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Summary. — I make some considerations on the quantization of spacetime from
a spectral point of view. The considerations range from the renormalization flow,
to the standard model, to a new phase of spacetime.

1. – Introduction: quantum and classical

It is fitting that in a volume dedicated to Gaetano Vilasi I will discuss quantum gravity.
Most of Gaetano research has been on classical mechanics, but if � is not very present in
his papers, it has been indeed constantly present in our discussions. A notable exception
is [1], where a classical dynamics point of view is taken to describe the Schrödinger
equation as a dynamical system. Faithful to the many discussions we have had across
the years, I will take the point of view that a geometric, or rather a noncommutative
geometric, formalism is the most appropriate tool to describe classical and quantum
mechanics, and go beyond to quantum field theory describing high energy interactions,
and even further: the geometry of quantum spacetime. I will try to reproduce the spirit of
our discussions, keeping the technicalities, even the formulas, at a minimum. References
partly fill the gap. Unfortunately I cannot reproduce the food and the drinks. . .

To start with, one can pose the question: why quantum spacetime? The one we
currently have seems to be doing an excellent job. It is based on Riemannian Geometry,
and it serves well also quantum mechanics and field theory. Geometry is described
in terms of points, lines, vector fields and the like. The same geometry, with some
extra structures such as symplectic forms or Poisson brackets is used to describe the
classical phase space. We know that the latter geometrical description does not survive
quantization, in other words it does describe physical reality only in approximate sense,
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macroscopically. The phase space of quantum mechanics is not described by points, but
by operators which form an algebra.

There is a unified view of quantum and classical mechanics which may be useful
for our considerations. Let us first consider the observables, the selfadjoint part of an
algebra. For a point particle these can be functions of position and momenta, such as
the x1 coordinate, or angular momentum or energy. These functions form an algebra,
i.e. it is possible to add and multiply them, multiply by a (complex) number and take
the Hermitean (complex) conjugate. For technical reasons it is preferable to consider
bounded continuos functions on the space, so that we can endow the algebra with a
norm and define a normed ∗-algebra A, i.e. for a, b,∈ A and α, β ∈ C and bar denoting
usual complex conjugation, the following holds:

a∗∗ = a,(1)
(ab)∗ = b∗a∗,

(αa + βb)∗ = ᾱa∗ + β̄b∗,

‖a + b‖ ≤ ‖a‖ + ‖b‖, ‖αa‖ = |α| ‖a‖,
‖ab‖ ≤ ‖a‖ ‖b‖,
‖a‖ ≥ 0, ‖a‖ = 0 ⇐⇒ a = 0.

When the algebra is complete in the norm it is a C∗-algebra. The algebra is associa-
tive but not necessarily commutative. In the commutative case it can be proved (see
for example [2, 3]) that a commutative C∗-algebra is always the algebra of continuous
complex valued functions over a Hausdorff topological space.

Once we have the observables we need to define in which state our physical system
is. In mathematics, a state on the C∗-algebra A is a linear functional, i.e. a map from
the algebra to complex numbers which is positive and of unit norm:

(2) δ(a∗a) ≥ 0, ∀ a ∈, ‖δ‖ = sup{|δ(a)| | ‖a‖ ≤ 1} = 1.

Any convex combination of states λδ1 + (1−λ)δ2, with 0 ≤ λ ≤ 1 is still a state. A pure
state is a state which cannot be expressed as the convex sum of two other states. For
an abelian algebra the pure states are in one to one correspondence with the points
of the topological space. In this case any element of the algebra is a function, and
a particular state associates to any point the value of the function at that particular
point. Non pure states are density probabilities. To describe the evolution in time of
the system we add some extra structure, a Hamiltonian and a Poisson bracket, and we
have the evolution of the observables, in a classical Heisenberg picture. The transition
to quantum mechanics is “simply” done considering the algebras of observables to be
noncommutative. To quantify the noncommutativity it is necessary to introducee a
quantity with the dimensions of an area in phase space, the dimensions of an action.
The C∗-algebra can always be represented as bounded operators on a Hilbert space
(GNS construction), and a unified description in terms of the momentum map can be
given [4], just to make an example of geometrization of quantum mechanics. The key
of the construction is the algebraic description, if an ordinary space is described by a
commutative algebra, a noncommutative space will be described by a noncommutative
algebra. Starting from this point, the programme of noncommutative geometry [5] is
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the translation of ordinary geometry in algebraic terms, so to allow a generalization to
the noncommutative case. Physically the first noncommutative space is therefore the
phase space of quantum mechanics, do we need more? And why? After all, the non-
commutativity of quantum mechanics is relegated to position and momenta, coordinates
commute among themselves, and the configuration space is an ordinary manifold to be
described with the usual tool of differential geometry.

The first to note that that the union of quantum mechanics and general relativity can-
not be compatible with a space in which points can be defined with infinite precision was
Bronstein [6] shortly before being executed by Stalin’s secret police. The reasoning has
been later (independently) elaborated and refined by Doplicher and collaborators [7, 8].
In a simplified version goes as follows: in order to probe very short distances, necessary to
localize a particle at a point, one has to use very energetic probes, with a very short wave-
length, this is a quantum mechanical effect. But concentrating too much energy in a small
volume leads to the creation of a black hole, a gravitational effect. Therefore the combi-
nation of the two theories makes it impossible (or at the very least problematic) to have
perfect localization of events in configuration space. It is a “position-position” version
of Heisenberg uncertainty principle and its explanation with the Heisenberg microscope.
The role played by � in pause space is palyed by Planck’s length �p =

√
�G/c3 which

provides a scale. One possibility to mimic this is to impose noncommutation rules for
positions as well [7], something which is also suggested by string theory [9-11], a fact
which rendered noncommutative geometry enormously popular some years ago.

A spacetime described by a noncommutative geometry has led to important studies
of field theories on noncommmutative spaces (for a review see [12]), the simple transpo-
sition of the non commutativity of phase space to spacetime is not natural. There are
problems with symmetries, which have to be considered quantum symmetries (see for
example [13,14]). Nevertheless, even if not of such a simple kind, some sort of quantum
spacetime will be necessary, and the tools of noncommutative geometry seem appropriate.

2. – Let it flow

Let us add another element to the discussion. What we want to unify is not really
gravity with point quantum mechanics, but rather with a quantum field theory. We
have an enormously successful gauge quantum field theory which is able too explain the
non gravitational interactions of particles. This is the standard model, supplemented
by right handed neutrinos. The model has been tested in the Laboratory, most notably
at the Large Hadron Collider, to energies to the order of the TeV’s, and has proven
to be extremely successful there. Applications of particle physics to astronomical and
cosmological data can push this limit even higher, although in a less controlled and
precise way.

Up to which energy should we believe in it? It is possible (and desirable) that new
particles and new interactions are “behind the corner”, and might be discovered in the
near future. Supersymmetry [15] is possible candidate. Higher-dimensional terms in the
Lagrangian could help [16]. While we do not know if, and which energy, these may be, it
is not expected that the nature of field theory will change for several orders of magnitude.
It is common belief that the fundamental structure of the theory will not change. But
what will certainly change are the numerical values of the various “constants” of the
model. I put quotation marks since these quantities are not constant at all, they run
with energy. This is the principal tenet or the renormalization programme.

Let us look at the running of the coupling constants of the three interactions, the
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Fig. 1. – The running of the gauge interactions coupling constants.

result at one loop is shown in fig. 1, higher loops are not expected to change qualitatively
the picture, little is known of nonperturbative effects. We see that two of the interaction
decrease at high energy (asymptotic freedom), they are the ones corresponding to the
nonabelian interactions, strong and weak, the third, corresponding to hyper charge, grows
and would eventually reach a singularity (Landau pole) at an enormous energy. At an
energy around 1018–1019 GeV the onset of quantum gravity is expected. As we said this
is the running in the absence of new physics, can we surmise something by looking at
the picture? The main feature of it is the fact that the three constants almost meet
at a single point. Until a few years ago data were compatible with the presence of a
unification point, and this strongly motivated Grand Unified Theories (GUTs). It was
taken as the indication that at the unification point there would be a larger, grand unified
group. The theory, in its various incarnations, usually predicted proton decay at a rate
which became excluded by experiments. The presence of supersymmetry could change
the running, and cause the presence of an unification point, therefore supersymmetric
grand unification is still viable.

I personally do not find appealing the idea that the three interaction run on their own,
meeting in pairs roughly when their values are approximatively equal, and then keep
going. The weak force stronger than the strong, both marching towards freedom, the hy-
percharge, by now strongest of the three, slowly edging towards the Landau Pole. . . when
suddenly quantum gravity arrives! To do what?

3. – Let us get some action

Let me go back to geometry. I said that the topological information is encoded in
the algebra, which can always be represented as operators on a Hilbert space. But
there is much more to geometry! The key ingredient is D, a generalization of the Dirac
operator of quantum field theory. I will still call it Dirac operator tout-court. On an
ordinary spin manifold the operator D can be just the usual /∂. It is a square-root of the
Laplacian, and it “knows” a lot about the space. The information is in the spectrum of
the operator. The suggestive metaphore is to hear the shape of a drum. Since the ear
listens to harmonics of the vibrating membrane, what counts are the eigenvalues of the
Laplacian, by Helmotz equation this means solving for the eigenvalues of the Laplacian
(with Dirichlet boundary conditions). It turns out that one cannot hear the shape of
drum, not even with a fermionic ear (i.e. using the Dirac operator), but nearly so.
Isospectral manifolds are quite rare and their construction contrived. Nevertheless the
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definition of the Dirac operator permits to describe in algebraic terms the geometry of
spaces. For example, since points are pure states, if we have a distance among states
(pure or otherwise) we implicitly have a distance among points. This can be done with
the help of Dirac operatore. Fiven two states ψ and φ we define their distance as

(3) d(φ, ψ) = sup
‖[D,a]‖≤1

|ψ(a) − φ(a)|

It is possible to prove that when the states are pure, and therefore correspond to points,
the distance is the same as the geodesic one obtained with the metric defined by the
anticommutator of the γ matrices which are present in D. Vector fields are projective
modules of the algebras, and over the years a dictionary is being built. The set A,H and
D constitute what is called a spectral triple. Two more operators are fundamental, the
chirality Γ, which for an ordinary four-dimensional manifod would be the usual γ5, and
J , charge conjugation. With this five elements set it is possible [17] to give a completely
algebraic characterization of manifolds, and therefore to give meaning to the notion of
Noncommutative Manifolds. The original Dirac operator was introduced originally to
describe the motion of fermions via the Dirac equation. A free fermions is described by
the Lagrangian(1)

(4) SF = 〈Ψ,DΨ〉 =
∫

dx
√

gΨ†DΨ.

In the presence of a background electromagnetic field we have have to substitute the
covariant derivative DA and we may add a mass term. If we have different flavours and
gauge interactions the fermions will have extra indices, and the D operator will be a
matrix. We will in any case express the action in the form (4), with the proper interpre-
tation of D. Classically this action is invariant under the following scale transformation:

|Ψ〉 → e
1
2 φ|Ψ〉,(5)

D → e−
1
2 φDe−

1
2 φ.

Recalling the presence of
√

det g in (4) is easy to see that this transformation is related
to Weyl rescaling where the coordinates are left unchanged, and the rescaling is on the
metric as gμν → e2φgμν

Let us now follow the procedure of [19-21]. This symmetry does not however survive
quantization. Consider the partition function

(6) Z(D) =
∫

[dΨ][dΨ†]e−SF .

This expression is formally a determinant, but first we need a scale to render D dimen-
sionless. For this we introduce a normalization dimensional quantity μ

(7) Z(D,μ) =
∫

[dψ][dψ̄]e−Sψ = det
(

D

μ

)
.

(1) In the course of this discussion, for technical reasons I will always consider a Euclidean
signature. At the end a Wick rotation will be understood. This is a nontrivial procedure in this
case [18], but I will skip the details.
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Since D in unbounded the determinant still diverges, we need to introduce a regulator.
The regularization can be done in several ways. In the spirit of noncommutative geome-
try, based on operators nd their spectrum, the most natural one consists in enforcing a
cutoff by truncating the spectrum of the Dirac operator. This was considered long ago
(and independently of noncommutative geometry), in [22-24].

The cutoff is enforced considering only the first N eigenvalues of D. To this extent
consider the projector

(8) PN =
N∑

n=0

|λn〉 〈λn|

with λn and |λn〉 eigenvalues and eigenvectors of D respectively. The integer N is
defined as

(9) N = max n, such that λn ≤ Λ

with Λ the energy cutoff, enforced considering only the space spanned by the eigenvectors
corresponding to eigenvalues smaller than Λ. The choice of a sharp cutoff could be
changed in favour of a cutoff function χ, for the moment we are considering as function
the characteristic function of the unit interval, sometimes it may be useful to consider
an exponential decay.

Given the pivotal role played by the Dirac operator it is interesting to study geometries
for which the Dirac operator or the Laplacian have a discrete finite spectrum, such as the
fuzzy sphere or disc [25-28], and one can study the geometric properties of a pace with a
cutoff [29]. The cutoff may be an artifact necessary to make sense of divergences, but it
may be also a physical meaningful quantity signaling, for example, a phase transition, or
in any case a scale at which the theory is profoundly changes and may not be described
anymore by the same quantities.

Define therefore the regularized partition function:

Z(D,μ) =
N∏

n=1

λn

μ
(10)

= det
(

I − PN + PN
D

μ
PN

)

= det
(

I − PN + PN
D

Λ
PN

)
det

(
I − PN +

Λ
μ

PN

)

= ZΛ(D,Λ) det
(

I − PN +
Λ
μ

PN

)
.

Note that while the action is invariant by the transformation (5), the measure of the
functional integral is not. We have an anomaly. If we wish to retain the symmetry we
can add a term to the measure, and writing this as an exponential this is tantamount
to adding a term to the action. Or we may consider an effective theory, for which the
symmetry is broken by a physical scale. The first point of view was taken in [19], here
we will instead follow [21] and [30] and take Λ to be a physically meaningful scale.
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Let us now consider the change of the partition function under the renormalization
flow, i.e. let us see how it transforms under μ → γμ. The flow is

(11) Z(D,μ) → Z(D,μ)e− log γ tr PN .

On the other side we have that

(12) tr PN = N = trχ

(
D

Λ

)
= SB(Λ,D)

for the choice of χ the characteristic function on the interval, a consequence of our sharp
cutoff on the eigenvalues.

The quantity SB has been introduced by Chamseddine and Connes [31] and is called
the Spectral Action. Here we provided a derivation of it. It can also be derived using the
zeta function [32].

Technically the bosonic spectral action is a sum of residues and can be expanded in
a power series in terms of Λ−1, and then evaluated using standard heath kernel tech-
niques [33]. The result, for Dirac operators square toor of a generalizaed Laplacian, is of
a field theory coupled in the correct way to gravity (given by the metric of the γμ), and
in the presence of connection, the appropriate term given by the square of the curvature.
The spectral action is a most natural quantity in the noncommutative geometry frame-
work, being dependent on the spectrum of the Dirac operator. In this sense it is a purely
geometric action, and it can be extended to the noncommutative case. In fact a rather
simple noncommutative geometry, an almost commutative geometry, gives spectacular
results when applied to the standard model, which is what we were discussing earlier.

4. – Standard

The standard model of particle interaction can be expresses as an almost commutative
geometry, namely we take the ingredients of the spectral triple introduced in sect. 3,
and we take the product of two algebras, one infinite-dimensional and commutative
(continuous functions on spacetime), the other noncommutative, but finite-dimensional,
i.e. a matrix algebra. The algebra acts on a Hilbert space, in turn the product of spinor
times a finite-dimensional space, and the Dirac operator will have a similar split

A = C(R4) ⊗AF ,(13)
H = Sp(R4) ⊗HF ,

D = /∂ + /ω ⊗ I + γ5 ⊗ DF ,

where ωμ is the Levi-Civita connection corresponding to the metric defined by the anti-
commutator of the γ’s, in this sense we are in a curved spacetime, and therefore coupled
to a background gravitational field. To describe the standard model we take

(14) AF = Mat(C)3 ⊕ H ⊕ C

with H the quaternions, which we represent as 2 × 2 matrices. The unitaries of the
algebra correspond to the symmetries of the standard model: SU(3) ⊕ SU(2) ⊕ U(1), a
unimodularity condition takes care of the extra U(1). The grading, given by Γ = γ5 × γ,
splits it into a left and right subspace: HL ⊕ HR. The J operator basically exchange
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the two chiralities and conjugates, thus effectively making the algebra act form the right.
For HF we take the zoo of known fermions: in total there are 96 degrees of freedom
per generation, including right handed neutrinos(2). The finite-dimensional operator DF

contains all fermion masses, or rather Yukawa couplings.
The algebra is represented on this Hilbert space (in a reducible way) in such a way

that that several resctionons imposed by noncommutative geometry are satisfied. Those
restrictions have to do with the representations of forms, consistency of chirality, Dirac
operator and charge conjugation and other mathematical consistency requirements, for
details see [36]. The restrictions are such that the scheme does not work for all gauge
theories. For example only representations of the algebra (not simply the group) are
allowed. This means that only the fundamental and trivial representations are possible.
This is true for the standard model, but not for the grand unified theory SU(5). The
gauge bosons come from the covariant D.

At this point all that is necessary is to crank the machine [31, 36] and calculate the
various terms in the spectral and sermonic actions. The calculations, although straight-
forward are complicated, but the reward is great: the full Lagrangian of the standard
model coupled with background gravity. There are some important features to note:

• The Higgs field is a product of the action, it does not have to be inserted by hand, it
comes out with its quartic potential naturally from the heath kernel expansion. In
this sense it is on a par with the other vector bosons, it corresponds to fluctuations
in the internal space, and is therefore a scalar.

• The three gauge group coupling constants come out to be equal (apart form the
usual 3/5 normalization for the hypercharge coupling).

• Yukawa couplings (masses) and mixings are taken as inputs, but not the Higgs
parameter (in particular the coefficient of the quartic coupling λ), which come
out to be fixed function of the other parameters, which are dominated by the top
Yukawa coupling.

Since the relations among the couplings are not preserved by the renormalization
flow, we have to choose a scale at which we write this action. The natural scale is one at
which the couplings would unify, and one can consider a range of values. Then one has
a prediction for the Higgs mass, once the vev v of the potential, which is experimentally
known, is inserted in the relation m2

H = 2λv. This prediction was made, in the most
recent version of the basic model, in [36]. It is

(15) MH = 170GeV

and is wrong!
It now depends how one chooses to consider this theory. if you take it as a mature

fully formed theory then the result is wrong. Period. If one takes it (as I do) as a tool to
investigate the standard model starting from first principles, then I think it is remarkable

(2) Note the the full Hilbert space is the tensor product of this finite-dimensional spacetimes
the usual spinorial degrees of freedom. So the states are overcounted. This is called fermion
doubling [34], a necessary feature, at first perceived as a problem [35], we will see later that it
may be an asset.
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that a theory based on pure mathematical result gets reasonable numbers, I think that
the measurement of the Higgs as a reason to understand in which direction one has to
improve on the theory.

5. – Not so standard

Let us try to understand in this framework the origin the standard model algebra,
and see if it may shed light on the mass of the Higgs. I mentioned earlier that is
possible to define in purely algebraic terms when a commutative spectral triple describes
a manifold [17]. Since the conditions are algebraic one can apply them to the finite-
dimensional case. In this case one finds that the finite-dimensional algebra must be of
the kind

(16) AF = Ma(H) ⊕ M2a(C) a ∈ N.

Acting on a finite Hilbert space of dimension 2(2a)2. The first nontrivial case is for a
a = 2, a finite Hilbert space of dimension 32, the number of degrees of freedom for one
generation. Compatibility with the chirality gives as algebra

(17) ALR = HL ⊕ HR ⊕ M4(C).

This is the algebra corresponding to a Pati-Salam Grand Unified Theory [37], a rare case
of GUT for which the fermions come in the fundamental representation of the gauge
groups. This kind of theory requires a field for the breaking to the standard model. We
will call this field σ. It should appear in the Dirac operator in the position corresponding
to the neutrino Majorana mass. But unfortunately putting a nonzero entry in that
position, and cracking of the machine, does not produce a field. Hence one has to
include it by hand [38]. Which is quite unpleasant. Nevertheless, running the physical
quantitates with this field does change the Higgs mass, making it compatible with the
experimental value, at the price of a partial loss of predictivity since a new parameter
should be added. Physics is therefore telling us that into his framework right handed
neutrinos, and Majorana masses are fundamental.

A few possibilities to improve the model have been devised. In [39] (which predates
the measurement of the Higgs mass) C. Stephan noticed that enlarging the Hilbert space
could generate this field. In [40] one of the mathematical conditions is violated, which
again is in some sense unpleasant.

With Devastato and Martinetti we proposed [41-43] a Grand Symmetry based on

(18) M(H)4 ⊕ M(C)8

Recall that a finite “manifold” in this context is an algebra: Ma(H)⊕M2a(C) acting on
a 2(2a)2-dimensional Hilbert space. So far we had a = 2, corresponding to dimension
32 (96 for three generation). But these 96 states, are multiplied by spinors, another
4 degrees of freedom. There is an over counting, since for example the four degrees of
freedom of the electron (electron and positron of right and left chiralities) are counted
in the 32, and in the degrees of freedom of the spinor. Some states can be projected
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out without problems, but other (the ones of mixed chirality), cannot. Hence really the
Hilbert space is of dimension 128 (384) for three generations(3),

For a = 4 and the finite Grand Algebra:

(19) M4(H) ⊕ M8(C)

a 128-dimensional space is required. This is exactly the dimension of the Hilbert space
if we take the fermion doubling into account. Let us look at the Hilbert space with a
different splitting:

(20) H = sp(L2(R4)) ⊗HF = L2(R4) ⊗ HF .

It is possible to represent the Grand Algebra on this Hilbert space, but the representation
is highly nontrivial. In particular it does not act diagonally on the spinor indices, it mixes
them. I refer to [41-43] for details. The key point is that in the process spacetime indices,
related to the Euclidean symmetries, mix with internal, gauge indices. The suggestion is
to consider this algebra to be some high energy description, so that the standard model
is some sort of effective low energy theory, coming after the breaking due to the Dirac
operator.

There are two things that the Grand symmetry achieves. On the one hand this scheme
the σ field comes out (at the price of the addition of a new parameter) on a par with the
Higgs. Moreover it is possible to see that the braking to the standard model algebra is
indeed dynamical. But the spacetime describe by this algebra does not have the usual
(low energy) son structure, it is in some sense in a “pregeometric state”. This begs the
question, which geometry is there at the scale Λ and above?

6. – Looking up

We are working under the hypothesis is that Λ has a physical meaning, a scale indi-
cating a phase transition. We can try to infer some properties of this regime studying the
high energy limit of the action with the cutoff. Usually we use probes that are bosons,
hence consider the expansion of the spectral action in the high momentum limit [44].
To this extent we can use the results of Barvisnky and Vilkovisky [45] who were able to
sum all derivatives for the action (12) for the cutoff function χ a decreasing exponential.
The expression (for details see [44]) is a series expansion in Λ, different form the heath
kernel we mentioned earlier, but involving the same elements: Ricci tensor and scalar,
Laplacian, curvature tensor.

For a Dirac operator of the kind

(21) D = iγμ∇μ + γ5φ = iγμ(∂μ + ωμ + iAμ) + γ5φ

with gμν = δμν + hμν , we get, to leading order,

(22) SB � Λ4

(4π)2

∫
d4x

[
−3

2
hμνhμν + 8φ

1
−∂2

φ + 8Fμν
1

(−∂2)2
Fμν

]
.

(3) It may be worth to comment at this point that we have nothing to offer was to why there
are three generations in this context.
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To understand the meaning of this action recall how we obtain propagation of waves and
correlation of points in the usual quantum field theory with the action:

(23) S[J, ϕ] =
∫

d4x
[
ϕ(x)

(
∂2 + m2

)
ϕ(x) − J(x)ϕ(x)

]

and equation of motion

(24)
(
∂2 + m2

)
ϕ(y) = J(y).

It is the Green’s function G(x − y) which “propagates” the source:

(25) ϕJ (x) =
∫

d4yJ(y)G(x − y).

In momentum representation we have

ϕ(x) =
1

(2π)2

∫
d4k eikx ϕ̂(k),(26)

J(x) =
1

(2π)2

∫
d4k eikx Ĵ(k),

G(x − y) =
1

(2π)2

∫
d4k eik(x−y) Ĝ(k).

The propagator is

(27) G(k) =
1

(k2 + m2)

The field at a point depends on the value of the field in nearby points, and the points
“talk” to each other exchanging virtual particles. Let us consider the case of a scalar,
like the Higgs, and that of a vector, like a photon or a graviton:

(28) S[J, φ] =
∫

d4x

(
1
2
ϕ(x)F (∂2)ϕ(x) − J(x)ϕ(x)

)
.

In this case the equation of motion is F (∂2)φ(x) = J(x), giving

(29) G =
1

F (∂2)
, G(k) =

1
F (−k2)

and

(30) ϕJ(x) =
∫

d4yJ(y)G(x − y) =
1

(2π)4

∫
d4keikxJ(k)

1
F (−k2)

.



12 FEDELE LIZZI

Let us analyze the short distance limit of this expression, it corresponds to k → ∞. In
this case the Green’s function becomes

(31) ϕJ(x) −−−−→
K→∞

⎧⎪⎪⎨
⎪⎪⎩

1
(2π)4

∫
dkeikxJ(k)k2 = (−∂2)J(x), for scalars and vectors,

1
(2π)4

∫
dkeikxJ(k) = J(x), for gravitons,

which in momentum space corresponds to

(32) G(x − y) ∝
{

(−∂2)δ (x − y) , for scalars and vectors,

δ (x − y) , for gravitons.

The correlation vanishes for noncoinciding points, heuristically, nearby points “do not
talk to each other”. The spectral action is pointing to some sort of nongeometrical
phase of spacetime, in which points loose their usual meaning. A behavior confirmed by
asymptotic freedom studies [46].

7. – And then . . .

I purposely avoided the word conclusion for this final section. There cannot be any
conclusion to this note, as there cannot be conclusions to the endless discussions I shared
with Gaetano. It is not clear how far we are from a consistent theory of quantum
spacetime. It is clear that we do not yet have it, and we can only hope that we are
moving along the right direction, although it must be said that we are moving, like a
quantum-mechanical particle, in several directions at the same time. This is no warranty
that at least one of them is correct, nevertheless it is fun to keep trying!
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