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Summary. — Contact algebra is introduced, which is a Lie algebra given as a
one-dimesional exrention of a Weyl algebra. A contact Lie algebra bundle called
a contact Weyl manifold is considered over a symplectic manifold which contains
a Weyl manifold as a subbundle. A relationship is discussed between deformation
quantization on s symplectic manifold and a Weyl manifold over the symplectic
manifold. The contact Weyl manifold has a canonical connection which gives rise
the relation, and is regarded as an extension of Fedosov connection.

1. – Introduction

The Moyal product [1] is used to quantize a classical mechanical system in R
2m with

the canonical Poisson bracket, so-called Moyal quantization, which can be extended to
R

n or C
n by replacing the Poisson bracket with some slighty wider class of biderivations

in a convergent way (cf. [2]). The products can be considered on any manifold to give rise
to a concept of deformation quantization [3], and any Poisson manifold has deformation
quantizations in a formal sense [4].

The formal deformation quantization is given a geometric picture on a symplectic
manifold by using Weyl manifold, a Weyl algebra bundle over the symplectic mani-
fold [5]. Roughly speaking, a Weyl manifold is a quantized symplectic manifold in a
sense that, while a symplectic manifold is regarded as a patch work of canonical coor-
dinates by means of canonical transformations, the Weyl manifold is given as a patch
work of quantized canonical coordinates by means of quantized canonical transformations.
From a Weyl manifold over a symplectic manifold, one can obtain conversely, form a de-
formation quantization on a symplectic manifold, one can obtain a Weyl manifold over
the symplectic manifold. On the other hand, Fedosov considered a connection on a Weyl
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algebra bundle over a symplectic manifold to investigate index theory on symplectic
manifolds, and he applied the connection to deformation quantization theory to obtain
a simple construction of deformation quantization [6].

The contact Weyl algebra is introduced in [5] and is used as a tool to make a patch
work of quantized canonical coordinates by means quantized canonical transformations
called Weyl diffeomorpisms. The contact Weyl algebra is a Lie algebra containing the
Weyl algebra as a subalgebra. The Weyl algebra is regarded as a quantization of the
canonical symplectic structure in terms of the Moyal product, and the contact Weyl
algebra is regarded as a contactification [7] of quantized canonical symplectic structure
in this sense.

In [8], using the contact Weyl algebra as a fiber, Yoshioka defined an algebra bundle
over a symplectic manifold called a contact Weyl manifold, and showed its existence for
any symplectic manifold. A contact Weyl manifold contains a Weyl manifold as a sub-
bundle, which is considered as a contactification of quantized symplectic manifold. Then
the existence theorem means that every quantized symplectic manifold has a quantized
contactification.

A contact Weyl manifold has a canonical connection [8] and the connection character-
izes the set of Weyl functions which is the structue of Weyl manifold, and it was shown
that when the connection is restricted to the subbundle, that is the Weyl manifold, it
gives the so-called Fedosov connection. Then we have seen that the bundle that Fedosov
used in his theory [6] coincides with the Weyl manifold [5] and the canonical connection
on the contact Weyl manifold is an extenstion of Fedosov connection.

The curvature of the canonical connection on a contact Weyl manifold is a formal
power series of closed 2-forms on the base symplectic manifold whose lowest order term
is the symplectic 2-form. Then the curvature form determines a formal power series of the
second cohomology class of the base manifold. Since the connection is equal to Fedosov
connection on the Weyl manifold, the cohomology class given by the canonical connection
is equal to the characteristic class which induces a moduli space of deformation quan-
tization on the sympectic manifold. In [9], in the process of gluing quantized canonical
coordinates, namely the local Weyl functions, naturally emerges a formal power series
of the second Čech cohomology class called a Poincaré-Cartan class, and the class also
characterizes the equivalence classes of Weyl manifolds and then those of deformation
quantizations on the symplectic manifold. It is proved in [8] that the cohomology class
by Čech is equal to that given by the curvature form of the canonical connection.

In this paper, we give a brief review on deformation quantization and Weyl manifolds
and also on contact Weyl manifolds.

2. – Star product, deformation quantization

In this section, we discuss deformation quantiations, or star products.

2.1. Example: Moyal product . – We start by the well-known example of star product,
the Moyal product. Let M be a 2n-dimensional Euclidean space R

2n. We write the
coordinates as (x1, . . . , xn, y1, . . . , yn) ∈ R

2n, and the canocnical symplectic structure as
ω =

∑n
k=1 dyk ∧ dxn, respectively. The Poisson bracket {f, g} =

∑n
k=1 (∂xk

f ∂yk
g −
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∂yk
f ∂xk

g) is written as the following biderivation such that

{f, g} =
n∑

k=1

(∂xk
f ∂yk

g − ∂yk
f ∂xk

g) =
n∑

k=1

(f
←−
∂ xk

−→
∂ yk

g − f
←−
∂ yk

−→
∂ xk

g)

= f
←−
∂ x · −→∂ yg − f

←−
∂ y · −→∂ xg = f(

←−
∂ x · −→∂ y −←−

∂ y · −→∂ x)g = f
←−
∂ x ∧ −→

∂ yg

for smooth functions f, g on R
2n. The l th porwer of the biderivation

←−
∂ x ∧ −→

∂ y is
calculated by means of the binomal theorem such as

(←−
∂ x ∧ −→

∂ y

)l

=
l∑

k=0

(
l

k

)
(−1)k(

←−
∂ x · −→∂ y)l−k(

←−
∂ y · −→∂ x)k

and defines a bidifferential operator on R
2n.

The Moyal product ∗0 is then given by a formal power seris in ν of the biderivation
of the exponential type such that

f ∗0 g = fg + (ν
2 )f(

←−
∂ x ∧ −→

∂ y)g + · · · + (ν
2 )l 1

l!f(
←−
∂ x ∧ −→

∂ y)lg + · · ·

= f exp
(

ν
2

←−
∂ x ∧ −→

∂ y

)
g

for any f, g ∈ C∞(R2n). The Moyal product is extended naturally to the formal power
series such as f =

∑
l≥0 f

l
νl, g =

∑
l≥0 g

l
νl ∈ C∞(R2n)[[ν]], and then the Moyal product

is an associative product on C∞(R2n)[[ν]].
We sometimes write the Moyal product in general form such as

f ∗0 g = fg + νC1(f, g) + ν2C2(f, g) + · · · + νlCl(f, g) + · · · ,

where Cl(f, g) = 1
l! (

1
2 )l(

←−
∂ x ∧ −→

∂ y)l, l = 1, 2, . . . .

2.2. Star product . – The definition of star product is direct from the Moyal product.
For a manifold M , we consider a binary product on the space of formal power series
C∞(M)[[ν]] such that

f ∗ g = fg + νC1(f, g) + ν2C2(f, g) + · · · + νlCl(f, g) + · · · ,

where Cl(·, ·) is a bilinear map from C∞(M) × C∞(M) to C∞(M). In what follows, we
set Aν(M) = C∞(M)[[ν]] for simplicity.

Definition 1. A product f ∗ g, f, g ∈ Aν(M) is called a star product when it is associative.

Then for a star product ∗ on M , we have an associative algebra (Aν(M), ∗), called a
star product algebra. We have the following.
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Poisson structure. We see that a star product naturally induces a Poisson structure on
the manifold M .

Consider skewsymmetric part C−
1 of C1, nemely, C−

1 (f, g) = 1
2 (C1(f, g) − C1(g, f)),

∀f, g ∈ C∞(M). Then, the associative product satisfies

1. [f, g ∗ h]∗ = [f, g]∗ ∗ h + g ∗ [f, h]∗,

2. [f, [g, h]∗]∗ + (cyclic with respect to f, g, h) = 0,

where [f, g]∗ = f ∗g−g ∗f is the commutator of the product, and the lowest order terms
of the expansion of the above give

Proposition 2. The skew symmetric part of C1 is a Poisson bracket on M .

Suppose we have given a Poisson structure {·, ·} on M .

Definition 3. A star product ∗ on M is called a deformation quantization of the Poisson
manifold (M, {·, ·}) when the skew symmetric part of C1 is equal to {·, ·}.

Equivalence. Suppose we have star products ∗, ∗′ on a manifold M , and then we have
star product algebras (Aν(M), ∗), (Aν(M), ∗′)

Definition 4. The star products ∗, ∗′ are equivalent if there exists an algebra isomorphism
T : (Aν(M), ∗) → (Aν(M), ∗′) of the form

T (f) = f + νT1(f) + ν2T2(f) + · · · + νlTl(f) + · · ·

where Tl is a linear map of C∞(M), l = 1, 2, . . . ,

We have the followng (see [10]).

Proposition 5. For every equivalence class of star product on M , there is a representative
f ∗ g = fg + νC1(f, g) + · · ·+ νlCl(f, g) + · · · , ∀f, g ∈ Aν(M) such that C1 is a Poisson
bracket, namely, its symmetric part is zero. Moreover, we can take every Cl ( l = 1, 2, . . . )
is local, namely, a differential operator on M .

Back ground . Star products are already treated by Weyl, Wigner, Moyal, Groenewold.
These can be regarded as a deformation of the usual multiplication of functions. For
these, Bayen-Flato-Fronsdal-Lichnerowicz-Sternheimer proposed a concept of deforma-
tion quantization on a manifold.

By many people’s efforts, the existence and classification problem for formal deforma-
tion quantization became clear and was established (e.g., see [11]). Kontsevich proved
that there is a deformation quantiaztion on every Poisson manifold in a formal semse.

3. – Weyl manifold

When M is a symplectic manifold, a star product has a geometric picture which we
call a Weyl manifold. From a Weyl manifold over a symplectic manifold, we can obtain
a deformation quantization of symplectic manifold.

In what follows, we will explain the construction of Weyl manifold over arbitrary
symplectic manifold and also explain how we obtain a deformation quantization from a
Weyl manifold.
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This section is based on the joint work with Omori, Maeda [5].
Let (M,ω) be a 2n-dimensional symplectic manifold. A Weyl manifold WM is a

Weyl algebra bundle over (M,ω) with certain properties. Weyl manifold has a deep
relationship with deformation quantization of symplectic manifold. Namely, from WM

we can obtain a deformation quantization of (M,ω) and conversely from a deformation
quantization of (M,ω) we obtain WM , and in this sense WM is regarded as a geometric
picture of deformation quantization of (M,ω).

3.1. Idea. – The basic idea of the construction of Weyl manifold is to embed local
functions on a Darboux chart into Weyl algebra whose embedded image is called Weyl
functions.

Quantized Daruboux chart . For any point p ∈ M , by Darboux theorem there exists
a coordinate neighborhood (U, (x1, . . . , xn, y1, . . . , yn)) such that ω =

∑n
j=1 dyj ∧ dxj ,

which is called canonical coordinates or Darboux chart. With respect to this chart the
Poisson bracket of (M,ω) is written as {·, ·} =

←−
∂ x∧

−→
∂ y, then we have the Moyal product

on U ;

f ∗0 g = fg + (ν
2 )f(

←−
∂ x ∧ −→

∂ y)g + · · · + (ν
2 )l 1

l!f(
←−
∂ x ∧ −→

∂ y)lg + · · ·

= f exp
(

ν
2

←−
∂ x ∧ −→

∂ y

)
g, f, g ∈ Aν(U) = C∞(U)[[ν]].

The triplet (U, (x, y), ∗0) is regarded as a quantized Darboux chart.

Quantized Darboux theorem. Suppose we have a deformation quantization ∗ of the sym-
plectic manifold (M,ω):

f ∗ g = fg + νC1(f, g) + ν2C2(f, g) + · · · + νlCl(f, g) + · · · .

By the previous Proposition, we can assume C1 = 1
2{·, ·} and Cl (l = 1, 2, . . .) are

bidifferential operators. Then the star product ∗ is local and we can restrict on U to have
local star product algebra (Aν(U), ∗) with the coordinates with product (U, (x, y), ∗).
Then we have a “Quantized Darboux theorem” as follows.

Proposition 6. Suppose we have a star product ∗ on M . Then on every U , the local star
product algebra (Aν(U), ∗) with local coodinates with product (U, (x, y), ∗) is equivalent to
the local Moyal product algebra (Aν(U), ∗0) with (U, (x, y), ∗0). Hence, the star product ∗
has a local coordinate expression of quantized Darboux chart (U, (x, y), ∗0) for every point.

In what follows, we write the canonical coordinates as (x1, · · · , xn, y1, · · · , yn) =
(z1, · · · , z2n) = z for simplicity.

Quantized symplectic atlas. Suppose we have a symplectic atlas {(Uα, zα)}α∈Λ, where
(Uα, zα) is a Darboux chart for each α. Then quantized Darboux theorem shows that
the star product ∗ has a quantized symplectic atlas {(Uα, zα, ∗0)}α∈Λ, and yields local
star product algebras {(Aν(Uα), ∗0)}α∈Λ glued together by algebra isomorphisms:

Tβα : (Aν(Uα), ∗0)|Uα∩Uβ
→ (Aν(Uβ), ∗0)|Uβ∩Uα

,
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These isomorphisms obviously satisfy

Lemma 7. i) TαγTγβTβα = 1 for Uα ∩ Uβ ∩ Uγ 	= ∅.

ii) T−1
βα = Tαβ for Uα ∩ Uβ 	= ∅.

3.2. Weyl manifold . – According to the previous argument, conversely, for any sym-
plectic manifod (M,ω) it is natural to consider to construct a deformation quantization
∗ of (M,ω) by gluing local Moyal algebras, or Quantized Darboux charts by algebra
isomorphisms. For this purpose, we first construct a Weyl algebra bundle over (M,ω)
called Weyl manifold from which we can obtain a deformation quantization.

In a word, Weyl manifold is a locally trivial Weyl algebra bundle over a symplectic
manifold whose gluing maps are Weyl diffeomorphisms of local trival bundles. Here
Weyl diffeomorphism is the bundle isomorphism which preserves Weyl functions. The
Weyl functions are the key concept, or the geometric structure, of quantized symplectic
manifold or Weyl manifold.

Formal Weyl algebra. A formal Weyl algebra W is an associative algebra, with
the multiplication denoted by ∗̂, formally generated over R or C by elements
ν,X1, . . . , Xn, Y1, . . . , Yn where ν commutes with any elements and satisfy the canon-
ical commutation relation

[Xj , Yk]∗ = νδjk, [Xj ,Xk]∗ = [Yj , Yk]∗ = 0, j, k = 1, 2, . . . , n.

Here the bracket [·, ·]∗ is the commutator of W ; [F,G]∗ = F ∗̂G − G∗̂F , F,G ∈ W .
For simplicity, instead of X1, . . . , Xn, Y1, . . . , Yn we sometimes use a notation

(X1, . . . , Xn, Y1, . . . , Yn) = (Z1, . . . , Z2n).

Weyl ordered expression and Moyal product formula. In W we consider the completely
symmetric polynomials such as X1∗̂X2 + X2∗̂X1/2, which we denote by X1X2, etc.

It is easy to see the set of all symmetric polynomials forms a linear basis of W . Using
this basis, the formal Weyl algebra W is expressed as the formal power series of the
generators ν,X1, . . . , Xn, Y1, . . . , Yn with the Moyal product formula. Namley, we have
a linear isomorphism

σ : W → C[[ν,X1, . . . , Xn, Y1, . . . , Yn]].

And with this identification the multiplication ∗̂ is given in C[[ν,X1, . . . , Xn, Y1, . . . , Yn]]
as the Moyal product that is, any elements are expressed as a formal power serires,
F =

∑
lα alανlZα, G =

∑
mβ bmβνmZβ , and we have

Lemma 8.

F ∗̂G = F exp
(

ν
2

←−
∂ X ∧ −→

∂ Y

)
G

= FG + (ν
2 )F (

←−
∂ X ∧ −→

∂ Y )G + · · · + (ν
2 )l 1

l!F (
←−
∂ X ∧ −→

∂ Y )lG + · · ·
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Weyl function. Let U be an open subset of R
2n. We consider to embed a function f on

U into a formal Weyl algebra W . The embedding is given as a similar fashion as Taylor
expnasion and is called a Weyl continuation of function denoted by f# such that

f#(z) =
∑
α

1
α! ∂α

z f(z)Zα, z ∈ U.

The Weyl continuation is obviously extended to the formal power series Aν(U) =
C∞(U)[[ν]], and give a section of the trivial Weyl algebra bundle U ×W = WU , namely,
f# ∈ Γ(WU ). We denote the image of # by F(WU ) = Aν(U)# ⊂ Γ(WU ).

It is direct to see that the Moyal products ∗0, ∗̂ and the Weyl continuation # commute,
namely we have

Proposition 9.

(f ∗0 g)# = f#∗̂g#, ∀f, g ∈ Aν(U).

Then we have

Corollary 10. i) The space of the Weyl functions is an associative algebra under the
multiplication ∗̂, and (F(WU ), ∗̂) is an associative algebra.

ii) The Weyl continuation is an algebra isomorphism

# : (Aν(U), ∗0) → (F(WU ), ∗̂).

3.3. Weyl diffeomorphism. – Instead of gluing local Moyal algebras (Aν(U), ∗0), we
glue the algebras (F(WU ), ∗̂) of Weyl functions. Since F(WU ) is a space of sections of
the trivial bundle WU , we gain a bundle picture for the star product algebra (Aν(U), ∗0).

Consider trivial bundles WU = U × W , and WU ′ for open subsets U,U ′ ⊂ R
2n.

Definition. A bundle isomorphism Φ : WU → WU ′ with induced map φ : U → U ′ is
called a Weyl diffeomorphism when

i) Φ(ν) = ν.

ii) Φ∗(F(WU ′) = F(WU ).

iii) Φ∗f# = (φ∗f)# + O(ν2), f ∈ Aν(U ′).

Remark 11. 1. The condition i) is natural which means that Φ is C[[ν]]-linear.

2. The condition ii) is essential to our theory. We regard the Weyl functions F(WU )
as the geometric structure of Weyl manifold WM , or quantized symplectic manifold.

3. The conditions iii) is optional. The condition iii) corresponds that the symmetric
part C+

1 vanishes.

A bundle map naturally induces a map between the base space φ : U → U ′. As to
Weyl diffeomorpism we have the following (see [5] Lemma 3.3).

Lemma 12. The induced map φ : U → U ′ of a Weyl differomorphism Φ : WU → WU ′ is
a symplectic diffeomorphism.
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On the other hand, we have (see [5] Theorem 3.7)

Theorem 13. For a symplectic diffeomorphism φ : U → U ′, there exists a Weyl diffeom-
rophism Φ : WU → WU ′ whose induced map is φ.

Contact algebra. Let {Uα, zα)}α∈Λ be a symplectic atlas of (M,ω). We consider to glue
trivial bundles {WUα

}α by Weyl diffeomorphisms.
We remark here the structure of a Weyl diffeomorphism Φ : WU → WU ′ is roughly

Φ = dφ × exp
(

1
ν ad(f#

)
), where dφ is the tangent map of the induced symplectic dif-

feomorphism and f# is a certain Weyl function on U . So in order to adjust Weyl
diffeomorphisms to satisfy transition function rule of the bundles, we need further idea
to control the center. The idea is what we call a contact Lie algebra, which can be
regared as a quantized contact structure in some sense.

We introduce a degree d of the elements of the Weyl algebra W by setting

d(ν) = 2, d(Xj) = d(Yj) = 1, j = 1, 2, . . . , n.

Then the degree is well-defined for the Weyl algebra since it is of no contradiction with
the relation [Xj , Yk]∗ = νδjk. For example we see d(νX1∗̂Y2) = 4, etc.,

Using the degree we can introduce a derivation of the Weyl algebra D : W → W
such that

D(ν) = 2ν, D(Xj) = νXj , D(Yj) = νYj , j = 1, 2, . . . , n.

Notice that the center of W is equal to C[[ν]] and D does not vainish on the center.
We introduce an element τ such that

[τ, F ] = −[F, τ ] = D(F ), ∀F ∈ W.

We consider a direct sum

g = Cτ ⊕ W,

and then we can define a Lie algebra, called a Contact Lie algebra, by putting

[λτ + a, μτ + b] = λ[τ, a] + μ[a, τ ] + [a, b]∗, λ, μ ∈ C, a, b ∈ W.

Contact Weyl vector field . Let U be an open subset of R2n and consider a trivial bundle
g

U
= U × g. We denote by Γ(g

U
) the set of all smooth sections of g

U
. Then Γ(g

U
) forms

a Lie algebra by the pointwise multiplication and becomes a complete topological Lie
algebra under smooth topology. We consider a section τ

U
∈ Γ(g

U
) such that

τ
U
(z) = τ +

2n∑
i,j=1

ωijz
iZj , (z ∈ U),

where ωij is the coefficient of the canonical symplectic 2-form. It is easy to see that the
derivation [τ, ] satisfies [τ, F ] = 2ν2∂νF +ν

∑2n
k=1 Zk∂ZkF and notice [

∑
ij ωijz

iZj , F ] =
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ν
∑

k zk∂ZkF , F ∈ W for each z ∈ U . Then we see easily the fiberwise derivation [τ
U
, ]

acts on Γ(WU ) in the form

[τ
U
(z), F (z)] = 2ν2∂νF (z) + ν

2n∑
k=1

zk#∂ZkF (z), F ∈ Γ(WU ).

The identity ∂Zkf# = (∂zkf)# yields

[τ
U
(z), f#(z)] = 2ν2∂νf#(z) + ν

2n∑
k=1

(
zk∂zkf

)#
(z), f# ∈ F(WU ).

Here we use the identity zk# (∂zkf)# =
(
zk∂zkf

)#. In fact, using the definition of ∗̂
we calculate zk#∗̂g# = zk#g# + ν

2

∑
m Λkm (∂zmg)#, where Λkm is the coefficient of the

canonical Poisson bracket and we see easily

zk#∗̂g# =
(
zk ∗0 g

)#
=

(
zkg

)#
+

ν

2

∑
m

Λkm (∂zmg)# ,

which shows zk#g# =
(
zkg

)# for ∀g# ∈ F(WU ). Thus, we have

Lemma 14.

[τ
U
(z), f#(z)] = 2ν2∂νf#(z) + ν (Ef)# (z), f# ∈ F(WU ),

where E =
∑2n

k=1 zk∂zk is the Euler vector field.

The deviation [τ
U
, ] is called a contac Weyl vector field.

Contact Weyl diffeomorphism. Now we extend the Weyl diffeomorphism to a contact
Weyl diffeomorphism. We consider a locally trivial Lie alegebra bundle g

U
= U × g. We

define

Definition 15. A Lie algebra bundle isomorphism Ψ : g
U
→ g

U
′ is called a contac Weyl

diffeomorphism when it satisfies

i) Ψ∗τ
U

′ = τ
U

+ f#, ∃f ∈ C∞(U)[[ν]].

ii) The restriction to the Weyl algebra bundle Ψ|WU induces a Weyl diffeomorphism
Ψ|WU : WU → WU ′ .

We have (see [5] Theorem 4.7.)

Proposition 16. i) For a Weyl diffeomorphism Φ : WU → WU ′ , there exists a contact
Weyl diffeomorphism Ψ : g

U
→ g

U
′ such that the restriction Ψ|WU is equal to Φ.

ii) For contact Weyl diffeomorphisms Ψ,Ψ′ : g
U

→ g
U

′ having the same restriction
Ψ|WU = Ψ′|WU there extists uniquely a central element c = c0+c1ν+· · ·+ckνk+· · ·
such that Ψ′ = Ψ exp

(
ad( 1

ν c)
)
.

Especially, a contact Weyl diffeomorphism which induces an identity Weyl diffeo-
morphism is uniquely written as Ψ = exp

(
ad( 1

ν c)
)
, c ∈ C[[ν]].
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Using contact Weyl diffeomorphisms to control central elements, and we can glue
a system of trivial bundles {g

Uα
}α∈Λ by Weyl diffeomorphisms and we obtain (see [8]

Theorem A)

Theorem 17. For any symplectic manifold, there exist a Weyl manifold WM and a contact
Weyl manifold g

M
containing WM as a subbundle.

Remark 18. In [8], the parity condition or hermitian property was posed on Weyl dif-
feomorphisms and contact Weyl diffeomorphisms. Then we had a little stronger results
in [8] that the central element c is in C[[ν2]] in Proposition 16 ii). And the moduli space
of Weyl manifolds is H2(M)[[ν2]] which is H2(M)[[ν]] without the parity condition. The
parity condition is optional.

4. – Deformation quantization

Using a Weyl diffeomorphism we can obtain a deformation quantization of the sym-
plectic manifold in the following way.

By a transition functions, that is gluing Weyl diffeomorphisms, the local Weyl func-
tions are also glued together to give a global Weyl functions. We denote this algebra by
(F(WM ), ∗̂) called a space of Weyl functions on M .

Theorem 19 [5]. We have a C[[ν]]-linear map σ : C∞(M)[[ν]] → F(WM ).

By means of this linear isomorphism we can define an asociative product on
C∞(M)[[ν]] by

f ∗ g = σ−1(σ(f)∗̂σ(g)).

By expanding this product in the power of ν we see that the prouct ∗ is a deformation
quantization of (M,ω).

5. – Canonical connection on g
M

The connection ∂ is defined as a twisted exterior derivation. For this, we introduce a
tensor product bundle ΛM ⊗ g

M
, where ΛM is the exterior algebra bundle over M .

Poincaré-Cartan class. In [9, 8] we proposed a Čech cohomology class cM ∈ H2(M)[[ν]]
which characterize an equivalent class of Weyl manifolds over M and shown that cM is
equal to the class determined by the curvature of Fedosov connection [8]. The class cM

is called a Poincaré-Cartan class.
By de Rham theorem, we take a closed 2-form ΩM ∈ Λ2(M) on M which gives the

Poincaré-Cartan class: [ΩM ] = cM .
For each coordinate neighborhood (Uα, zα) where Uα is homeomorphic to 2n-open

disk, we take a 1-form ξα ∈ Λ1(Uα)[[ν]] such that d ξα = Ωα.

Local expression. Now we consider derivations on ΛUα
⊗ g

Uα
. Let δα be a fiberwise

derivation defined by

δα = ad
(

1
ν

∑
ij

dzi
αωijZ

j
)

: Λp
Uα

⊗ g
Uα

→ Λp+1
Uα

⊗ g
Uα

,
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for each p = 0, 1, . . . , 2n.
For each Uα we set τ

α
= τ

Uα
for simplicity.

Now we set

ξ̂α = ad
(

1
ν ξα

)
τα ∈ Λ1

Uα
[[ν]].

Then we have

Lemma 20. There exists a unique 1-form κα ∈ Λ1
Uα

[[ν]] such that(
d − δα + ad

(
1
ν

κα

))
τ

α
= ξ̂α.

We set a derivation ∂α acting on ΛUα
⊗g

Uα
by ∂α =

(
d − δα + ad

(
1
ν κα

))
. Let {Ψ

αβ
}

be a system of contact Weyl diffeomorphisms which glue the local trivializations {g
Uα

}.
Then we have

Proposition 21. Ψ∗
αβ∂α = ∂β

which defines a connection ∂ on g
M

.
The following show that the canonical connection ∂ has ΩM as a curvature form and

is an extension of Fedosov connection.

Theorem 22. i) ∂2|WUα
= 0.

ii) A section F ∈ Γ(WM ) satisfies ∂F = 0 if and only if F ∈ F(WM ).

iii) ∂2 =ad
(

1
ν ΩM

)
, i.e., the curvature form of ∂ is equal to ΩM .

As a corollary of the theorem, we have

Corollary 23. i) The restriction ∂|WM
is a Fedosov connection.

ii) The curvature of the connection ∂ is given by the adjoint of a 2-form which is a
curvature form of Fedosov connection, which can be obtained by ∂2τ

α
.

iii) The Poincaré-Cartan class is equal to the cohomology class of Fedosov connection;
[ΩM ] = c(WM ).

∗ ∗ ∗
The author expresses his thanks to Professor Alexander Vinogradov for interesting

comment. This work was supported by JSPS KAKENHI Grant number 15K04856.
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