
DOI 10.1393/ncc/i2015-15171-5

Colloquia: VILASIFEST

IL NUOVO CIMENTO 38 C (2015) 171

Geometric phase and its applications to fundamental physics

A. Capolupo and G. Vitiello

Dipartimento di Fisica E.R.Caianiello and INFN Gruppo collegato di Salerno,
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Summary. — We report on recent results showing that the geometric phase can
be used as a tool in the analysis of many different physical systems, as mixed boson
systems, CPT and CP violations, Unruh effects, and thermal states. We show that
the geometric phases appearing in the time evolution of mixed meson systems like
B0

s -B̄0
s and the K0-K̄0 are linked to the parameter z describing the CPT violation.

A non-zero phase difference between particle and antiparticle arises only in the
presence of CPT symmetry breaking. Then the geometric phase can represent a
completely new test for the CPT invariance. Moreover, we study the geometric
phase of systems represented by mixed state and undergoing a nonunitary evolution
and propose the realization of interferometers which can prove the existence of the
Unruh effect and can allow very precise measurements of temperature.

PACS 03.65.Vf – Phases: geometric; dynamic or topological.
PACS 11.10.-z – Field theory.
PACS 04.62.+v – Quantum fields in curved spacetime.

1. – Introduction

In the recent years, many studies have been devoted to the analysis of the geometric
phase [1-24]. It characterizes the evolution of many physical systems and has been
detected in different ways [25-29].

On the other hand, it has been shown [30,31] that in all the systems where the vacuum
condensates are generated [32-40], the Aharonov-Anandan invariant [4] (AAI) and the
geometric phase are produced in their evolution. This fact has suggested that phenomena
like Unruh [36], Hawking [37] and Parker effects [38,39], characterized by the presence of a
vacuum condensate and very hard to be detected, togheter with some aspect of quantum
field theory in curved space, could be analyzed by means of the geometric phase of
atomic systems which simulate such phenomena [30, 31]. It has been shown also that
geometric phases and invariants can be used to test CPT symmetry in meson systems
like kaons and B0

s -B̄0
s system [41], to prove the existence of postulated particles like the

axions [42], to test SUSY violation in thermal states [43], to reveal the Hawking [30] and
Unruh [30,31,45,44] effect and to build a quantum thermometer [30,31,46].
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In the present paper, we report the results obtained by studying the geometric phase
for mixed meson systems [41] and for quantum open systems represented by atoms ac-
celerated in an electromagnetic field and interacting with thermal states [31]. We reveal
the relation between the geometric phase appearing in the evolution of mixed mesons
and the parameter denoting the CPT violation [41]. We show that a non-trivial phase
difference between particle and antiparticle indicates unequivocally the CPT symmetry
breaking in mixed bosons. We also show that the phases can be useful for the study of
the CP violation and we do a numerical analysis for B0

s -B̄0
s mesons [41].

We then study the geometric phase for quantum open systems [16] and we show that
a detectable difference of the geometric phases can be revealed between atoms which
are accelerated in an arm of an interferometer and atoms which are inertial in the other
branch. Such a phase difference is due only to the Unruh effect [30, 31]. Moreover, we
show that the difference between geometric phases produced by atoms interacting with
two different thermal states allows to determine the temperature of a sample once the
temperature of the other one is known [30,31].

The use of the phase defined in [16] allows to consider time intervals arbitrary small
and very low transition frequencies, as well as spontaneous emission rates characteriz-
ing fine and hyperfine atomic structures. Indeed, in the short time intervals which we
consider, the number of spontaneously emitted particle is negligible and the systems
are quasi-stable. These facts permits to improve the results obtained in previous works
studying different systems [44-46]. We consider the structure of the atomic levels of 85Rb,
87Rb and 133Cs which improves the detection of Unruh effect and permits very precise
temperature measurements.

The structure of the paper is the following: in sect. 2 we diagonalize the effective
Hamiltonian of mixed meson systems by means of a complete biorthonormal set of states;
we compute the geometric phase for mixed mesons and we show their links with CPT
and CP violations. A numerical analysis for Bs mesons is also presented. In sect. 3 we
analyze the geometric phase for a two level atom undergoing a non-unitary evolution and
study the possible applications to the detection of the Unruh effect and to build a very
precise thermometer. Section 4 is devoted to the conclusions.

We are glad to dedicate this paper to Professor Gaetano Vilasi in the occasion of his
70th birthday.

2. – Meson mixing, CP and CPT violations and geometric phase

The particle mixing phenomenon has been analyzed thoroughly in the contexts of
quantum mechanics (QM) [47-50] and of quantum field theory (QFT) [33-35, 51-55].
Although the QFT analysis discloses features which cannot be ignored (see for example
refs. [34,53-56]), nevertheless a correct phenomenological description of systems as B0-B̄0

can be also dealt with in the context of QM. Therefore, in the following we analyze the
mixed bosons in the context of QM.

The state vector of mixed boson systems as K0, B0
d, B0

s and D0 can be represented
as |ψ(t)〉 = ψM0(t)|M0〉+ψM̄0(t)|M̄0〉+

∑
n dn(t)|n〉, where M0 is the meson state (K0,

B0
d, B0

s or D0); M̄0 is the corresponding antiparticle, |n〉 are the decay products, t is
the proper time, ψM0(t), ψM̄0(t) and dn(t) are time dependent functions. At initial
time t = 0 one has |ψ(0)〉 = ψM0(0)|M0〉 + ψM̄0(0)|M̄0〉. The time evolution of |ψ(t)〉
can be described, in the space formed by |M0〉 and |M̄0〉 by means of the Schrödinger
equation i d

dtΨ = HΨ, where Ψ = (ψM0(t), ψM̄0(t))T and H is the effective non-Hermitian
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Hamiltonian of the system, H =
(

H11 H12

H21 H22

)
. Here H = M − iΓ

2 , with M and Γ

Hermitian matrices. The matrix elements of H are constrained by the conservation of
discrete symmetries [50]. Indeed, CPT conservation implies H11 = H22, T conservation
requires |H12| = |H21| and CP conservation imposes H11 = H22 and |H12| = |H21|.

In particular, the CP violation, (i.e. |H12| �= |H21|), makes the Hamiltonian H non-
Hermitian, H �= H† and non-normal, [H,H†] �= 0 (1). Thus, the left and right eigenstates
of H are independent sets of vectors that are not connected by complex conjugation, then
the diagonalization of H needs the use of non-Hermitian quantum mechanics. We will
use the biorthonormal basis formalism [57-59].

We denote with λj = mj − iΓj/2, with j = L,H (L denotes the light mass state
and H the heavy mass state) the eigenvalues of the Hamiltonian H and with |Mj〉,
the corresponding eigenvectors, H|Mj〉 = λj |Mj〉. Denoting with |M̃j〉, (j = L,H)
the eigenvectors of H†, the eigenvalues of H† are the complex conjugate of those of H,
H†|M̃j〉 = λ∗

j |M̃j〉. Notice that the conjugate states 〈M̃j |† ≡ |M̃j〉 and |Mj〉† ≡ 〈Mj |
are not isomorphic to their duals: |M̃j〉 �= |Mj〉 and 〈Mj | �= 〈M̃j |. In this case, a
complete biorthonormal set for H is given by {|Mj〉, 〈M̃j |}, with j = L,H. Indeed one has
the following biorthogonality relation 〈M̃i|Mj〉 = 〈Mj |M̃i〉 = δij , and the completeness
relations

∑
j |Mj〉〈M̃j | =

∑
j |M̃j〉〈Mj | = 1. The existence of a complete biorthonormal

set of eigenvector of H implies that H is diagonalizable.
Moreover, since the time evolution operator associated with H, U(t) = e−iHt is not

unitary, then we introduce the time evolution operator of H†, Ũ(t) = e−iH†t, such that
UŨ† = Ũ†U = 1. The time evolved of the states |Mk〉 and |M̃k〉, (k = L,H) are thus
|Mk(t)〉 = U(t)|Mk〉 = e−iλkt|Mk〉 and |M̃k(t)〉 = Ũ(t)|M̃k〉 = e−iλ∗

kt|M̃k〉.
By introducing the CP parameter ε = |p/q|−|q/p|

|p/q|+|q/p| = |H12|−|H21|
|H12|+|H21| , where q/p =√

H21/H12, and the CPT parameter, z = (H22−H11)
λL−λH

, we derive the correct meson states
|M0(t)〉 and |M̄0(t)〉 in terms of the eigenstates of H |ML〉 and |MH〉 [41], which have
to be used in the computations,

|M0(t)〉 =
1
2p

[√
1 − z |ML〉 e−iλLt +

√
1 + z |MH〉 e−iλHt

]
,(1)

|M̄0(t)〉 =
1
2q

[√
1 + z |ML〉 e−iλLt −

√
1 − z |MH〉 e−iλHt

]
,(2)

〈M̃0(t)| = p
[√

1 − z 〈M̃L| eiλLt +
√

1 + z 〈M̃H | eiλHt
]
,(3)

〈˜̄M0(t)| = q
[√

1 + z 〈M̃L| eiλLt −
√

1 − z 〈M̃H | eiλHt
]
.(4)

We now study the geometric phase for mixed mesons. We consider the phase for
pure states with a diagonalizable non-Hermitian Hamiltonian HNH(t) [5] and ana-
lyze its extension to the biorthonormal basis formalism. In this case, the geometric
phase is defined as [41] ΦNH(t) = arg〈ψ̃NH(0)|ψNH(t)〉 − �

∫ t

0
〈ψ̃NH(t′)|ψ̇NH(t′)〉dt′,

which is reparametrization invariant and it is invariant under the complex
gauge transformations [41]. Here |ψNH(t)〉 and |ψ̃NH(t)〉 are the solution to the

(1) The matrices M and Γ do not commute, [M, Γ] �= 0.
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Schrödinger equation i(d/dt)|ψNH(t)〉 = HNH(t)|ψNH(t)〉 and to its adjoint equation
i(d/dt)|ψ̃NH(t)〉 = H†

NH(t)|ψ̃NH(t)〉, respectively.
In the particular case of mixed meson systems M0 − M̄0 one has the following

phases [41]:

ΦM0M0(t) = arg〈M̃0(0)|M0(t)〉 − �
∫ t

0

〈M̃0(t′)|Ṁ0(t′)〉dt′,(5)

ΦM̄0M̄0(t) = arg〈˜̄M0(0)|M̄0(t)〉 − �
∫ t

0

〈˜̄M0(t′)| ˙̄M0(t′)〉dt′,(6)

ΦM0M̄0(t) = arg〈M̃0(0)|M̄0(t)〉 − �
∫ t

0

〈M̃0(t′)| ˙̄M0(t′)〉dt′,(7)

ΦM̄0M0(t) = arg〈˜̄M0(0)|M0(t)〉 − �
∫ t

0

〈˜̄M0(t′)|Ṁ0(t′)〉dt′.(8)

ΦM0M0(t) and ΦM̄0M̄0(t) are the phases of the particle M0 and of the antiparticle M̄0,
respectively. They are connected to CPT violation parameter. ΦM0M̄0(t) and ΦM̄0M0(t)
are the phases due to particle-antiparticle oscillations which are linked to CP violation
(see below).

Denoting with m = mL + mH , Δm = mH − mL and ΔΓ = ΓH − ΓL, and assuming
ΔΓt
2 small, which is valid in the range |Δt| < 15 ps used in the experimental analysis on

B0-B̄0 system [60-62], eqs. (5) and (6) become

ΦM0M0(t) � arg
[
cos
(

Δmt

2

)
+ (�z − i	z) sin

(
Δmt

2

)]
+

t

2

(
Δm	z +

ΔΓ
2

�z

)
,

ΦM̄0M̄0(t) � arg
[
cos
(

Δmt

2

)
− (�z − i	z) sin

(
Δmt

2

)]
− t

2

(
Δm	z +

ΔΓ
2

�z

)
,

respectively (the explicit form of ΦM0M0 and ΦM̄0M̄0 for the general case are reported in
ref. [41]). Notice that ΦM0M0 and ΦM̄0M̄0 depend on the real and imaginary part of the
CPT parameter z and the difference phase, ΔΦ(t) = ΦM0M0(t)−ΦM̄0M̄0(t) is due only
to terms related to z. Indeed it is non-zero only in the presence of CPT violation. In
the case of CPT invariance, z = 0, one has ΦCPT

M0M0(t) = ΦCPT
M̄0M̄0(t) = arg

[
cos
(

Δmt
2

)]
,

which is trivially equal to 0 or π and ΔΦ(t) = 0.
On the other hand, the phases ΦM0M̄0(t) and ΦM̄0M0(t), for ΔΓt

2 
 1 and omitting
second order terms in z, (see ref. [41] for the general expressions) are

ΦM0M̄0(t) � π

2
− mt

2
+ arg

[
p

q
sin
(

Δmt

2

)]
− Δmt

2
	
(

p

q

)
− ΔΓt

2
�
(

p

q

)
,

ΦM̄0M0(t) � π

2
− mt

2
+ arg

[
q

p
sin
(

Δmt

2

)]
− Δmt

2
	
(

q

p

)
− ΔΓt

2
�
(

q

p

)
.

The phase difference is ΦM0M̄0(t) − ΦM̄0M0(t) �= 0. On the contrary, in the case of CP
conservation one has

ΦCP
M0M̄0(t) = ΦCP

M̄0M0(t) =
π

2
− (m + Δm)

t

2
+ arg

[
sin
(

Δmt

2

)]
,(9)

and there is no phase difference.
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Fig. 1. – Plots of ΔΦ = ΦB0
sB0

s
− ΦB̄0

sB̄0
s

as a function of time t for �z = 0 and different values

of �z. In A) ΔΦ(t) is reported for sample values of Rez ∈ [−0.1, 0] as indicated in the inset.
In B) ΔΦ(t) is plotted for sample values of Rez ∈ [0, 0.1] as shown in the inset.

Numerical analysis. – We present a numerical analysis of the phase related to z,
ΔΦ = ΦM0M0 −ΦM̄0M̄0 for the Bs system. Such a system is particulary appropriate for
the study of non-cyclic phases since many particle oscillations occur within its lifetime.
We use the following experimental data: ms = 1.63007 × 1013 ps−1, Δms = 17.77 ps−1,
Γs = 0.678 ps−1, ΔΓs = −0.062 ps−1. Moreover, we assume, −0.1 ≤ 	z ≤ 0.1 and
−0.1 ≤ �z ≤ 0.1 [62]. Notice that, in such intervals for 	z and �z, the phase ΔΦ is
weakly depending on the value of �z, so that one can fix an arbitrary value of �z in
the values interval [−0.1, 0.1] and study the non-cyclic phases as functions of time for
different values of 	z. In fig. 1, the phase is drawn for �z = 0. In order to better
show the behavior of the phases, the figures contain two plots A) and B) of the same
phase for sample values of 	z belonging to the intervals [−0.1, 0] and [0, 0.1], respectively.
A non-zero phase difference ΔΦ appears in the case of CPT violation.

3. – Unruh effect, quantum thermometer and geometric phase

In refs. [30, 31] we have shown that the phenomena characterized by the presence of
vacuum condensate [36-40] are also characterized by the presence of Aharonov-Anandan
invariant and of geometric phase. Thus the geometric phase can used to study the
properties of such systems and to reveal phenomena like Unruh, Casimir effects, or
quantum field theory (QFT) in curved background, which are elusive to the observations.

Here we focus our attention on the Unruh effect and on the possibility of the realization
of a quantum thermometer. To do that we consider quantum open systems and use the
Wang and Liu approach [16] to define the geometric phase for mixed states in nonunitary,
noncyclic evolution.

Geometric phase for mixed states in nonunitary, noncyclic evolution. – The geometric
phase is defined as

Φg =
N∑

k=1

arg
[√

λk(t0)λk(t) 〈ϕk(t0)|ϕk(t)〉
]

(10)

−�
N∑

k=1

∫ t

t0

λk(t′)〈ϕk(t′)| ∂

∂t′
|ϕk(t′)〉dt′,
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where |ϕk(t)〉 and λk(t) are eigenstates and eigenvalues of the matrix density ρ(t)
describing the quantum open system for N -level mixed states. The first term of eq. (10)
represents the total phase, the second term the dynamic one.

In the case of a two level open system, N = 2, the radius of Block sphere is r(t) =√
n2

1 + n2
2 + n2

3, with n1 = ρ12 + ρ21, n2 = i(ρ12 − ρ21), n3 = ρ11 − ρ22. Defining the
angles θ = cos−1 (n3/r) and φ = tan (n2/n1), the eigenvectors of ρ, |ϕ1(t)〉 and |ϕ2(t)〉
are (apart overall phase factors)

|ϕ1(t)〉 =

⎛⎜⎝ cos
θ(t)
2

eiφ(t) sin
θ(t)
2

⎞⎟⎠ , |ϕ2(t)〉 =

⎛⎜⎝ sin
θ(t)
2

−eiφ(t) cos
θ(t)
2

⎞⎟⎠ ,

and the eigenvalues are λ1(t) = 1
2 [1 + r(t)] and λ2 = 1

2 [1 − r(t)].

Interaction. – Let us now consider the Hamiltonian [63], H = �

2 ω0 σ3 + HF −∑
mn μmn · E(x(t))σmn, which describes a two level atom as an open system with a

non-unitary evolution in the reservoir of the electromagnetic field. In H, ω0 is the en-
ergy level spacing of the atom, σ3 is the Pauli matrix, HF is the electromagnetic field
Hamiltonian, μmn is the matrix element of the dipole momentum operator connecting
single-particle states un and un′ ([63]), σmn = σmσn, and E is the strength of the electric
field. We consider a weak interaction between atom and field and study the evolution
of the total density matrix ρtot = ρ(0) ⊗ |0〉〈0|, in the frame of the atom. Here |0〉 and
ρ(0) are the vacuum and the initial reduced density matrix of the atom. The evolution
is given by [64,65]

∂ρ(τ)
∂τ

= − i

�
[Heff , ρ(τ)] +

1
2

3∑
i,j=1

aij (2σj ρ σi − σi σj ρ − ρ σi σj) ,(11)

with τ proper time, Heff effective hamiltonian, Heff � �

2 ω0 σ3, (ω0 is the atomic
transition frequency, we neglect the Lamb shift terms), aij coefficients of the Kos-
sakowski matrix, aij = Σ δij − iΥ εijkδk3 − Σ δi3δj3, with Σ = 1

4 [G(ω0) + G(−ω0)],
Υ = 1

4 [G(ω0) − G(−ω0)], and G(ω) =
∫∞
−∞ dτeiωτG+(x(τ)) Fourier transform of

G+(x − y) = e2

�2

∑3
i,j=1〈+|ri|−〉〈−|rj |+〉〈0|Ei(x)Ej(x)|0〉.

For an initial state of the atom given by |ψ(0)〉 = cos
(

θ
2

)
|+〉 + sin

(
θ
2

)
|−〉, with

θ ≡ θ(0), one has the reduced density matrix ρ(τ) [30,31,45]

ρ(τ) =
1
2

(
χ + 1 e−iΩτ

√
ξ2 − χ2

eiΩτ
√

ξ2 − χ2 1 − χ

)
,(12)

where ξ(τ) =
√

χ2 + e−4Στ sin2 θ, and χ(τ) = e−4Στ cos θ + Υ
Σ (e−4Στ − 1).

The eigenvalues and the corresponding eigenvectors of ρ(τ) are: λ± = 1
2 (1 ± ξ), and

|φ+(τ)〉 = cos
(

θ(τ)
2

)
|+〉 + sin

(
θ(τ)
2

)
eiΩτ |−〉,(13)

|φ−(τ)〉 = sin
(

θ(τ)
2

)
|+〉 − cos

(
θ(τ)
2

)
eiΩτ |−〉.



GEOMETRIC PHASE AND ITS APPLICATIONS TO FUNDAMENTAL PHYSICS 7

Considering the initial time t0 = 0, the geometric phase (10) becomes

Φg(t) = arg
[
cos

θ

2
cos

θ(t)
2

+ sin
θ

2
sin

θ(t)
2

eiΩt

]
− Ω

2

∫ t

0

[1 − ξ(τ) cos θ(τ)] dτ,(14)

with θ ≡ θ(0). Such a phase can be used in the detection of Unruh effect and in the
building of a quantum thermometer.

Unruh effect . – In the case of Unruh effect, we study the difference between two
geometric phase (14) computed for the two level system in the presence of an acceleration
and in the inertial case. Such a phase difference is due only to the atom acceleration and
then to the Unruh effect, since the accelerated system sees the Minkowski vacuum as a
thermal Rindler vacuum.

Considering the atom acceleration through Minkowski spacetime in the x direction,
the Rindler coordinates are x(τ) = c2

a cosh aτ
c , t(τ) = c

a sinh aτ
c . Then the function

sin θ(t)
2 = ±

√
1
2

(
1 − χ(t)

ξ(t)

)
in eq. (14) becomes

sin
θa(t)

2
= ±
√√√√1

2
− Ra − Ra e4Σat + cos θ

2
√

e4Σat sin2 θ + (Ra − Ra e4Σat + cos θ)2
,(15)

and similar for cos θa(t)
2 , where Ra = Υa/Σa, with Σa = γ0

4

(
1 + a2

c2ω2
0

)
e2πcω0/a+1
e2πcω0/a−1

and

Υa = γ0
4

(
1 + a2

c2ω2
0

)
, and γ0 spontaneous emission rate.

Equation (14) holds also for an inertial atom, a = 0. In this case, sin θa(t)
2 , cos θa(t)

2

and cos θa(t) are replaced by sin θa=0(t)
2 , cos θa=0(t)

2 and cos θa=0(t) in which Σa, Υa, Ra

are replaced by Σa=0 = Υa=0 = γ0/4, Ra=0 = 1.
The phase difference ΔΦU (t) = Φa(t) − Φa=0(t), gives the geometric phase in terms

of the acceleration a.
Notice that the atomic element which has to be used in the interferometer plays an

important role, since a non trivial value of ΔΦU (t) can be achieved when γ0/ω0 > 10−5.
In fig. 2 we plot ΔΦU as function of the acceleration a for different hyperfine level

structures of 85Rb, 87Rb and 133Cs, as reported in the caption of the picture.
Values of ΔΦU ∼ 10−4π, which are accessible with the current technology, can be ob-

tained for accelerations of order of 1016 m/s2 and speeds of order of (0.2–0.3)c. The time
intervals considered are of order of 1/ω0 in order to have negligible spontaneous emission
(N(t ∼ 1/ω0) ∼ 0.98N(0)). The geometric phase above described can be revealed with
a Mach-Zehnder interferometer with branches of length of 4 cm. In particular, a differ-
ence in the arm lengths of the interferometer of about 0.1μm permits to remove almost
completely the dynamical phase differences δ and to reveal only the geometric phase [31].

Quantum thermometer . – The geometric phase of eq. (14) appears also when an
atom interacts with thermal states. Therefore, its analysis could allow very precise
measurement of the temperature.

In the case of thermal states, the above coefficients Υa and Σa are replaced by ΣT

and ΥT which depend on the temperature [30, 31], ΥT = (γ0/4) (1 + 4π2k2
BT 2/�

2ω2
0),

and ΣT = (γ0/4) (1 + 4π2k2
BT 2/�

2ω2
0) (eE0/kBT + 1)/(eE0/kBT − 1), E0 = �ω0.
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Fig. 2. – Plots of ΔΦU as a function of the atom acceleration a, for time intervals t � 1/ω0 and
the splitting between the hyperfine energy levels: main pictures: (gray) dot dashed line: 87Rb,
52P1/2 line, splitting for F = 1 → F = 2 transition (ω0 = 814.5 MHz, γ0 = 36.129 MHz [66]);

(green) solid line: 133Cs, 62P1/2 line, splitting of the between the F = 3 and F = 4 levels (ω0 =

1167.68 MHz, γ0 = 28.743 MHz [67]). Pictures in the inset: (blue) dashed line: 85Rb, 52S1/2

line, energy splitting between the levels F = 1 and F = 2 (ω0 = 3.035 GHz, γ0 = 36.129 MHz
for D1 transition, γ0 = 38.117 MHz for D2 transition [68]); (red) dot dashed line: 87Rb, 52S1/2

line, energy splitting between the levels F = 1 and F = 2 (ω0 = 6.843 GHz, γ0 = 36.129 MHz
for D1 transition, γ0 = 38.117MHz for D2 transition [66]).

Fig. 3. – Plots of ΔΦT as function of the temperatures of cold sources Tc, for the splitting between
the hyperfine energy levels and Th values: (blue) dashed line: 133Cs, 62P3/2 line, splitting for

F = 4 → F = 5 transition (ω0 = 251.09 MHz, γ0 = 32.889 MHz [67]) and Th = 10−2 K; (red)dot-
dashed line: 87Rb, 52P1/2 line, splitting for F = 1 → F = 2 transition (ω0 = 814.5 MHz,

γ0 = 36.129 MHz [66]), and Th = 3 × 10−2 K; (gray) solid line: 133Cs, 62P1/2 line, splitting for

F = 3 → F = 4 transition (ω0 = 1167.68 MHz, γ0 = 28.743 MHz [67]) and Th = 6 × 10−2 K;
(black) dotted line: 133Cs, 62S1/2 line, splitting for F = 3 → F = 4 transition (ω0 = 9.192 GHz,
γ0 = 28.743 MHz [67]) and Th = 1K. The time considered is t � 1

4ω0
s.

Then a quantum thermometer can be built by means of an interferometer in which
an atom follows two different paths interacting with two thermal states at different
temperatures. Assuming known the temperature of one thermal state, the temperature of
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the other one can be obtained by measuring the difference between the geometric phases
generated in the two paths. In the following we assume known the temperature Th of the
hotter source and we derive the temperature Tc of the colder source by measuring ΔΦT .

Also in this case we consider the hyperfine structure of 133Cs, and 87Rb and we plot
in fig. 3, ΔΦT as function of the temperatures of cold sources Tc, for different lines and
different values of Th. We consider time intervals t � 1

4ω0
s in order that the particle

decay can be neglected and we obtain temperatures of the cold source of ∼ 2 orders of
magnitude below the reference temperature of the hot source. Paths of slightly different
lengths can be chosen in order to let the geometric phase be dominating over the relative
dynamical phase.

4. – Conclusions

We have studied the geometric phase for different phenomena and analyzed its possible
applications. We have shown that the geometric phases generated by the evolution of
mixed meson systems depend on the CPT violating parameter z [41]. In particular,
we have shown that a nonzero difference of phase ΔΦ between particle and antiparticle
appears only in the case of CPT symmetry breaking. Therefore, in the next future,
accurate analysis of the geometric phases for mixed mesons like the neutral Bs system
and the kaons, might represent a completely alternative method to test one of the most
important symmetries of the nature. The geometric phase can allow also the study of
the CP symmetry breaking in mixed mesons.

Moreover, we have analyzed the geometric phase for mixed state with a non-unitary
evolution and we have shown that the geometric phase of atoms accelerated in an in-
terferometer could permit the laboratory detection of the Unruh effect. Similar atoms,
interacting with two different thermal states can be utilized in an interferometer to have
very precise temperature measurements [31].
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