > 1, condition (17) is equivalent to each term

∂kl

∂xi1 . . . ∂xik
,

being equal, at π(v), to some linear combination of lower-order derivatives. To sum up,
starting with the requirements

(21) l(v, π(v)) = 0,
∂l(v, x)

∂xi

∣∣∣∣
x=π(v)

= v

(
∂

∂xi

)
,

specifies what ∂kl
∂xk

∣∣∣
x=π(v)

must be, in order eq. (17) to hold. Borel’s theorem ensures

that there exists a C∞ function having partial derivatives arbitrarily prescribed, and the
proof shows that l may be chosen to be both linear and C∞ in v [3].

Having established that, for each coordinate neighbourhood Ui in M , there exists an
li ∈ C∞(T ∗Ui×Ui) with the desired properties, we can take finitely many Ui covering M
with a partition of unity given by functions ϕi ∈ C∞

0 (Ui), and yet other smooth functions
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with compact support ψi ∈ C∞
0 (Ui) equal to 1 on a neighbourhood of the support of ϕi.

The function

(22) l(v, x) ≡
∑

i

ϕi(π(v))li(v, x)ψi(x)

is then globally defined and satisfies all requirements. �

4. – Analogue of Taylor’s theorem

For a smooth function f on M , f (k)(x0) is replaced by ∇kf(x0). To obtain the
analogue of x − x0 note that, since for fixed x0 and x ∈ M the function l(v, x) is linear
for v ∈ T ∗

x0
, we may think of it as an element of the tangent space at x0. We can instead

regard l(·, x) as a vector field on M , so that

(23) l(·, x)k = l(·, x) ⊗ · · · ⊗ l(·, x)

is a symmetric k-th order contravariant tensor field, and hence

∇kf(x0) · l(x0, x)k

is defined and, by virtue of symmetry of l(x0, x)k, it coincides with ∂kf(x0) · l(x0, x)k.
A basic theorem [3] holds according to which, for each point x0 ∈ M and each integer N ,
one has

(24) ∂kf(x0) = ∂k
N∑

n=0

1
n!
∇nf(x0) · l(x0, x)n

∣∣∣∣∣
x=x0

,

for k ≤ N .

5. – Torsion and curvature terms in the symbolic calculus

In the symbolic calculus, one encounters frequently the unsymmetrized covariant
derivatives

(25) ∇kl(v) ≡ ∇kl(v, x)
∣∣
x=π(v)

,

which turn out to be polynomials in the torsion tensor T p
ij and curvature tensor Rp

ijk.
Indeed, by virtue of the Ricci identity, the difference of second covariant derivatives of
an m-th order covariant tensor τi1...im

is given by

(26) τi1...im;j;k − τi1...im;k;j =
∑

ν

τi1...iν−1piν+1...im
Rp

iνjk − τi1...im;pT
p
jk.

Thus, for any permutation α of 1, . . . , k, the difference

f;i1...;ik
− f;iα(1);...;iα(k)
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is a sum of terms each of which is a product of (k−1)st or lower-order covariant derivatives
of f and covariant derivatives of T and R followed by contraction. In particular, if f = l,
one has at x = π(v)

(27)
∑
α

l;iα(1)...;iα(k) = 0.

In particular, one finds, using the Einstein summation convention,

(28) (∇2l)ij = l;ij =
1
2
vpT

p
ij ,

and, in the case of vanishing torsion,

(29) (∇3l)ijk = l;ijk =
1
3
vp

(
Rp

ijk + Rp
jik

)
.

6. – The derivatives Dk and ∇k

Given a function σ ∈ C∞(T ∗M), one defines Dkσ to be the k-th derivative of σ in
the direction of fibers of T ∗M . Thus, for π(v) = x0, think of σ as a function on the
cotangent space at x0, and take its k-th derivative Dkσ evaluated at v. This is a k-linear
function on T ∗x0 and may be identified with an element of the tensor product ⊗kTx0 .
This means that Dkσ is a contravariant k-tensor, and it is the analogue of ∂kσ

∂ξk , but of

course k is an integer in Dk and a multi-index in ∂k

∂ξk .
The covariant derivatives ∇k act on C∞(M), and to define their action on σ ∈

C∞(T ∗M) we set [3]

(30) ∇kσ(v) ≡ ∇kσ (dxl(v, x))
∣∣
x=π(v)

.

Although the function l(v, ·) is not unique as we said before, all its derivatives are deter-
mined at π(v), and hence (30) defines ∇kσ unambiguously as a covariant k-tensor. The
mixed derivatives ∇kDjσ may also occur and are defined by

(31) ∇kDjσ(v) ≡ ∇k
xDj

v σ(dxl(v, x))|x=π(v) .

This is a contravariant (respectively, covariant) j-tensor (respectively, k-tensor), or tensor
of type (j, k). For example, given a Riemannian manifold (M, g), if σ is the squared norm
of v, i.e.

(32) σ(v) = |v|2 = gijvivj ,

one has

(33) (Dσ)i = 2gijvj , (D2σ)ij = 2gij .

Moreover, since

(34) σ(dl) = gij lilj ,
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and both li and gij have vanishing covariant derivatives at π(v), one finds

(35) ∇σ = 0,

while, by virtue of (29),

(36) (∇2σ)kl =
2
3
vpvq (Rpq

kl + Rp q
k l) ,

and

(37) (∇2Dσ)p
kl =

4
3
vq (Rpq

kl + Rp q
k l) .

Note also that σ(v) = |v|2 is the symbol of the Laplacian on a Riemannian manifold, if
the connection with respect to which the symbol is taken is the Levi-Civita connection.

7. – The symbol as an equivalence class

Let Sω
ρ (Rn ×R

m), for 1/2 < ρ ≤ 1, be the space of functions σ ∈ C∞(Rn ×R
m) such

that, for all multi-indices j and k,

(38)
∂j

∂xj

∂k

∂ξk
σ(x, ξ) = O

(
(1 + |ξ|)ω−ρ|k|+(1−ρ)|j|

)
,

uniformly on compact x-sets.
On going from R

n to a (compact) manifold M , the spaces Sω
ρ (M×R

m) and Sω
ρ (T ∗M)

consist of functions satisfying (38) in terms of local coordinates. If it is sufficiently clear
what the underlying space is, one writes simply Sω

ρ , and one sets

(39) S∞
ρ ≡

⋃
ω∈R

Sω
ρ , S−∞ ≡

⋂
ω∈R

Sω
ρ ,

where S−∞ is independent of ρ.
Consider now a manifold M endowed with a connection. We denote by Lω

ρ (M) the
space of operators on C∞(M) which locally are pseudodifferential operators with symbols
(as defined in (18)) in Sω

ρ . Given a linear function l(v, x) as defined in sect. 3, let
ψ ∈ C∞(M × M) such that it is 1 on a neighbourhood of the diagonal and such that
dxl(v, x) �= 0 for ψ(x0, x) �= 0 and 0 �= v ∈ T ∗

x0

Then, for any operator A ∈ Lω
ρ , define

(40) σA(v) =
[
Aψ(π(v), x)eil(v,x)

]∣∣∣
x=π(v)

.

It can be proved [3] that such a function belongs to Sω
ρ , and that different choices of

functions ψ and l lead to the same function σA modulo on element of S−∞. Therefore,
the symbol σA of the operator A is defined as the corresponding equivalence class in
Sω

ρ /S−∞.
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8. – Symbols in quantum field theory

On the side of physical applications, let us here reconsider the photon propagator in
the Euclidean version of quantum electrodynamics. In modern language, the functional
integral tells us that the photon propagator is obtained by first evaluating the gauge-
field operator Pμν , μ, ν = 0, . . . , 3, resulting from the particular choice of gauge-averaging
functional, then taking its symbol σ(Pμν) and inverting such a symbol to find σ−1(Pμν) =
Σμν for which σΣ = Σσ = I. The photon propagator reads eventually [4]

(41) �μν(x, y) = (2π)−4

∫
ζ

d4k Σμνeik·(x−y)

for some contour ζ. The gauge-field Lagrangian turns out to be

(42) L = ∂μρμ +
1
2
AμPμνAν ,

where

(43) ρμ =
1
2
Aν (∂μAν − ∂νAμ) +

1
2α

Aμ∂νAν ,

and

(44) Pμν = −gμν� +
(

1 − 1
α

)
∂μ∂ν .

Note that here we denoted by ∂μ the standard partial derivative with respect to the μ
component, that is ∂μ = ∂

∂xμ . Also, α ∈ R \ {0}, gμν = diag(1, 1, 1, 1) and � = gμν∂μ∂ν .
Of course, the term ρμ only contributes to a total divergence and hence does not affect
the photon propagator, while the parameter α can be set equal to 1 (Feynman choice) so
that calculations are simplified. Thus, we can eventually obtain the gauge-field operator

(45) Pμν(α = 1) = −gμν�.

Its symbol, which results from Fourier analysis of the � operator, reads as

(46) σ(Pμν(α = 1)) = k2gμν ,

and hence the Euclidean photon propagator is (cf. eq. (4))

(47) �μν
E (x, y) = (2π)−4

∫
Γ

d4k
gμν

k2
eik·(x−y),

where the points x and y refer to the indices μ and ν, respectively. Note that integration
along the real axis for k0, k1, k2, k3 avoids poles of the integrand, which are located at
the complex points for which k2 =

∑3
μ=0(kμ)2 = 0.
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Strictly speaking, the gauge parameter α in (43) and (44) is the bare value αB of α
before renormalization, and we should express the bare symbol of the gauge-field operator
in QED in the form

(48) σ(Pμν) = k2gμν +
(

1
αB

− 1
)

kμkν = σμν(k).

Its inverse Σμν is a combination of gμν and kμkν with coefficients A and B, respectively,
determined from the condition

(49) σμνΣνλ = δ λ
μ ,

which implies

(50) A =
1
k2

, B =
(αB − 1)

k4
.

At this stage, the bare photon propagator takes the form

(51) �μν(x, y) =
∫

Γ

d4k

(2π)4

[
gμν

k2
+

(αB − 1)kμkν

k4

]
eik·(x−y).

9. – Hawking radiation

Following ref. [5] we now consider a completely different setting, i.e. the spacetime of
a collapsing star, for which, outside the horizon, the wave operator appears as it would
in a Schwarzschild spacetime for a suitable choice of coordinates. Let r be such a radial
coordinate with associated hypersurface Σ having equation r = 0, and let t be Killing
time, so that k = ∂

∂t is the timelike Killing vector field outside the Killing horizon Bk.
The wave operator reads as

(52) � =
∂2

∂t2
− 1

r2

(
1 − 2m

r

)
∂

∂r

(
r2

(
1 − 2m

r

)
∂

∂r

)
− 1

r2

(
1 − 2m

r

)
L,

where the operator L is independent of t or r and takes the same form as in Minkowski
spacetime. The radial part of the wave operator is

(53) �R =
∂2

∂t2
− 1

r2

(
1 − 2m

r

)
∂

∂r

(
r2

(
1 − 2m

r

)
∂

∂r

)
.

By letting γd (here d is for detector, since a calculation along γd yields the spectrum as
measured by an observer whose worldline is γd) be an integral curve of ∂

∂t and defining
τ ≡ κt, the radial part of the wave operator can be decomposed in the form

(54) �R = (κγ̇d)2 −�R = (κγ̇d)2 −
1
r2

(
1 − 2m

r

)
∂

∂r

(
r2

(
1 − 2m

r

)
∂

∂r

)
,

where the dot denotes ∂
∂τ .
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Since the operator
√
�R is on firm ground, the operator �R can be decomposed as

�R =
(
κγ̇d −

√
�R

)(
κγ̇d +

√
�R

)
.

In the following, we will investigate the spectral properties of the operator κγ̇d −
√
�R,

corresponding to the outgoing part of the radiation. Let us start by considering the
first-order pseudodifferential operator (our conventions for numerical factors follow here
our ref. [5])

(55) P ≡
√
�R + i

κ

2π
ξ,

obtained by taking the Fourier transform with respect to the variable τ .
In order to study the spectrum of

√
�R, we consider the eigenvalue equation �Ru +

λ2u = 0, where u depends only on r. Upon denoting by a prime the differentiation with
respect to r, this reads as

(56)
(

r2

(
1 − 2m

r

)
u′

)′
+ λ2r2

(
1 − 2m

r

)−1

u = 0.

This ordinary differential equation implies that u(2m) = 0 while u′(2m) is finite. At
large r, eq. (56) reduces to

(57) (r2u′)′ + λ2r2u = 0.

The general solution of eq. (57) that is bounded at infinity is [5]

(58) u(r) = a
sin(λr)

r
+ b

cos(λr)
r

,

where the parameters a and b are constant. From the condition u(2m) = 0 one finds

(59) − b

a
= tan(2mλ),

and [5]

(60) λn =
θ

2m
+ n

π

2m
, n ∈ Z

is the large-r limit of the spectrum of �R, having set θ ≡ arctan(−b/a). Since the action
of the wave operator on smooth functions should be smooth on the hypersurface Σ, one
also requires boundedness of u as r → 0+. This implies in turn that b = θ = 0 and λn

reduces to n upon rescaling the radial variable r.
The spectral ζ-function for the operator P defined in (55) is therefore expressed, in

the large-r limit, by the asymptotic expansion

(61) ζ̃P (s) =
∞∑

n=1

(
n + i

κ

2π
ξ
)−s

,
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where the tilde is used to denote removal of the degeneracy of the vanishing eigenvalue.
By relabelling the lower limit of summation, we can re-express this spectral ζ-function
in terms of the Hurwitz ζ-function, i.e. [5]

(62) ζ̃P (s) ∼
∞∑

l=0

(
l + 1 + i

κ

2π
ξ
)−s

= ζH

(
s, 1 + i

κ

2π
ξ
)

.

If ω is the variable dual to ξ in the framework of Fourier transform, one can write
that the Fourier transform with respect to ξ of ζ̃P (s) is approximated by [6]

(63) F(ζ̃P (s)) ∼
(

2π
κ

)s
ωs−1

Γ(s)(e2πω/κ − 1)
.

If one takes the limit as s → 1 and recalls, from ref. [7], that κ = 1
4m in the spacetime of

a collapsing star, one finds

(64) F(ζ̃P (s)) ∼ 8πm

(e8πmω − 1)
.

The spectral density ρ is now given by

(65) ρ = κF(ζ̃P (s)) ∼ 2π

(e8πmω − 1)
,

which is the famous result of Hawking in ref. [8].

10. – Concluding remarks

Pseudodifferential [9] and Fourier-Maslov integral operators [10] play a key role in the
modern theory of elliptic and hyperbolic equations on manifolds, respectively, and the
physical applications form an equally rich family, ranging from the Cauchy problem of
classical field theory [11] to the Green functions of quantum field theory and black-hole
physics, as we have shown.

Here we would like to add that, in the sixties, DeWitt discovered that the advanced
and retarded Green functions of the wave operator on metric perturbations in the de Don-
der gauge make it possible to define classical Poisson brackets on the space of functionals
that are invariant under the action of the full diffeomorphism group of spacetime. He
therefore tried to exploit this property to define invariant commutators for the quantized
gravitational field [12], but the operator counterpart of the classical Poisson brackets
turned out to be a hard task. On the other hand, we know from sect. 1 that, rather
than inverting exactly a partial differential operator, it is more convenient to build a
parametrix. This makes it possible to solve inhomogeneous equations with the desired
accuracy. Interestingly, it remains to be seen whether such a construction might be ex-
ploited in canonical quantum gravity, provided one understands what is the counterpart
of classical smoothing operators in the quantization procedure.
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Appendix A.

Symbol map for partial differential operators; the space of pseudodifferential
operators on R

n

The definitions of sect. 1 are best suited to deal with the analysis of inhomogeneous
partial differential equations Pu = f and use a nomenclature very close to the one
appropriate for Fourier-Maslov integral operators for hyperbolic equations. However, we
should also recall the basic properties summarized below [13].

A linear partial differential operator P of order d on R
n is a polynomial expression

(A.1) P (x,D) =
∑

α:|α|≤d

aα(x)Dα
x , aα ∈ C∞(Rn),

where, for the multi-index α = (α1, . . . , αn), the modulus |α| and the derivative operator
Dα

x are defined by

(A.2) |α| ≡ α1 + · · · + αn, Dα
x ≡ (−i)|α|

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

.

The symbol of P is then defined by

(A.3) σ(P ) = σ(x, ξ) ≡
∑

α:|α|≤d

aα(x)ξα,

and is a polynomial of order d in the dual variable ξ, where (x, ξ) defines a point of the
cotangent bundle of R

n. The leading symbol is the highest order part of σ(x, ξ), i.e.

(A.4) σL(P ) = σd(x, ξ) ≡
∑

α:|α|=d

aα(x)ξα,

and the action of P can be re-expressed in integral form as

(A.5) Pf(x) = (2π)−
n
2

∫
Rn

eiξ·xσ(x, ξ)f̂(ξ)dξ.

In general, one can consider the set Sd of all symbols σ(x, ξ) such that

i) σ is smooth in (x, ξ) with compact x support.

ii) For all multi-indices (α, β), there exist constants Cα,β for which
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(A.6)
∣∣∣Dα

x Dβ
ξ σ(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|)d−|β|.

For σ ∈ Sd, one defines the associated operator (S being the Schwartz space of smooth
complex-valued functions with fast decrease) P : S → C∞

0 (Rn) as in (A.5), i.e.

(A.7) Pf(x) ≡ (2π)−
n
2

∫
Rn

eiξ·xσ(x, ξ)f̂(ξ)dξ = (2π)−n

∫
Rn

eiξ·(x−y)σ(x, ξ)f(y)dy dξ.

The space ψd of such operators is the set of pseudo-differential operators of order d [14].
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