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Summary. — We review recent work on compacton matter waves in Bose-Einstein
condensates (BEC) trapped in deep optical lattices in the presence of strong and
rapid periodic time modulations of the atomic scattering length. In particular, we
derive averaged discrete nonlinear Schrödinger equations (DNLSE) and show that
compacton solutions of different types can exist as stable excitations. Stability
properties are also investigated both by linear analysis and by direct numerical
integrations of the DNLSE.

PACS 42.65.-k – Nonlinear optics.
PACS 42.81.Dp – Propagation, scattering, and losses; solitons.
PACS 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in perio-
dic potentials, solitons, vortices, and topological excitations.

1. – Introduction

Periodic management of parameters of nonlinear wave systems is a very attractive
technique for the generation of solitons with new types of properties [1]. Examples
of the management technique in continuous systems are the dispersion management of
solitons in optical fibers which allows to improve communication capacities [2], and the
nonlinearity management of 2D and 3D Bose-Einstein condensates (BEC) or optically
layered media which provides partial stabilization against collapse in the case of attractive
interatomic interactions [3]. In discrete systems the diffraction management technique
was used to generate spatial discrete solitons with novel properties [4, 5] which have
recently been observed in experiments [5]. The suppression of the inter-well tunneling
was experimentally observed also in the propagation of light in waveguide arrays [6] and
in BEC’s in strongly driven optical lattices [7]. In these cases, however, the system is
typically subjected either to resonant modulations of the dispersion (coupling between
waveguides for the case of light propagation) or to external linear forces (shaking of
the optical lattices for the case of BEC). The inhibition of the inter-well tunneling,
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however, may become possible also in the presence of fast periodic time variations of the
nonlinearity, the so-called strong nonlinearity management (SNLM). In this case new
phenomena, such as strong localization and formation of (discrete counterparts of) the
so called compactons [8] e.g. localized nonlinear waves with compact support, can arise.

The aim of the present work is to demonstrate the existence of compacton solutions in
the prototypical dynamical lattice of the discrete nonlinear Schrödinger (DNLS) form [9]
subjected to SNLM. It is shown that, contrary to ordinary solitons, the amplitude of
a compacton reduces exactly to zero outside the localizing domain, this implying the
total suppression of the inter-well tunneling at the compacton edges. For this, we derive
averaged discrete nonlinear Schrödinger equations (DNLSE) and show that compacton
solutions of different types can exist as stable excitations [10]. Stability properties are
studied by linear analysis and by direct numerical integrations of the DNLS system.
Similar compact excitations can exist also in binary BEC mixtures modeled by a vector
DNLSE [11] and in multidimensional contexts [12].

2. – The model

The dynamical lattice considered here is the well known DNLS equation [9]

(1) iu̇n + κ(un+1 + un−1) + (γ0 + γ(t))|un|2un = 0,

which serves as a prototypical model both for matter waves in BEC arrays and for
light propagation in arrays of optical waveguides. In the BEC context κ quantifies the
coupling (tunneling of matter) between adjacent wells of the optical lattice, t represents
the time and γ0 and γ(t) represent the constant and the modulated part of the interatomic
interaction (nonlinearity), respectively. In this case the management corresponds to
periodically varying in time the atomic scattering length which can be achieved by the
Feshbach resonance technique. In the optical context the time t should be replaced by
the propagation distance z, κ quantifies the coupling between adjacent waveguides, and
the nonlinear management consists in periodically varying in space the Kerr nonlinearity
around a constant value γ0. In the following we shall refer to the BEC context and
assume γ(t) to be a periodic, γ(t) = γ(t + T ), and rapidly varying function of time of
the form γ(t) = γ1

ε cos(Ω t
ε ), with ε � 1 and T = 2π/Ω the period.

To investigate the existence of discrete compacton solitons in this model, we shall
derive averaged equations over rapid modulations, using the method developed in [13].
Following this approach, we introduce the new variables vn related to the field un as

(2) un(t) = vn(t)eiΓ(t)|vn|2(t), Γ(t) =
1
ε

∫ t

0

dtγ1

(
t

ε

)
.

Substituting this expression into eq. (1) and averaging the resulting equation over the
period of the rapid modulation, we obtain

ivn,t = −ακvn[(vn+1v
∗
n + v∗

n+1vn)J1(αθ+) + (vn−1v
∗
n + v∗

n−1vn)J1(αθ−)](3)

−κ[vn+1J0(αθ+) + vn−1J0(αθ−)] − γ0|vn|2vn,

where Jn(x) is the Bessel function of order n, θ± = |vn±1|2 − |vn|2 and α = γ1/K. This
modified DNLS equation has the essentially nonlinear neighbor-neighbor interactions and
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can be put in Hamiltonian form iv̇n = δH
δv∗

n
, with Hamiltonian

Hav = −
∑

n

{
κJ0(αθ+)

[
vn+1v

∗
n + v∗

n+1vn

]
+

γ0

2
|vn|4

}
.

For small αθ+ the function J0 can be expanded in series giving the same averaged
Hamiltonian of the DNLS equation obtained in [14] in the limit of weak nonlinearity
management.

3. – Compactly supported localized modes

In this section we demonstrate the existence of exact compactons in this averaged
system. We remark that compacton solutions were initially reported as a “mathemat-
ical curiosity” of somewhat artificial variants of the DNLS where linear dispersion is
absent [15], by analogy to their continuum siblings [8]. The present setting, however,
is in some sense unique, in that linear dispersion is not, generally speaking, absent. In
fact, there is a linear spectrum of the background state in the linearization of even these
compact solutions and can be analytically shown to extend from [−μ− 2κ,−μ + 2κ] and
from [μ−2κ, μ+2κ]. Yet, there exist particular values of the amplitude which essentially
completely inhibit the inter-well tunneling to the nearest neighbors and hence enable the
formation of such compact structures.

To this regard we seek for stationary solutions of the form vn = Ane−iμt for which
eq. (4) becomes

μAn + γ0A
3
n + κ(An+1J0(αθ+) + An−1J0(αθ−))(4)

+ 2ακAn[An+1AnJ1(αθ+) + An−1AnJ1(αθ−)] = 0,

and look for conditions of tunneling suppression at the last site of vanishing amplitude
(edge of the compacton) denoted as n0 below. In the setting of eq. (4), this directly
establishes that

J0(α|un0+1|2) = 0 ⇒ |un0+1|2 = 2.4048/α,(5)

which yields the solution (based on the first zero of the Bessel function) for the “bound-
ary” of the compactly supported site. Then, for μ = −γ0|un0+1|2, both the condition
for compact support at n0 ± 1, and the equation for n = n0 are satisfied. Hence eq. (5)
yields a single-site discrete compacton, which linearization illustrates to be stable (both
the solution and its typical linearization are shown in fig. 1.

One can then generalize this type of consideration to two-sites, which are either in
phase (2nd column of fig. 1) or out-of-phase, these last also called twisted modes (1st
column of fig. 2). The only thing that changes here is that in order to satisfy the equation
at the non-vanishing sites,

μ = −κ − γ0|un0+1|2, μ = κ − γ0|un0+1|2,(6)

respectively, for the in-phase and out-of-phase two-site modes. We stress that these are
exact solutions of the reduced system. Susprisingly, and completely contrary to what is
the case for DNLS, both of these solutions are spectrally stable, as shown in fig. 2
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Fig. 1. – Typical examples for κ = 0.5, α = 1 of compact localized mode solutions of eq. (4)
(top panels) and of the spectral plane (λr, λi) of their linearization eigenvalues λ = λr + iλi.
1st column: on-site, 2nd column: inter-site in-phase compacton. Remarkably, all solutions are
spectrally stable.
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Fig. 2. – Compacton solutions of eq. (4) 1st column: inter-site out-of-phase mode, 2nd column:
symmetric 3-site compacton.

Moreover, one can generalize these considerations to an arbitrary number of sites. As
a typical example, a 3 site mode with amplitudes (. . . , 0, A1, A2, A1, 0, . . . ) will satisfy in
addition to the “no tunneling condition” J0(αA1) = 0, the constraints

μA1 + κA2J0(α(A2
2 − A2

1)) + 2ακA2
1A2J1(α(A2

2 − A2
1)) + γ0A

3
1 = 0,(7)

μA2 + κA1J0(α(A2
1 − A2

2)) + 4ακA2
2A1J1(α(A2

1 − A2
2)) + γ0A

3
2 = 0,(8)

which can be easily solved to yield a solution as the one shown in the 2nd column of
fig. 2. Even such more complex solutions which would be highly unstable in DNLS
are dynamically robust in the present setting. To examine the full nonlinear dynamical
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Fig. 3. – Propagation of single-site compacton solution. The top panel shows the evolution
obtained from the averaged equation in eq. (4), while the bottom panel refers to the numerical
integration of the original DNLS system in eq. (1).
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Fig. 4. – Propagation of a perturbed 3-site compacton for κ = 1 decaying into a single-site
compacton for ε = 0.1 (top panel) and remaining stable for ε = 0.025 (bottom panel).

stability of these solutions, we considered them as initial conditions both in the averaged
eq. (4), as well as in the full eq. (1). The results are shown in fig. 3 for the case of a single-
site compaction (similar findings were obtained for other modes). The top panel (of large
colorbar amplitude) shows the space-time contour map of the solution modulus, while
the bottom panel (of small colorbar amplitude) illustrates the deviation from the original
solution. To further ensure robustness, a uniformly distributed random perturbation of
small amplitude was added to the original solution. It can clearly be seen that in all
cases, both in the averaged equation and in the original system of eq. (1), the relevant
perturbation stays uniformly bounded and never exceeds 2% of the solution amplitude.
The waveforms remain remarkably localized in their compact shape (after a transient
stage of shedding off small amplitude wavepackets). Notice that for eq. (1), γ(t) =
1 + 1

ε cos(t/ε), with ε = 0.1 was used.
It should, however, be noted that if one departs from the regime of validity of the

averaging, interesting deviationsm from the above behavior (and stability) may ensue.
An example of this is shown in the panels of fig. 4. In this case, the 3-site solution
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was initialized in eq. (1) with ε = 0.1 in the top panel, while ε = 0.025 in the bottom
one. While in the latter case, the above argued robustness of the averaged modes was
observed, in the former one, the apparent lack thereof was clearly due to the use of an
ε outside of the regime of applicability of the averaging approximation. Nevertheless,
the resulting evolution confirms the general preference of the system towards settling in
compact modes, since despite the large coupling κ = 1 used in this case, the evolution
asymptotes to an essentially single-site solution.

4. – Conclusions

In conclusion, we have shown that in the SNLM limit stable discrete compactons can
exist both in one-dimensional BEC trapped in deep optical lattices and in optical waveg-
uides arrays with Kerr nonlinearity periodically varied along the propagation distance.
In this last case, the absence of interacting tails in compactons should permit a maxi-
mal rate of information transfer without disturbing interferences. The setting considered
herein could therefore lead to experimental observation of discrete compactons both in
BEC arrays and in nonlinear optical waveguides under SNLM.
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