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Summary. — We present a review of entropy properties for classical and quan-
tum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and
Tsallis entropy. We discuss known and new entropic and information inequalities for
classical and quantum systems, both composite and noncomposite. We demonstrate
matrix inequalities associated with the entropic subadditivity and strong subaddi-
tivity conditions and give a new inequality for matrix elements of unitary matrices.

PACS 42.65.-k – Nonlinear optics.
PACS 42.50.Ct – Quantum description of interaction of light and matter; related
experiments.
PACS 42.50.Md – Optical transient phenomena: quantum beats, photon echo,
free-induction decay, dephasings and revivals, optical nutation, and self-induced
transparency.
PACS 03.65.-w – Quantum mechanics.

1. – Introduction

Statistical properties of classical and quantum systems are described within the frame-
work of the probability-distribution formalism in classical domain (see, for example, [1])
and the density matrices [2, 3] in quantum domain. The paradigmatic characteristics of
classical states determined by a probability distribution is Shannon entropy [4], and its
quantum counterpart associated with a quantum-state density matrix is von Neumann
entropy [5]. Entropy characterizes a degree of disorder in systems with fluctuating phys-
ical observables. The smaller the Shannon entropy, the larger the order in the system.
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Analogously, the interpretation of the order in mixed state of quantum systems is related
to the value of von Neumann entropy.

For multipartite systems, relations between entropies of a composite system and its
subsystems characterize a degree of correlations of the subsystem observables.

For quantum systems, the phenomenon of entanglement [6] is a specific particularity
of strong quantum correlations, some aspects of which can be characterized by the values
of entropies of the subsystem states [7].

For classical systems, the generalizations of the notion of Shannon entropy, which
is a functional of the probability distribution, i.e., the number corresponding to the
probability distribution, was suggested by Rényi [8] and Tsallis [9]. The entropies they
introduced are functionals of the probability distributions which, in addition, depend on
the parameter λ. For a limit value of the λ-parameter, the entropies are converted into the
Shannon entropy. Analogous generalizations of the von Neumann entropy are quantum
entropies introduced for quantum systems [8, 9]. The properties of quantum-system
entropies and specific entropic inequalities for composite-system states were discussed
in [10-18]. Some properties of the entropies were considered in [16, 18, 19]. The general
properties of the probability vectors were presented in [20].

The aim of this paper is to present a review of entropic and information characteris-
tics of classical and quantum states, in particular, taking into account the tomographic-
probability approach for describing quantum states [21,22]. Another goal of the present
paper is to obtain some new matrix inequalities using the properties of hidden correla-
tions [23-27] of observables associated with degrees of freedom of noncomposite systems
analogous to correlations of degrees of freedom in multipartite systems known to be
characterized by entropic inequalities for the composite-system density matrix.

This paper is organized as follows.
In sect. 2, we discuss the probability distributions (probability vectors) and Shannon

entropy. We consider the Rényi classical entropy in sect. 3 and study the classical Tsallis
entropy and its relation to Shannon and Rényi entropies in sect. 4. In sect. 5, we pay our
attention at quantum entropies, i.e., von Neumann entropy and its generalizations, and
in sect. 6 we switch to the tomographic distributions of qudit states and their entropic
properties. We discuss the hidden correlations of single qudit states in sect. 7 and consider
qudit thermal states in sect. 8. We employ the density-matrix entropic inequalities for
obtaining new relations for matrix elements of unitary matrices in sect. 9 and present
our conclusions and prospectives in sect. 10.

2. – Probability vector and Shannon entropy

We recall some simple properties of probability distributions [1, 24].
Given a random variable, for example, random position −∞ < x < ∞ of a

particle. The probability density P (x) ≥ 0,
∫

P (x) dx = 1, e.g., a normal probabil-
ity distribution P (x, σ, x̄) = (2πσ)−1/2 exp[−(x − x̄)2]/2σ, which is nonnegative func-
tion of random position x and two parameters — position mean x̄ and dispersion
σ can be considered as Gaussian state. Observables determined as functions of ran-
dom position x like f(x) are associated with such statistical characteristics as moments
〈fk(x)〉 =

∫
fk(x)P (x, σ, x̄) dx.

Now we consider a particular case of the particle position which can take only a finite
number of values xj , j = 1, 2, . . . , N . With the probability N -vector �P with components
P (j), we associate the probability distribution P (xj) ≡ P (j) ≥ 0, the nonnegative
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function with the normalization condition
∑N

j=1 P (j) = 1. With integer (or random
variable) j, we associate random position xj . We call the probability vector �P the state
of the system. Statistical properties of observables f(xj) ≡ f(j) are associated with
moments 〈fk(j)〉 =

∑k
j=1 fk(j)P (j).

One can introduce functionals, e.g., Shannon entropy

(1) H�P = −
N∑

j=1

P (j) ln P (j).

The entropy has the minimum value H�P0 = 0 if all components of �P except a single one
are equal to zero, and it is maximal if all components of the probability vector are equal:
P (j) = 1/N .

The Shannon entropy characterizes a degree of the order in the system. If the par-
ticle position x takes discrete values, which we denote as xj1,j2,...,jn

, one can introduce
the probability distribution P (x), using the notation P (xj1,j2,...,jk

) ≡ P (j1, j2, . . . , jk),
where j1 = 1, 2, . . . , n1, j2 = 1, 2, . . . , n2, and jk = 1, 2, . . . , nk. The nonnegative function
P (j1, j2, . . . , jk) is normalized

(2)
n1∑

j1=1

n2∑
j2=1

· · ·
nk∑

jk=1

P (j1, j2, . . . , jk) = 1.

One can interpret the function P (j1, j2, . . . , jk) as a joint probability distribution of k

random variables j1, j2, . . . , jk. The probability vector �P associated with the function
P (j1, j2, . . . , jk) determines the Shannon entropy

(3) H�P = −
n1∑

j1=1

n2∑
j2=1

· · ·
nk∑

jk=1

P (j1, j2, . . . , jk) ln P (j1, j2, . . . , jk).

Also for s < k, we introduce the marginals (vectors �P)

(4) P(j1, j2, . . . , js) =
ns+1∑

js+1=1

ns+2∑
js+2=1

· · ·
nk∑

jk=1

P (j1, j2, . . . , jk).

The marginal probability distributions determine the Shannon entropies associated with
the probability distributions of subsystems of the particle positions, e.g.,

(5) H�P = −
n1∑

j1=1

n2∑
j2=1

· · ·
ns∑

js=1

P(j1, j2, . . . , js) lnP(j1, j2, . . . , js).

There are obvious relations between the functionals H�P and H�P . For example, it is clear
that the degree of disorder in the system is larger than the degree of disorder in the
subsystem; this means that the mathematical inequality holds

(6) H�P ≥ H�P .
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Inequality (6) can be checked for an arbitrary set of nonnegative numbers P (xj), j =
1, 2, . . . , N , N = n1n2 · · ·nk independently of the interpretation of the numbers as the
probability distribution of a position.

If N = n1n2, there exists an entropic inequality (subadditivity condition); see, for
example, [1]

(7) H�P ≤ H�P1
+ H�P2

,

where vector �P has N components

P (1, 1), P (1, 2), . . . , P (1, n2), P (2, 1), . . . , P (2, 2), P (2, n2), . . . , P (n1 − 1, n2), P (n1, n2),

vector �P1 has n1 components, and vector �P2 has n2 components,

(8) P1(j1) =
n2∑

j2=1

P (j1, j2), P2(j2) =
n1∑

j1=1

P (j1, j2).

Inequality (7) is interpreted as the relation for Shannon entropy of bipartite system
H(1, 2) ≡ H�P and entropies of its two subsystems H(1) ≡ H�P1

and H(2) ≡ H�P2
of

the form

(9) I = H(1) + H(2) − H(1, 2) ≥ 0;

here I is the mutual information.
At the absence of correlations in bipartite system, i.e., for the probability distribution

of the product form

(10) P (j1, j2) = P1(j1)P2(j2),

the mutual information I = 0.
There is another inequality connecting Shannon entropies for a system with three

subsystems.
For a given probability distribution or the probability vector �P with N compo-

nents P1, P2, . . . , PN labeled as Pj1j2j3 , where j1 = 1, 2, . . . , n1, j2 = 1, 2, . . . , n2,
j3 = 1, 2, . . . , n3, and N = n1n2n3, one can introduce three extra probability vectors
�P12, �P23, and �P2. The components of vectors �P12, �P23, and �P2 labeled as (P12)j1j2 ,
(P23)j2j3 , and (P2)j2 , respectively, read

(P12)j1j2 =
n3∑

j3=1

Pj1j2j3 , (P23)j2j3 =
n1∑

j1=1

Pj1j2j3 , (P2)j2 =
n1∑

j1=1

n3∑
j3=1

Pj1j2j3 ,

The inequality called the strong subadditivity condition in terms of Shannon entropies is

(11) H�P + H�P2
≤ H�P12

+ H�P23
.
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One can write this inequality for N nonnegative numbers in an explicit form, i.e.,

−
N∑

j=1

Pj ln Pj −
n2∑

j=2

⎛
⎝ n1∑

j=1

n3∑
j=3

Pj1j2j3

⎞
⎠ ln

⎛
⎝ n1∑

j=1

n3∑
j=3

Pj1j2j3

⎞
⎠ ≤(12)

−
n1∑

j1=1

n2∑
j2=1

⎛
⎝ n3∑

j3=1

Pj1j2j3

⎞
⎠ ln

⎛
⎝ n3∑

j3=1

Pj1j2j3

⎞
⎠

−
n2∑

j2=1

n3∑
j3=1

⎛
⎝ n1∑

j1=1

Pj1j2j3

⎞
⎠ ln

⎛
⎝ n1∑

j1=1

Pj1j2j3

⎞
⎠ .

Inequality (12) is valid for an arbitrary set of positive numbers P1, P2, . . . PN such that∑N
j=1 Pj = 1. We recall that numbers Pj1j2j3 are the same numbers Pj labeled, in view

of the invertible map of integers j and triples of integers j1j2j3 employed in [24].

3. – Rényi entropy

For the probability N -vector �P , one can introduce the parameter-dependent entropy,
e.g., Rényi entropy [8]

(13) R�P (λ) =
1

1 − λ
ln

⎛
⎝ N∑

j=1

Pλ
j

⎞
⎠ .

In the limit λ → 1, the Rényi entropy converts to the Shannon entropy

(14) R�P (1) = H�P .

The Rényi entropy contains more information on the properties of the probability vector
�P since it depends on extra parameters.

4. – Tsallis entropy

The other entropy is Tsallis entropy, which for given probability vector �P reads

(15) T�P (λ) =
1

1 − λ

⎛
⎝ N∑

j=1

Pλ
j − 1

⎞
⎠ = −

N∑
j=1

Pλ
j

P 1−λ
j − 1
1 − λ

.

In the limit λ → 1, the Tsallis entropy converts to the Shannon entropy

(16) T�P (λ = 1) = H�P .

Both entropies satisfy the relations

T�P (λ) =
1

1 − λ

{
exp
[
(1 − λ)R�P (λ)

]
− 1
}

,(17)

R�P (λ) =
1

1 − λ

{
exp
[
T�P (λ)(1 − λ)

]
+ 1
}

.(18)
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For small values of the number (1 − λ)R�P (λ), relations (17) and (18) yield

(19) T�P (λ) ≈ R�P (λ).

One can characterize the difference of two probability vectors �P and �S by the nonnegative
relative Tsallis entropy; it reads (see, e.g., [28, 29])

(20) Dλ(�P | �S) = −
∑

j

Pj lnλ
Sj

Pj
, lnλ(x) = (x1−λ − 1)(1 − λ).

For λ → 1, the nonnegative relative Tsallis entropy converts to the nonnegative relative
Shannon entropy,

(21) D1(�P | �S) =
∑

j

(Pj ln Pj − Pj ln Sj) ≥ 0.

For �P = �S, relative entropies (20) and (21) are equal to zero.

5. – Quantum entropies

In quantum mechanics, the system states, both mixed and pure, are described by
density operator ρ̂ acting in the Hilbert space H. The density matrix ρjk [2, 3], being
determined by the operator as ρjk = 〈j | ρ̂ | k〉 is Hermitian matrix with nonnegative
eigenvalues and unit trace. The pure states have the density operators which are rank-
one projectors, i.e., ρ̂2 = ρ̂ and the purity parameter Tr ρ̂2 = 1. The mixed states have
the purity parameter μ = Tr ρ̂2 < 1.

The von Neumann entropy S of the quantum system is determined as

(22) S = −Tr (ρ̂ ln ρ̂) = −
∑

j

Pj ln Pj ,

where Pj are eigenvalues of the matrix ρ. Equation (22) provides generalization of the
Shannon entropy to the quantum-system states. For all pure states, the von Neumann
entropy is equal to zero.

Classical Rényi and Tsallis entropies also have quantum generalization. For example,
quantum Rényi entropy reads

(23) Rρ(λ) =
1

1 − λ
ln Tr (ρ̂λ) =

1
1 − λ

ln
∑

j

Pλ
j ,

and quantum Tsallis entropy is (see, e.g., [24])

(24) Tρ(λ) = −Tr
(

ρ̂
ρ̂λ−1 − 1)

1 − λ

)
.

As a limit, both entropies have a von Neumann entropy

(25) lim
λ→1

Tρ(λ) = lim
λ→1

Rρ(λ) = S.
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The relative Tsallis entropy has the nonnegativity property, i.e.,

(26) Dλ(ρ̂ | σ̂) =
1 − Tr

(
ρ̂λσ̂1−λ

)
1 − λ

≥ 0.

In the limit λ → 1, we arrive at the nonnegativity of quantum relative entropy [30]

(27) U(ρ̂ | σ̂) = Tr (ρ̂ ln ρ̂ − ρ̂ ln σ̂) ≥ 0.

6. – Quantum tomographic entropies

For the spin-j systems (qudits), the states ρ̂ can be described in terms of spin tomo-
grams w(m | �n) [31-34],

(28) w(m | �n) = Tr ρ̂ | m,�n〉〈m,�n |,

where m = −j,−j+1, . . . , j is the spin projection on the direction �n. The spin tomogram
w(m | �n) is the probability distribution of the spin projections, i.e., it is nonnegative and
satisfies the normalization condition

(29)
j∑

m=−j

w(m | �n) = 1.

For the state ρ̂(1, 2, . . . , N) of a composite system of N spins j1, j2, . . . , jN , the tomogram
is a joint probability distribution w(m1,m2, . . . ,mN | �n1, �n2, . . . , �nN ),

w(m1,m2, . . . ,mN | �n1, �n2, . . . , �nN ) = Tr {ρ̂(1, 2, . . . , N)
× | m1,m2, . . . ,mN , �n1, �n2, . . . , �nN 〉〈m1,m2, . . . ,mN , �n1, �n2, . . . , �nN |} ,

where mk is the spin projection of the k-th spin jk onto the direction �nk.
The fact that quantum states can be identified with classical probability distributions

provides the possibility to reconstruct the density operator of the system states [33-35],
and for quantum tomograms one can use the relationships known for classical probabili-
ties. Thus, the tomographic Shannon entropy of quantum state reads

(30) H(�n) = −
j∑

m=−j

w(m | �n) ln w(m | �n).

Tomographic entropies have all properties of entropies associated with classical proba-
bilities and simultaneously describe quantum states. In view of this fact, the relationships
like equalities and inequalities for tomographic entropies reflect the properties of quantum
states.

For example, the subadditivity condition for tomographic Shannon entropy of the
two-qudit system

(31) H(�n1, �n2) = −
j1∑

m1=−j1

j2∑
m2=−j2

w(m1,m2 | �n1, �n2) ln w(m1,m2 | �n1, �n2),
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which provides the nonnegativity condition for tomographic information, along with
its value

(32) It = −H(�n1, �n2) + H1(�n1) + H2(�n2) ≥ 0,

where H1(�n1) and H2(�n2) are tomographic entropies of the first and second qudits,
respectively,

H1(�n1) = −
j1∑

m1=−j1

w1(m1 | �n1) ln w1(m1 | �n1),(33)

H2(�n2) = −
j2∑

m2=−j2

w2(m2 | �n2) ln w2(m2 | �n2),(34)

characterizes a degree of quantum correlations in the bipartite qudit system. The tomo-
grams w1(m1 | �n1) and w2(m2 | �n2) are marginals of the joint probability distribution
w(m1,m2 | �n1, �n2). An analogous new inequality for tomographic-probability distribu-
tion of two qudits can be written for Tsallis entropy [24].

The strong subadditivity condition [14] for a system of three qudits can be also written
for tomogram w(m1,m2,m3 | �n1, �n2.�n3); it reads

(35) H(�n1, �n2, �n3) + H2(�n2) ≤ H12(�n1, �n2) + H23(�n2, �n3),

where tomographic entropies of the qudit system and its subsystems are

H(�n1, �n2, �n3) = −
j1∑

m1=−j1

j2∑
m2=−j2

j3∑
m3=−j3

w(m1,m2,m3 | �n1, �n2.�n3)

× ln w(m1,m2,m3 | �n1, �n2.�n3),

H12(�n1, �n2) = −
j1∑

m1=−j1

j2∑
m2=−j2

w12(m1,m2 | �n1, �n2) ln w12(m1,m2 | �n1, �n2),

H2(�n2) = −
j2∑

m2=−j2

w2(m2 | �n2) ln w2(m2 | �n2),

H23(�n2, �n3) = −
j2∑

m2=−j2

j3∑
m3=−j3

w23(m2,m3 | �n2, �n3) ln w23(m2,m3 | �n2, �n3).

Here, tomograms w12(m1,m2 | �n1, �n2), w2(m2 | �n2), and w23(m2,m3 | �n2, �n3) are
marginals of the joint probability distribution w(m1,m2,m3 | �n1, �n2, �n3). In spite of
the fact that inequality (35) is classical entropic inequality, it characterizes quantum
correlations in composite qudit systems.

Tomographic entropic inequalities for bipartite (32) and tripartite (35) qudit sys-
tems correspond to the presence of quantum correlations of qudit observables of the
subsystems. The inequalities can be checked experimentally, e.g., in experiments with
superconducting circuits where the density matrix of qudit states is measured [36-38].
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We can write the subadditivity condition for Tsallis entropy in the form

1
1 − λ

⎧⎨
⎩
⎛
⎝ j1∑

m1=−j1

wλ
1 (m1 | �n1) − 1

⎞
⎠+

⎛
⎝ j2∑

m2=−j2

wλ
2 (m2 | �n2) − 1

⎞
⎠
⎫⎬
⎭ ≥(36)

1
1 − λ

⎧⎨
⎩
⎛
⎝ j1∑

m1=−j1

j2∑
m2=−j2

wλ(m1,m2 | �n1, �n2) − 1

⎞
⎠
⎫⎬
⎭ .

In the limit λ → 1, inequality (36) converts to the Shannon tomographic entropic inequal-
ity discussed above. Since Rényi entropy is a function of Tsallis entropy, inequality (36)
provides some relationships for Rényi entropy.

7. – Hidden correlations in single qudit systems

It was found (see, for example, [23, 24]) that the subadditivity condition and the
strong subadditivity condition exist for single qudit states as well. We demonstrate
these inequalities written for tomograms of single-qudit states on the examples of qudit
with j = 3/2 and qudit with j = 7/2, respectively. Tomogram of the qudit state with
j = 3/2, i.e., w(m | �n), m = −3/2, − 1/2, 1/2, 3/2 can be considered as a probability
distribution P11(�n) ≡ w(3/2 | �n), P12(�n) ≡ w(1/2 | �n), P21(�n) ≡ w(−1/2 | �n), and
P22(�n) ≡ w(−3/2 | �n) of two “artificial” qubits. Such a consideration [23,24,36] provides
the possibility to introduce marginals for each “artificial” qubits, respectively:

Ω(1)
+ (�n) = P11(�n) + P12(�n), Ω(1)

− (�n) = P21(�n) + P22(�n),(37)

Ω(2)
+ (�n) = P11(�n) + P21(�n), Ω(2)

− (�n) = P12(�n) + P22(�n).(38)

One can apply the subadditivity condition for Tsallis entropy to these probability distri-
butions written in terms of tomogram and arrive at the following inequality:

1
1 − λ

[(
Ω(1)

+ (�n)
)λ

+
(
Ω(1)

− (�n)
)λ

− 1
]

+
1

1 − λ

[(
Ω(2)

+ (�n)
)λ

+
(
Ω(2)

− (�n)
)λ

− 1
]
≥(39)

1
1 − λ

[
wλ(3/2 | �n) + wλ(1/2 | �n) + wλ(−1/2 | �n) + wλ(−3/2 | �n) − 1

]
.

We can rewrite this inequality in terms of qudit probabilities and obtain

1
1 − λ

{
[(w(3/2 | �n) + w(1/2 | �n)]λ + [w(−1/2 | �n) + w(−3/2 | �n)]λ − 1

}
+(40)

1
1 − λ

{
[(w(3/2 | �n) + w(−1/2 | �n)]λ + [w(1/2 | �n) + w(−3/2 | �n)]λ − 1

}
≥

1
1 − λ

[
wλ(3/2 | �n) + wλ(1/2 | �n) + wλ(−1/2 | �n) + wλ(−3/2 | �n) − 1

]
.
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In the limit λ → 1, inequality (40) converts to the Shannon tomographic entropic
inequality

− [w(3/2 | �n) + w(1/2 | �n)] ln [w(3/2 | �n) + w(1/2 | �n)](41)
− [w(−1/2 | �n) + w(−3/2 | �n)] ln [w(−1/2 | �n) + w(−3/2 | �n)]
− [w(3/2 | �n) + w(−1/2 | �n)] ln [w(3/2 | �n) + w(−1/2 | �n)]
− [w(1/2 | �n) + w(−3/2 | �n)] ln [w(1/2 | �n) + w(−3/2 | �n)] ≥
−w(3/2 | �n) ln [w(3/2 | �n)] − w(1/2 | �n) ln [w(1/2 | �n)]
−w(−1/2 | �n) ln [w(−1/2 | �n)] − w(−3/2 | �n) ln [w(−3/2 | �n)] .

The difference of the left- and right-hand sides of this inequality can be interpreted as
Shannon information related to correlations of the two “artificial” qubits. This new
inequality can be checked experimentally.

The physical meaning of two “artificial” qubits associated to the qudit with j = 3/2
is as follows.

The states |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉 of two “artificial” qubits correspond to the states
| 3/2, �n〉, | 1/2, �n〉,| −1/2, �n〉, and | −3/2, �n〉, respectively.

The state of the first “artificial” qubit |↑, �n1〉 corresponds to the event where mea-
surements give the value of spin-3/2 projections on the direction �n equal either to +3/2
or to +1/2.

The state of the first “artificial” qubit |↓, �n1〉 corresponds to the event where mea-
surements give the value of spin-3/2 projections on the direction �n equal either to −3/2
or to −1/2.

The second artificial qubit states |↑, �n2〉 and |↓, �n2〉 correspond to two pairs of the qudit
projections on the direction �n, namely, (+3/2,−1/2) and (+1/2,−3/2), respectively.

In a similar way, we can obtain the entropic inequalities for arbitrary single qudit
states, which are tomographic entropic subadditivity and strong subadditivity conditions.

In Appendix A, we present the strong subadditivity condition for the tomogram of a
single-qudit state with j = 7/2.

8. – Entropy of the system thermal state

In this section, we consider a system with Hamiltonian Ĥ acting in the Hilbert
space H. We assume that the system is in thermal state; it is a specific state with
the density operator

(42) ρ̂(β) = Z−1(β) exp(−βĤ),

where Z(β) is the partition function, the parameter β = T−1, and T is the temperature.
The energy of the system in the state ρ̂(β) is defined as

(43) E(β) = 〈Ĥ〉 = Tr
[
Z−1(β)

(
exp(−βĤ)

)
Ĥ
]
.

The von Neumann entropy S(β) of the system in the state (42) is equal to

(44) S(β) = −Tr [ρ̂(β) ln ρ̂(β)] = Tr
[
Z−1(β)

(
exp(−βĤ)

)(
βĤ + lnZ(β)

)]
.
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From eqs. (42)–(44) follows that for the system state with the density operator ρ̂(β) there
exists the relation between entropy S(β) and energy E(β), namely,

(45) S(β) − βE(β) = lnZ(β).

In [39], the inequality relating entropy and energy of arbitrary qudit systems was
obtained; it looks as follows:

(46) E + S ≤ ln Z(β = −1),

where the entropy of the system in the state ρ̂ reads S = −Tr (ρ̂ ln ρ̂), and the energy of
the system is E = Tr(Ĥρ̂), with Ĥ being the qudit-system Hamiltonian. The function
Z(β) = Tr exp(−βĤ) in (46) is the partition function. This relation was obtained in
view of the nonnegativity condition for the relative entropy by comparing the density
operator ρ̂ and the density operator Z−1(β) exp(−βĤ) of the thermal state.

We can see that the thermal state provides equality (45); this means that in the
thermal state the sum of dimensionless energy and entropy is determined by the partition
function at the point β = −1.

9. – Some inequalities for unitary matrices

In this section, we use entropic inequalities to obtain some new relations for matrix
elements of unitary matrices.

For the density matrix ρ(1, 2) of the bipartite-system state, one has the Araki-Lieb
inequality [12] for the von Neumann entropies of the system and its subsystems

(47) −Tr (ρ(1, 2) ln ρ(1, 2)) ≥ |Tr (ρ(1) ln ρ(1)) − Tr (ρ(2) ln ρ(2))| ,

where ρ(1) and ρ(2) are the density matrices of the subsystem states ρ(1) = Tr2(ρ(1, 2))
and ρ(2) = Tr1(ρ(1, 2)).

For the pure state, the entropy of the system state is equal to zero; this means
that Tr (ρ(1) ln ρ(1)) = Tr (ρ(2) ln ρ(2)), and it is related to the fact that the nonzero
eigenvalues of matrices ρ(1) and ρ(2) coincide.

Now we employ this circumstance while considering the matrix ρ = uPu†, where P is
rank-1 projector and u is unitary matrix. If all matrix elements of the matrix P except
P11 are equal to zero, then the matrix ρ corresponds to pure state with zero entropy.
In [24], it was shown that matrices ρ(1) and ρ(2) are obtained by the following recipe.

If matrix ρ is the N ×N -matrix, where N = mn, it can be presented in a block form
with m2 blocks ρjk (j, k = 1, 2, . . . ,m). Then the matrix ρ(1) is the m × m-matrix with
matrix elements Tr ρjk. The matrix ρ(2) is the n×n-matrix expressed as a sum of blocks,
ρ(2) =

∑m
j=1 ρjj . The matrices ρ(1) and ρ(2) are nonnegative Hermitian ones with unit

trace, if the initial matrix ρ is nonnegative Hermitian matrix with Tr ρ = 1.
Now for N = nm = 6 = 2 · 3, we construct explicitly matrices ρ(1) and ρ(2)

for the initial 6 × 6-matrix ρ given in the block form, ρ =
(

ρ11 ρ12

ρ21 ρ22

)
, where

blocks ρ11, ρ12, ρ21, and ρ22 are 3 × 3-matrices ρjk =

⎛
⎜⎝ Rjk

11 Rjk
12 Rjk

13

Rjk
21 Rjk

22 Rjk
23

Rjk
31 Rjk

32 Rjk
33

⎞
⎟⎠. Then
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the recipe formulated provides the 2 × 2-matrix ρ(1) =
∑2

s=1

(
R11

ss R12
ss

R21
ss R22

ss

)
and the

3 × 3-matrix ρ(2) =
∑3

k=1

⎛
⎝ Rkk

11 Rkk
12 Rkk

13

Rkk
21 Rkk

22 Rkk
23

Rkk
31 Rkk

32 Rkk
33

⎞
⎠. According to the Araki-Lieb inequal-

ity, the nonzero eigenvalues of matrices ρ(1) and ρ(2) are equal, and this fact provides
the relations for matrix elements of the unitary 6 × 6-matrix u.

We take a column of the unitary matrix u and denote its matrix elements as uj1 = z1,
uj2 = z2, uj3 = z3, uj4 = z4, uj5 = z5, and uj6 = z6. The matrix

ρ(1) =
(

|z1|2 + |z2|2 + |z3|2 z1z
∗
4 + z2z

∗
5 + z3z

∗
6

z∗1z4 + z∗2z5 + z∗3z6 |z4|2 + |z5|2 + |z6|2
)

has nonnegative eigenvalues λ1 and λ2, and the matrix

ρ(2) =

⎛
⎝ |z1|2 + |z4|2 z1z

∗
2 + z4z

∗
5 z1z

∗
3 + z4z

∗
6

z∗1z2 + z∗4z5 |z2|2 + |z5|2 z2z
∗
3 + z5z

∗
6

z∗1z3 + z∗4z6 z∗2z3 + z∗5z6 |z3|2 + |z6|2

⎞
⎠

has the same eigenvalues λ1 and λ2 plus λ3 = 0; this means that det ρ(2) = 0. The
eigenvalues λ1 and λ2 of the matrices ρ(1) and ρ(2) read

λ1,2 =
1
2
± 1

2
[
1 − 4

(
a(1 − a) − |b|2

)]1/2
,

where a = |z1|2 + |z2|2 + |z3|2 and b = z1z
∗
4 + z2z

∗
5 + z3z

∗
6 .

Analogous relations are valued for column (rows) of arbitrary unitary N×N -matrices,
and the properties of matrices ρ(1) and ρ(2) are expressed as the equality

Tr (ρ(1) ln ρ(1)) = Tr (ρ(2) ln ρ(2)) .

Explicit expressions for matrices ρ, ρ(1), and ρ(2) in terms of matrix elements u11, u21,
u31, u41, u51, and u61 of the unitary 6 × 6-matrix are given in Appendix B.

10. – Conclusions

To conclude, we point out the main results of our work.
We reviewed the properties of classical and quantum entropies including deformed

entropies. We considered entropic inequalities like the subadditivity and strong subaddi-
tivity conditions and applied these inequalities to tomographic-probability distributions
of single qudit states. The entropic inequalities for qudit tomograms are new quantum
inequalities characterizing correlations in systems of qudits. Employing the structure of
entropic inequalities we obtained some new nonlinear relations for matrix elements of uni-
tary matrices. The relations obtained can be checked experimentally, e.g., in experiments
with superconducting qudits [36-38].
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Appendix A

We present here the strong subadditivity condition for tomogram w(m | �n) of the
qudit state with j = 7/2, where m = 7/2, 5/2, . . . ,−7/2; it reads

−
7/2∑

m=−7/2

ω(m | �n) ln ω(m | �n)

−
(∑

m>0

ω(m | �n)

)
ln

(∑
m′>0

ω(m′ | �n)

)
−
(∑

m<0

ω(m | �n)

)
ln

(∑
m′<0

ω(m′ | �n)

)
≤

− (w(7/2 | �n) + w(5/2 | �n)) ln (w(7/2 | �n) + w(5/2 | �n))

− (w(3/2 | �n) + w(1/2 | �n)) ln (w(3/2 | �n) + w(1/2 | �n))

− (w(−1/2 | �n) + w(−3/2 | �n)) ln (w(−1/2 | �n) + w(−3/2 | �n))

− (w(−5/2 | �n) + w(−7/2 | �n)) ln (w(−5/2 | �n) + w(−7/2 | �n))

− (w(7/2 | �n) + w(−1/2 | �n)) ln (w(7/2 | �n) + w(−1/2 | �n))

− (w(5/2 | �n) + w(−3/2 | �n)) ln (w(5/2 | �n) + w(−3/2 | �n))

− (w(3/2 | �n) + w(−5/2 | �n)) ln (w(3/2 | �n) + w(−5/2 | �n))

− (w(1/2 | �n) + w(−7/2 | �n)) ln (w(1/2 | �n) + w(−7/2 | �n)) .

This entropic inequality written for noncomposite quantum system is a new inequality
which can be checked experimentally. It reflects quantum correlations between different
groups of spin projections of the results of measurements. At the absence of correlation
the inequality converts to the equality.

Appendix B

Given a unitary 6 × 6-matrix ujk. We construct the matrix ρ

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

|u11|2 u11u
∗
21 u11u

∗
31 u11u

∗
41 u11u

∗
51 u11u

∗
61

u21u
∗
11 |u21|2 u21u

∗
31 u21u

∗
41 u21u

∗
51 u21u

∗
61

u31u
∗
11 u31u

∗
21 |u31|2 u31u

∗
41 u31u

∗
51 u31u

∗
61

u41u
∗
11 u41u

∗
21 u41u

∗
31 |u41|2 u41u

∗
51 u41u

∗
61

u51u
∗
11 u51u

∗
21 u51u

∗
31 u51u

∗
41 |u51|2 u51u

∗
61

u61u
∗
11 u61u

∗
21 u61u

∗
31 u61u

∗
41 u61u

∗
51 |u61|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and two matrices ρ(1)

ρ(1) =
( |u11|2 + |u21|2 + |u31|2 u11u

∗
41 + u21u

∗
51 + u31u

∗
61

u41u
∗
11 + u51u

∗
21 + u61u

∗
31 |u41|2 + |u51|2 + |u61|2

)

and ρ(2)

ρ(2) =

⎛
⎝ |u11|2 + |u41|2 u11u

∗
21 + u41u

∗
51 u11u

∗
31 + u41u

∗
61

u21u
∗
11 + u51u

∗
41 |u21|2 + |u51|2 u21u

∗
31 + u51u

∗
61

u31u
∗
11 + u61u

∗
41 u31u

∗
21 + u61u

∗
51 |u31|2 + |u61|2

⎞
⎠.
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They satisfy the nonlinear equations for equal eigenvalues of matrices ρ(1) and ρ(2).
Different nonlinear equations and their applications were discussed in [40]. The

solutions in terms of unitary matrices of nonlinear matrix equations can be obtained
for N × N -matrices ρ.
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