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Summary. — The gravitino problem is investigated in the framework of f(R) cos-
mology. Since in f(R) cosmology the expansion laws of the Universe are modified,
as compared to the standard cosmology, it follows that also the thermal history of
particles gets modified. We show that f(R) models allow to avoid the late abun-
dance of gravitinos. In particular, we found that for an appropriate choice of the
parameters characterizing the f(R) model, the gravitino abundance turns out to be
independent of the reheating temperature.

PACS 04.50.-h – Higher-dimensional gravity and other theories of gravity.
PACS 98.80.-k – Cosmology.

1. – Introduction

Supersymmetry (SUSY) [1] is certainly one of the most attractive extension of the
Standard Model (SM). This follows for different (theoretical) reasons: 1) the stability
of EW scale against radiative corrections finds its natural explanation in SUSY models;
2) the three gauge couplings of the SM meet at GUT scales 1016 GeV. However, apart
from these strong motivations, at the moment there are no direct evidence of SUSY
(superpartners). One therefore expects that if SUSY does exist, it must be broken at
some scale. Besides SUSY, it is natural to consider its immediate extension, the so called
Supergravity (SUGRA), which is a local SUSY [2]. According to SUGRA models, in the
broken phase the super-Higgs effects take place so that the gravitino (the superpartner
of the graviton) may acquire mass absorbing the Nambu-Goldstone fermion associated
to SUSY-breaking symmetry, in analogy to the case occurring in the SM. Gravitino, in
some SUSY models [3], plays a peculiar role since its mass is not directly related to
the SUSY-breaking scales of ordinary particles of SM and their superpartners. Since its
interaction is very weak, there is no chance to find it in collider experiments. Gravitino
properties can be instead studied at cosmological scales, referring in particualr to early
Universe. In this work we shall confine indeed to this case. One of the open issue in
cosmology is the so-called gravitino problem (see for example [4]). Due to the fact that
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SUSY particles couple to ordinary matter only through the gravitational interaction,
their couplings are Planck suppressed. This circumstance implies a quite long lifetime of
these particles

τ ∼ M2
Pl

m3/2
� 105

(
1TeV
m3/2

)3

s,

where m3/2 is the mass of the particle. The scale characterizing m3/2 is of the order of
100 GeV, i.e. the electroweak energies, and is obtained by means of the SUSY break-
ing. Particles with so long lifetime give rise to non trivial problem in cosmology since
if they decay after the big bang nucleosynthesis (BBN), their decay products (gauge
bosons and their gaugino partners or high energy photons) would destroy light elements,
affecting in such a way the successful predictions of BBN. This problem can be avoided
by setting an upper bound on the reheating temperature. More specifically, from the
Boltzamnn equation one finds that (in the framework of GR) the gravitino abundance
Y3/2 is proportional to the reheating temperature TR [5]

(1) Y3/2 � 10−11 TR

1010 GeV
.

Requiring that this abundance remains small for a successful prediction of BBN one gets
the constraint [6]

(2) TR � (106–107)GeV for m3/2 ∼ O(102 GeV).

This result opens a serious question for the inflationary scenarios, since the latter provide
a reheating temperature larger than the upper bound (2) [7]. Studies aimed to bypass
these problems have been faced in [8].

In this paper we present some preliminary results of the gravitino problem in the
framework f(R) cosmology, which represents the simplest extension of theories, the so-
called Extended Theories of Gravity (ETG), that generalize/modify General Relativity
(GR). These theories has been invoked for explaining the recent discovery of the ac-
celerated expansion of the Universe [9], without introducing unknown forms of energy,
the Dark Energy, and, in the astrophsyical context, unknown forms of matter, the Dark
Matter. The appearance of these unknown form of dark components in the Universe is
a clear signal of the breakdown of GR on large scales.

The gravitational Lagrangian for f(R) models is [10-12]

(3) S =
1

2κ2

∫
d4x

√
−g f(R) + Sm[gμν , ψm],

where Sm is matter action and κ2 = 8πG = 8π/M2
Pl (MPl � 1019 GeV is the Planck

mass). The action (3) must be considered as an effective theory that allows to describe
at phenomenological level the gravitational interactions. At the moment there are no
indications, both on theoretical and experimental bases, on what could be the explicit
form of the function f(R). For simplicity we shall the model

(4) f(R) = αRn,
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(for other models and applications, see [10] and [13]). We assume that after inflation,
from GUT scales to reheating scales, the Universe evolves according to (4), then its
evolution enters in the regime governed by the cosmological standard model. As we
shall see, f(R) cosmology provides a scenario in which the thermal history of particles
gets modified, and as a consequence, the Boltzmann equation too. This reflects on the
gravitino abundance, which turns out to depend on parameters characterizing the f(R)
model and the transition temperature, i.e. the temperature at which the Universe passes
from f(R) evolution to the standard one. In this phase of the Universe evolution, the
parameters {α, n} are taken arbitrary.

The paper is organized as follows. In sect. 2 we derive the f(R) gravity field equations.
The analysis of the gravitino problem in the framework of f(R) cosmology is studied in
sect. 3. Conclusions are shortly drawn in sect. 4.

2. – Field equations in f(R) gravity

The field equations for f(R) gravity are

(5) Gc
μν = κ2Tm

μν , Gc
μν ≡ f ′Rμν − f

2
gμν −∇μ∇νf ′ + gμν�f ′,

from which one infers the trace equation the trace is

(6) 3�f ′ + f ′R − 2f = κ2Tm, Tm = ρ − 3p.

Here f ′ ≡ ∂f
∂R , Tm

μν and Tm are the energy-momentum tensor of matter and its trace,
respectively. The tensor Gc

μν is divergenceless ∇μGμν = 0, as well as, for consistency,
the energy-momentum tensor Tm μν . For a (spatially flat) Friedman-Robertson-Walker
(FRW) metric

(7) ds2 = dt2 − a2(t)[dx2 + dy2 + dz2],

the nonvanishing components of Gc μν are

Gc 0
0 = f ′R0

0 −
1
2

f − 3Hḟ ′,(8)

Gc j
i = f ′Rj

i −
f

2
δj
i +

(
f̈ ′ + 2Hḟ ′

)
δj
i ,(9)

where we have used �f ′ = f̈ ′ + 3Hḟ ′, H = ȧ/a, and the dot stands for d/dt.
In this paper we consider power law solution of the scale factor, a(t) = a0t

β . The
0 − 0 field equation and the trace equation read

α

2

[
n(β + 2n − 3)

2β − 1
− 1

]
Rn = κ2ρ,(10)

α

[
n − 2 − n(n − 1)(2n − 1)

β(1 − 2β)
+

3n(n − 1)
1 − 2β

]
Rn = κ2(1 − 3w)ρ,(11)
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where ρ is the energy density, that in the radiation dominated era reads ρm = π2g∗
30 T 4

(g∗ counts the number of relativistic degrees of freedom). In a Universe radiation-
dominated era Tm = 0, so that eqs. (12) and (13) give

αΩnRn = κ2ρ,(12)

β =
n

2
,(13)

where

(14) Ωn ≡ 5n2 − 8n + 2
4(n − 1)

.

From eq. (12) one obtains the relation between the cosmic time t and the temperature T

(15) t = Πn

(
T

MPl

)− 2
n

M−1
Pl ,

where

(16) Πn ≡ [3n|n − 1|]1/2

(
15α̃Ωn

4π3g∗

) 1
2n

, α̃ =
α

M
2(1−n)
Pl

.

Let us introduce the transition time (temperature) t∗ (T∗) which characterizes the transi-
tion from the f(R) cosmology to the standard cosmology, described by GR. This means to
equate the equation of the evolution at the instant t = t∗, i.e. αΩβ,nRn(t∗) = H2

GR(t∗).
One gets

(17) t∗ = [4α̃Ωn[3n|n − 1|]n]
1

2(n−1) M−1
Pl .

The expression of the transition temperature T∗ is given by

(18) T∗ ≡ MPl[3n|n − 1|]−
n

4(n−1)

[
15

16π3g∗

] 1
4

[4α̃Ωn]−
1

4(n−1) ,

so that the relation (17) can be cast in the form

(19) t = t∗

(
T

T∗

)− 2
n

.

Moreover, notice that

(20)
t∗T

2
∗

MPl
=

√
15

16π3g∗
.

Notice, finally, that the expansion rate of the Universe in f(R) cosmology can be
written as

(21) H(T ) = A(T )H(GR)(T ), A(T ) ≡ 2
√

3β

(
T

T∗

)p

, p ≡ 2
n
− 2,
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where the factor A(T ) is the so-called enhancement factor. Expressions similar to (21)
are obtained in different frameworks: p = 2 in Randall-Sundrum type-II brane cos-
mology [14], p = 1 in kination models [15], p = −1 in scalar-tensor cosmology [16],
−1 � p � 0 in f(R) cosmology [17].

3. – Gravitino problem in f(R) cosmology

As pointed out in the introduction, gravitino is generated by means of thermal scat-
tering in the primordial plasma. This occurs during the reheating era after inflation.
To describe the gravitino production one makes use of the Boltzmann equation for the
number density of species in thermal bath. The relevant equation for the gravitino pro-
duction is

(22)
dn3/2

dt
+ 3Hn3/2 = 〈σv〉n2

rad.

Here n3/2,rad refers to gravitino and relativistic species, while 〈. . .〉 stands for the thermal
average of the gravitino cross section σv times the relative velocity of scattering radiation
(v ∼ 1). In (22) we have neglected the term m3/2

〈E3/2〉
n3/2

τ3/2
, where m3/2

〈E3/2〉 is the average
Lorentz factor. Introducing the gravitino and relativistic particles abundances Y3/2 =
n3/2/s and Yrad = nrad/s, respectively, where s = 2π2

45 g∗T
3 and g∗ ∼ 300, the Boltzmann

equation (22) assumes the form

(23)
dY3/2

dT
=

s〈σv〉
Ṫ

Y 2
rad,

where we have used

Ṫ

T
= − n

2t
= − n

2t∗

(
T

T∗

) 2
n

.

Integrating from TR (	 T∗, see below) to a low temperature Tl (� T∗) in the era described
by GR, the solution to (23) is

(24) Y3/2 � −BMPl

T∗

[(
TR

T∗

)Δ

−
(

Tl

T∗

)Δ
]

,

where

Δ ≡ 3 − 2
n

,(25)

B ≡
[
MPl

〈σv〉s
HGRT

Y 2
rad

]
R

1√
3(3n − 2)

.(26)

Notice that (24) is independent of the parameter α.
The gravitino abundance derived in eq. (24) allows to solve the gravitino problem.

In fact for Δ ≈ 0, i.e. n ≈ 2/3, it follows that the gravitino abundance turns out to be
Y3/2 � 1. The most stringent constrain on unstable massive relic particles with lifetime
� 102 s, obtained from 6Li abundance, is Y3/2 � 10−14 102 GeV

m3/2
[6]. Using this value
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Fig. 1. – Y3/2 vs. n.

it follows that the overproduction of gravitino is avoided if the transition temperature
is T∗ � (106–107)GeV, while the reheating temperature can be larger in order to be
compatible with inflationary prediction values (see fig. 1).

4. – Conclusions

In this paper, we have presented some preliminary results related to the gravitino
problem assuming that the background is described by f(R) cosmology. Using the fact
that the expansion rate of the Universe gets modified as H = A(T )HGR, where the
factor A(T ) (given in eq. (21)) accounts for the non canonical evolution of the cosmic
background, we solve the Boltzmann equation that describes the time evolution of the
gravitino abundance. We have shown that, under specific condition, f(R) cosmology
might provide cosmological scenarios able to avoid the late overproduction of gravitino.
The analysis carried out in this paper relies on models in which f(R) is a power-law
expansion of the scalar curvature R. However, besides the possibility to find a more
generic solution for the scalar factor solution of the field equations, other curvature
invariants, like Riemann and Ricci ones and their derivatives, might play a relevant role
for the gravitino problem here studied. In particular, in view of recent results obtained in
the framework of black hole physics [18], also models based on f(R,�R,�lR, . . .) deserve
to be taken into account.

∗ ∗ ∗
It is a pleasure for the author to contribute to the special issue of Il Nuovo Cimento

published in honor of Prof. Gaetano Vilasi for celebrating his 70th birthday.
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